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Abstract 

Background/Objective:  For patients with disorders of consciousness (DoC) and their families, the search for new 
therapies has been a source of hope and frustration. Almost all clinical trials in patients with DoC have been limited 
by small sample sizes, lack of placebo groups, and use of heterogeneous outcome measures. As a result, few therapies 
have strong evidence to support their use; amantadine is the only therapy recommended by current clinical guide-
lines, specifically for patients with DoC caused by severe traumatic brain injury. To foster and advance development 
of consciousness-promoting therapies for patients with DoC, the Curing Coma Campaign convened a Coma Science 
Work Group to perform a gap analysis.

Methods:  We consider five classes of therapies: (1) pharmacologic; (2) electromagnetic; (3) mechanical; (4) sensory; 
and (5) regenerative. For each class of therapy, we summarize the state of the science, identify gaps in knowledge, and 
suggest future directions for therapy development.

Results:  Knowledge gaps in all five therapeutic classes can be attributed to the lack of: (1) a unifying conceptual 
framework for evaluating therapeutic mechanisms of action; (2) large-scale randomized controlled trials; and (3) phar-
macodynamic biomarkers that measure subclinical therapeutic effects in early-phase trials. To address these gaps, we 
propose a precision medicine approach in which clinical trials selectively enroll patients based upon their physiologi-
cal receptivity to targeted therapies, and therapeutic effects are measured by complementary behavioral, neuroimag-
ing, and electrophysiologic endpoints.

Conclusions:  This personalized approach can be realized through rigorous clinical trial design and international col-
laboration, both of which will be essential for advancing the development of new therapies and ultimately improving 
the lives of patients with DoC.
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Introduction
Treatments for patients with disorders of consciousness 
(DoC) are currently limited. The cornerstone of therapy 
is early intensive neurorehabilitation combining physical, 
occupational, speech/language, and neuropsychological 
therapy, which appear to improve long-term functional 
recovery [1–4]. Pharmacologic stimulant therapies 
are also used throughout the rehabilitation process to 
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promote recovery of consciousness [5]. However, of the 
few rehabilitative or pharmacologic therapies that have 
reached late-phase clinical trials, only amantadine has 
evidence from a multicenter, double-blind randomized 
controlled trial to support its efficacy in accelerating 
recovery in patients with posttraumatic DoC [6–8].

Network-based insights into mechanisms of conscious-
ness [9] now raise hope for developing new conscious-
ness-promoting therapies for patients with DoC [5]. A 
fundamental goal is to modulate the neural networks 
underlying arousal and awareness, the two components 
of consciousness [10]. Central to this effort has been the 
development of network-based conceptual models of 
consciousness [11, 12] as well as methodologic advances 
in neuroimaging [13], electrophysiology [14], and neuro-
modulation [15, 16]. These conceptual and methodologic 
advances now make it possible to test precision therapies 
[17, 18] that modulate brain activity at a range of scales 
[19–22].

Yet measuring the effects of therapies remains a chal-
lenge. Even with advances in the bedside assessment of 
patients with DoC [23, 24], consciousness may evade 
detection by behavioral examinations, and thus thera-
peutic effects may go unnoticed. The recognition that up 
to 15–20% of patients who appear unresponsive may be 
covertly conscious [25–29] (i.e., cognitive motor dissocia-
tion [30]) has led to a reappraisal of behavioral outcome 
measures in clinical trials and a search for new electro-
physiologic and imaging biomarkers of therapeutic effi-
cacy [17, 18]. Furthermore, the optimal time window for 
evaluating efficacy has not been defined because some 
treatments produce an immediate, transient effect on 
a patient’s level of consciousness, whereas others may 
cause a delayed, long-term change in a patient’s course of 
recovery.

In this white paper, we report the results of a gap analy-
sis performed by the Coma Science Work Group of the 
Curing Coma Campaign [31], in which we examine ther-
apies that aim to promote recovery of consciousness in 
patients with DoC. We identify gaps in knowledge that 
have impeded the development of effective therapies, and 
we propose strategies for filling these gaps in future clini-
cal trials. We make suggestions for the development and 
rigorous assessment of new therapies based on emerg-
ing insights into mechanisms of consciousness and its 
disorders.

Work Group Meetings and Literature Review
The Curing Coma Campaign convened a Coma Science 
Work Group that included nine clinicians and neuro-
scientists with expertise in DoC. The work group repre-
sented six international academic medical centers and the 
fields of neurology, neurosurgery, physical medicine and 

rehabilitation, neuropsychology, and neuroscience. The 
work group met online biweekly and performed a gap 
analysis over a 6-month period from June to December 
2020. During this period, we reviewed the literature on 
therapies for DoC using reference libraries from recent 
systematic reviews [5, 10, 32] as well as our own reference 
libraries. We focused on therapies that directly modulate 
brain networks involved in human consciousness. We 
therefore did not consider brain–computer interfaces 
that translate neural activity into self-expression [14, 
33], nor did we cover treatments that ameliorate specific 
symptoms or neurological deficits associated with DoC, 
such as spasticity [34], pain [35], dysautonomia [36], non-
convulsive seizures [37], pituitary failure [38], or hydro-
cephalus [39]. Although the successful treatment of such 
symptoms can facilitate self-expression and reduce con-
founding of behavioral assessments [1], these treatments 
were beyond the scope of the present gap analysis.

We categorized current experimental therapies into 
five types: (1) pharmacologic, (2) electromagnetic, (3) 
mechanical, (4) sensory, and (5) regenerative (Fig.  1). 
These therapeutic classes act via distinct mechanisms, 
with a diverse set of stimulation targets (Table  1). We 
summarized the state of the science for each therapy 
then analyzed current gaps in knowledge (Table  2) and 
proposed future experimental directions (Table  3). All 
recommendations by our work group were based on 
consensus agreement. We focused on how the design of 
future clinical trials can be optimized for patients with 
DoC, recognizing that recent innovations in clinical trial 
design, such as adaptive designs [40] and patient-cen-
tered outcomes [41, 42], are likely to also influence future 
trials of consciousness-promoting therapies.   

Pharmacologic Therapies
Pharmacologic Agents: State of the Science
Several classes of pharmacologic agents have been used 
to promote recovery of consciousness in patients with 
DoC [5, 43]. Treatment selection has been guided by 
the observation that multiple neurotransmitter systems 
contribute to human consciousness [44, 45] and are 
disrupted by brain injury [46, 47]. Animal and human 
studies have revealed abnormal levels of glutamate, dopa-
mine, acetylcholine, γ-aminobutyric acid (GABA), and 
orexin after brain injury [48–53], although the precise 
mechanistic role of each neurotransmitter system in con-
sciousness is not fully understood. Overall, there are lim-
ited data about pharmacologic interventions for patients 
with DoC, with notable exceptions below.

Dopaminergic drugs have received particular atten-
tion because dopamine is a stimulatory neurotransmit-
ter that is widely expressed in the human brain, including 
in the anterior forebrain mesocircuit [54–56], a network 



of cortico-subcortical feedback loops that appears to be 
essential in the alteration and recovery of consciousness 
[57]. Brain injury causes widespread deafferentation and 
neuronal death within the anterior forebrain mesocir-
cuit, which causes dysfunction within striato-thalam-
ocortical feedback loops, as demonstrated by growing 
neuroimaging evidence [57–59]. Dopamine appears to 
regulate the activity of the mesocircuit and promote clin-
ical recovery because it facilitates the output of striatal 
neurons to the globus pallidus and directly modulates 
the mesiofrontal cortex, leading to restored forebrain 
activity [56]. Accordingly, behavioral and neuroimaging 
responses have been observed following the administra-
tion of dopaminergic agents to patients with prolonged 
DoC [55]. Levodopa [60, 61], bromocriptine [62], apo-
morphine [63, 64], and methylphenidate [65] have been 
investigated in small studies that preclude definitive 

conclusions regarding efficacy. However, amantadine has 
been tested in a placebo-controlled, randomized, double-
blind trial in 184 patients 1–4 months after severe trau-
matic brain injury [6]. This trial revealed a significantly 
higher rate of behavioral recovery among the amantadine 
group during treatment, which declined below the rate 
of the placebo group during the washout phase. Aman-
tadine is currently the only therapy recommended in the 
2018 DoC guideline endorsed by the American Academy 
of Neurology, American Congress of Rehabilitation Med-
icine, and National Institute for Independent Living and 
Rehabilitation Research [7, 8].

Paradoxically, the sedative zolpidem has also demon-
strated stimulating effects in a small subset of patients 
with DoC [66, 67]. Its modulation of GABAA recep-
tors in the globus pallidus interna is thought to underlie 
transient behavioral improvements through release of 

Fig. 1  Current experimental therapies for patients with disorders of consciousness. The therapies are color-coded according to the five classes we 
identified in the gap analysis: (1) pharmacologic, (2) electromagnetic, (3) mechanical, (4) sensory, and (5) regenerative. DBS deep brain stimulation, 
PNS peripheral nerve stimulation, tES transcranial electrical stimulation, TMS transcranial magnetic stimulation



inhibition on the mesocircuit [56, 68, 69]. One double-
blind, placebo-controlled crossover study in 84 patients 
in a vegetative state/unresponsive wakefulness syndrome 
(VS/UWS) or a minimally conscious state (MCS) identi-
fied 5% of patients as “definite responders” [70], whereas 
another prospective open-label trial in 60 patients 
with DoC showed behavioral improvements in 20% of 
patients, without a change in level of consciousness [71]. 
Zolpidem responses have been associated with regional 
increased metabolism on fluorodeoxyglucose positron 
emission tomography [72], an increased blood–oxygen 
level-dependent signal on functional MRI (fMRI) [73], 
reduced burst suppression on electroencephalography 
(EEG) [74], and restoration of thalamocortical signaling 
on dynamic EEG analyses [68, 69, 75].

Other types of pharmacologic drugs, such as baclofen 
(GABAB) [76–78], midazolam (GABAA) [79], amitripty-
line [80], desipramine, protriptyline [81] (norepineph-
rine and serotonin), and modafinil [82] (norepinephrine, 
dopamine, and orexin), have also shown variable benefit 

in small-sample studies. It is unknown whether the use of 
multiple stimulants in combination provides therapeutic 
benefit over use of a single stimulant [83]. Additionally, 
new types of drugs are emerging as potential candidates 
to promote recovery of consciousness. For instance, psil-
ocybin, which binds to serotonin receptors, is thought to 
increase the complexity of electrophysiologic brain meas-
ures in healthy controls [84] and could thus promote 
behavioral responsiveness in patients with DoC whose 
EEG demonstrates decreased brain complexity [85, 86].

Adverse effects are a concern in this vulnerable popu-
lation, and pharmacotherapies may be associated with 
mild reactions (e.g., agitation, hypertension, tachycar-
dia, rash, sleep disturbances, vomiting) or, rarely, severe 
side effects (e.g., seizure, arrhythmia) [87, 88]. Impor-
tantly, adverse reactions to pharmacotherapy in patients 
with DoC can vary in type and incidence from those 
observed in the population in which the drug’s safety was 
initially tested [89]. Neurostimulant efficacy may also be 
limited by delayed effect, short duration of action, low 

Table 1  Putative network targets for experimental therapies aimed at promoting recovery of consciousness

Canonical neural networks that have been characterized in the human brain are listed in the first column. Network nodes and neuroanatomic abbreviations are listed 
in the second column, based upon recent network-based studies [235–240]. The five types of therapeutic modalities characterized in this gap analysis are listed in 
subsequent columns, and the putative network targets of each therapy are listed in the individual cells of the table. Of note, there are ongoing debates about the 
incorporation of specific nodes in certain networks (e.g., the inclusion of the thalamus in the DMN)

5HT 5-hydroxytryptamine (serotonin), ACh acetylcholine, AI anterior insula, aMT anterior middle temporal area complex, antTh anterior thalamus, DA dopamine, 
dACC​ dorsal anterior cingulate cortex, DBB diagonal band of Broca, DBS deep brain stimulation, dCN dorsal caudate nucleus, dLPFC dorsolateral prefrontal cortex, 
DMN default mode network, dMPFC dorsomedial prefrontal cortex, dmTh dorsomedial thalamus, DR dorsal raphe, FEF frontal eye fields, FI frontoinsular cortex, GABA 
γ-aminobutyric acid, Glu glutamate, Hy hypothalamus, HF hippocampal formation, IFG inferior frontal gyrus, IL intralaminar nuclei of thalamus, IPL inferior parietal 
lobule, IPS intraparietal sulcus, LC locus coeruleus, LDTg laterodorsal tegmental nucleus, LHA lateral hypothalamic area, LIFUP low-intensity focused ultrasound 
pulsation, LP lateral parietal cortex, LTC lateral temporal cortex, M1 primary motor cortex, MnR median raphe, MNS median nerve stimulation, mRt midbrain reticular 
formation, NBM nucleus basalis of Meynert, NE norepinephrine, OF orbitofrontal cortex, Ox orexin, PAG periaqueductal gray, PBC parabrachial complex, PCC posterior 
cingulate cortex, PMC premotor cortex, PnO pontis oralis (i.e., pontine reticular formation), PNS peripheral nerve stimulation, Pr precuneus, PTg pedunculopontine 
tegmental nucleus, Put putamen, Ret reticular nucleus of the thalamus, S1 primary somatosensory cortex, SLEA sublenticular extended amygdala, SMA supplementary 
motor area, SN substantia nigra, SPL superior parietal lobule, STG superior temporal gyrus, SUM supramammillary nucleus of the hypothalamus, tES transcranial 
electrical stimulation, Th thalamus, TMN tuberomammillary nucleus of the hypothalamus, TMS transcranial magnetic stimulation, TP temporal pole, vLPFC 
ventrolateral prefrontal cortex, vMPFC ventromedial prefrontal cortex, V1, V2, V3, V4 primary and association visual cortices, VTA ventral tegmental area

Target network Network nodes Pharmacologic Electromag-
netic

Mechani-
cal

Sensory Regenerative

Ascending arousal 
network

mRt, VTA, LC, PTg, PnO, PBC, LDTg, 
DR, MnR, PAG, IL, Ret, TMN, LHA, 
SUM, NBM, DBB

DA, NE, 5HT, ACh, 
Glu, GABA, Ox, 
nonspecific

DBS, PNS LIFUP Vestibular, tactile, 
auditory

Stem cells, 
neurogen-
esis, gliogen-
esis, axonal 
regrowth

Default mode network PCC, Pr, vMPFC, dMPFC, IPL, HF, 
LTC, Th

TMS, tES LIFUP –

Salience network (ventral 
attention network)

dACC, FI, AI, SLEA, PAG, TP, SN, VTA, 
Hy, Put, dmTh, antTh

– – Auditory, tactile, 
vestibular

Dorsal attention network FEF, IPS, SPL, aMT – – –

Executive control 
network (frontoparietal 
network)

dLPFC, dMPFC, vLPFC, LP, dCN TMS, tES – –

Thalamocortical network IL, cerebral cortex DBS LIFUP –

Limbic network OF, TP – – Auditory

Somatomotor network S1, M1, SMA, PMC TMS, tES, 
PNS

– Tactile, vestibular

Visual network V1, V2, V3, V4 – – –

Auditory network STG, IFG – – Auditory



Ta
bl

e 
2 

O
ve

rv
ie

w
 o

f e
xp

er
im

en
ta

l t
he

ra
pi

es
 fo

r D
oC

5H
T 

5-
hy

dr
ox

yt
ry

pt
am

in
e 

(s
er

ot
on

in
), 

AC
h 

ac
et

yl
ch

ol
in

e,
 D

A 
do

pa
m

in
e,

 D
BS

 d
ee

p 
br

ai
n 

st
im

ul
at

io
n,

 D
oC

 d
is

or
de

rs
 o

f c
on

sc
io

us
ne

ss
, f

M
RI

 fu
nc

tio
na

l m
ag

ne
tic

 re
so

na
nc

e 
im

ag
in

g,
 G

AB
A 

γ-
am

in
ob

ut
yr

ic
 a

ci
d,

 G
lu

 
gl

ut
am

at
e,

 L
IF

U
P 

lo
w

-in
te

ns
ity

 fo
cu

se
d 

ul
tr

as
ou

nd
 p

ul
sa

tio
n,

 M
CS

 m
in

im
al

ly
 c

on
sc

io
us

 s
ta

te
, N

E 
no

re
pi

ne
ph

rin
e,

 O
x 

or
ex

in
, P

N
S 

pe
rip

he
ra

l n
er

ve
 s

tim
ul

at
io

n,
 R

CT
​ ra

nd
om

iz
ed

 c
on

tr
ol

le
d 

tr
ia

l, 
tD

CS
 tr

an
sc

ra
ni

al
 d

ire
ct

 
cu

rr
en

t s
tim

ul
at

io
n,

 tE
S 

tr
an

sc
ra

ni
al

 e
le

ct
ric

al
 s

tim
ul

at
io

n,
 T

M
S 

tr
an

sc
ra

ni
al

 m
ag

ne
tic

 s
tim

ul
at

io
n,

 V
N

S 
va

gu
s 

ne
rv

e 
st

im
ul

at
io

n
a  W

e 
pe

rf
or

m
ed

 a
 s

ea
rc

h 
on

 C
lin

ic
al

Tr
ia

ls
.g

ov
 o

n 
Ja

nu
ar

y 
15

, 2
02

1,
 fo

r i
nt

er
ve

nt
io

na
l c

lin
ic

al
 tr

ia
ls

 o
n 

th
e 

co
nd

iti
on

 “d
is

or
de

r o
f c

on
sc

io
us

ne
ss

,” w
ith

 a
 s

ta
tu

s 
of

 “r
ec

ru
iti

ng
,” “

ac
tiv

e,
 n

ot
 re

cr
ui

tin
g,

” o
r “

en
ro

lli
ng

 b
y 

in
vi

ta
tio

n.
” 

Th
is

 s
ea

rc
h 

re
tu

rn
ed

 6
9 

re
su

lts
, o

f w
hi

ch
 2

0 
w

er
e 

in
cl

ud
ed

 in
 o

ne
 o

f fi
ve

 c
la

ss
es

 o
f t

he
ra

pe
ut

ic
 m

od
al

iti
es

 a
nd

 4
9 

w
er

e 
ex

cl
ud

ed
 (3

9 
w

ith
 a

 n
on

-D
oC

 p
op

ul
at

io
n,

 6
 n

on
-in

te
rv

en
tio

na
l, 

an
d 

4 
w

ith
ou

t d
ire

ct
 a

ct
io

n 
on

 
co

ns
ci

ou
sn

es
s)

. P
le

as
e 

se
e 

Su
pp

le
m

en
ta

ry
 T

ab
le

 2
 fo

r a
dd

iti
on

al
 d

et
ai

ls
 re

ga
rd

in
g 

th
e 

cl
in

ic
al

 tr
ia

ls
 id

en
tifi

ed
 b

y 
th

is
 s

ea
rc

h

Cl
as

s 
of

 th
er

ap
y

Ph
ar

m
ac

ol
og

ic
El

ec
tr

om
ag

ne
tic

M
ec

ha
ni

ca
l

Se
ns

or
y

Re
ge

ne
ra

tiv
e

Cu
rr

en
t m

od
al

iti
es

D
A

, N
E,

 5
H

T,
 A

C
h,

 G
lu

, G
A

BA
, O

x,
 

no
ns

pe
ci

fic
D

BS
, t

ES
, T

M
S,

 P
N

S
LI

FU
P

Ta
ct

ile
, a

ud
ito

ry
, v

es
tib

ul
ar

St
em

 c
el

ls
, n

eu
ro

ge
ne

si
s, 

gl
io

ge
n-

es
is

, a
xo

na
l r

eg
ro

w
th

H
ig

he
st

 le
ve

l o
f e

vi
de

nc
e

RC
T 

(a
m

an
ta

di
ne

) [
6]

RC
T 

(t
D

C
S,

 T
M

S)
 [1

26
, 1

33
]

Ca
se

 re
po

rt
/s

er
ie

s 
[1

90
, 1

91
]

RC
T 

(a
ud

ito
ry

) [
19

4,
 1

98
]

Ph
as

e 
1 

cl
in

ic
al

 tr
ia

ls
 (s

te
m

 c
el

ls
) 

[2
13

, 2
14

]

Tr
ea

tm
en

t e
ffi

ca
cy

Fa
st

er
 ra

te
 o

f r
ec

ov
er

y 
du

rin
g 

a 
4-

w
ee

k 
tr

ea
tm

en
t p

er
io

d 
(a

m
an

ta
di

ne
)

N
ew

 s
ig

ns
 o

f c
on

sc
io

us
ne

ss
 in

 
30

–5
0%

 o
f p

at
ie

nt
s 

in
 M

C
S 

(fr
on

ta
l t

D
C

S)
, b

eh
av

io
ra

l 
im

pr
ov

em
en

t i
n 

op
en

-la
be

l 
st

ud
ie

s, 
no

 R
C

T 
ev

id
en

ce
 o

f 
effi

ca
cy

 y
et

 (T
M

S)

Be
ha

vi
or

al
 im

pr
ov

em
en

t i
n 

1 
ac

ut
e 

pa
tie

nt
 a

nd
 2

 o
f 3

 
ch

ro
ni

c 
pa

tie
nt

s

Be
ha

vi
or

al
 im

pr
ov

em
en

t, 
in

cr
ea

se
d 

fM
RI

 a
ct

iv
at

io
n,

 
hi

gh
er

 in
te

ra
ct

iv
e 

au
to

no
m

ic
 

ac
tiv

ity
 (a

ud
ito

ry
)

Po
ss

ib
ly

 fa
st

er
 ra

te
s 

of
 c

lin
ic

al
 

im
pr

ov
em

en
t (

st
em

 c
el

ls
)

Sa
fe

ty
M

ild
 c

om
m

on
 a

nd
 ra

re
 s

ev
er

e 
ad

ve
rs

e 
ev

en
ts

D
BS

, i
nv

as
iv

e 
VN

S:
 ra

re
 s

ev
er

e 
ad

ve
rs

e 
ev

en
ts

; t
ES

: m
ild

 
ad

ve
rs

e 
ev

en
ts

; T
M

S:
 m

ild
 

ad
ve

rs
e 

ev
en

ts
 a

nd
 ra

re
 

se
iz

ur
es

Ph
ys

ic
al

 d
is

co
m

fo
rt

, m
od

ul
at

io
n 

of
 u

ni
nt

en
de

d 
ta

rg
et

s
Se

ns
or

y:
 n

o 
re

po
rt

ed
 a

dv
er

se
 

eff
ec

ts
; v

es
tib

ul
ar

: m
ild

 
ad

ve
rs

e 
eff

ec
ts

U
nk

no
w

n 
sa

fe
ty

 p
ro

fil
e,

 p
ot

en
tia

l 
in

fu
si

on
 s

ite
 re

ac
tio

ns
 a

nd
 

m
al

ig
na

nc
ie

s

Li
m

ita
tio

ns
D

el
ay

ed
 a

ct
io

n,
 d

ru
g 

to
le

ra
nc

e,
 

tr
an

si
en

t e
ffe

ct
s

D
BS

, i
nv

as
iv

e 
VN

S:
 c

os
t a

nd
 

ac
ce

ss
; t

ES
, T

M
S:

 m
od

er
at

e 
an

d 
tr

an
si

en
t e

ffe
ct

s

Ea
rly

 d
ev

el
op

m
en

t f
or

 D
oC

Ta
ct

ile
 a

nd
 a

ud
ito

ry
: u

nc
er

ta
in

 
effi

ca
cy

; V
es

tib
ul

ar
: e

ar
ly

 
de

ve
lo

pm
en

t f
or

 D
oC

Ea
rly

 d
ev

el
op

m
en

t f
or

 D
oC

O
ng

oi
ng

 c
lin

ic
al

 tr
ia

ls
a

4
10

1
5

0

G
ap

s 
in

 k
no

w
le

dg
e

Li
nk

in
g 

fu
nc

tio
na

l n
et

w
or

ks
 to

 
in

di
vi

du
al

 n
eu

ro
tr

an
sm

itt
er

s, 
m

ea
su

rin
g 

ne
ur

ot
ra

ns
m

itt
er

 
im

ba
la

nc
es

, i
de

nt
ify

in
g 

lik
el

y 
re

sp
on

de
rs

 to
 th

er
ap

y

M
ec

ha
ni

sm
 o

f a
ct

io
n 

on
 n

eu
ra

l 
ne

tw
or

ks
, e

xc
ita

bi
lit

y 
an

d 
pl

as
tic

ity
, o

pt
im

al
 s

tim
ul

at
io

n 
pa

ra
m

et
er

s 
an

d 
si

te
s, 

co
nt

ac
t 

lo
ca

liz
at

io
n,

 b
en

efi
ts

 o
f c

on
-

cu
rr

en
t m

ed
ic

at
io

ns

O
pt

im
al

 a
na

to
m

ic
al

 ta
rg

et
s, 

st
im

ul
at

io
n 

pa
ra

di
gm

s, 
be

ne
fit

s 
of

 a
dj

un
ct

s, 
sy

st
em

 
de

si
gn

 fo
r c

lin
ic

al
 u

se

U
nk

no
w

n 
m

ec
ha

ni
sm

s 
of

 
ac

tio
n,

 li
m

ite
d 

kn
ow

le
dg

e 
on

 
ve

st
ib

ul
ar

 c
or

tic
al

 re
pr

es
en

ta
-

tio
n

In
te

gr
at

io
n 

of
 s

te
m

 c
el

ls
 in

to
 

da
m

ag
ed

 n
et

w
or

ks



central nervous system (CNS) penetration, and tolerance, 
requiring larger or more frequent doses and narrowing 
the therapeutic window.

Gaps in Knowledge
Although pharmacologic agents represent a promising 
therapeutic approach for patients with DoC, two fun-
damental limitations have hampered translation. First, 
we lack a conceptual framework to link the action of 
individual neurotransmitters to the function of dis-
tributed brain networks underlying arousal and aware-
ness. Recovery from different endotypes of DoC may 
be dependent on neurotransmitter-specific pathways, 
suggesting a therapeutic opportunity if neurotrans-
mitter activity within these pathways can be measured 
[53, 90]. Second, we lack a standardized approach to 

identifying neurotransmitter imbalances amenable to 
therapeutic modulation. Longitudinal sampling of neu-
rophysiologic and biochemical biomarkers is needed to 
guide the timing of therapy initiation because exces-
sive neurotransmission and neuronal hyperexcitabil-
ity during the acute period may transition to a state of 
depleted neurotransmission and hypoexcitability dur-
ing the subacute-to-chronic period.

Additionally, the effect size of pharmacologic thera-
pies may be underestimated in clinical trials because 
only a subset of patients respond, and we are currently 
unable to identify likely responders at the time of clini-
cal trial enrollment. Incomplete knowledge about the 
optimal dose, duration, dosing frequency, and formula-
tion of pharmacologic agents may also contribute to the 
underestimation of their efficacy. Ethical considerations 
pertaining to enrollment of placebo groups [91, 92] and 
complex approval procedures for novel molecules have 

Table 3  Future goals for the development of therapies to promote recovery of consciousness

Goals are listed according to the order that they appear in the text

CMD cognitive motor dissociation

Goal Action items

Goal 1: develop a unifying conceptual framework for therapeutic mecha-
nisms of action

Create network-based models of arousal and awareness, the two compo-
nents of consciousness

Validate new electrophysiologic and imaging tools to map brain network 
connectivity

Goal 2: optimize the design of clinical trials Perform double-blinded, placebo-controlled, randomized studies with large 
sample sizes

Implement advanced clinical trial designs, such as adaptive designs
Develop patient-centered outcome measures in partnership with families 

and caregivers
Establish an operational framework for enrolling patients with CMD (i.e., 

covert consciousness) and for measuring CMD as an outcome

Goal 3: select patients for clinical trials on the basis of a precision medi-
cine approach

Tailor therapies to individual genomic, proteomic, and metabolomic profiles
Enrich patient selection for clinical trials by enrolling patients whose brain 

network connectivity suggests a physiologic receptivity to therapeutic 
intervention

Define patient-specific endotypes in the inclusion and exclusion criteria of 
clinical trials

Goal 4: develop pharmacodynamic biomarkers of therapeutic responses Measure surrogate biomarkers of a subclinical brain response in early-phase 
trials

Characterize intrasubject and intersubject variance in biomarker responses

Goal 5: determine the optimal timing and dosing of therapeutic interven-
tions

Characterize the temporal dynamics of brain network receptivity to neuro-
modulation during the acute, subacute, and chronic stages of recovery 
from brain injury

Determine if a patient’s endotype influences the therapeutic window or 
duration of action

Measure neurotransmitter function within specific brain networks that are 
therapeutic targets

Optimize the neuroanatomic precision of targeted invasive and noninvasive 
therapies

Identify the optimal stimulation targets within widely distributed neural 
networks

Goal 6: develop novel combination therapies Test the efficacy of concurrent therapies from different modalities (e.g., 
pharmacologic and electrophysiologic)

Test the efficacy of concurrent therapies from the same modality (e.g., top-
down and bottom-up electrophysiologic stimulation)

Goal 7: establish an international clinical trials network Create global collaborations to support large-scale phase 3 clinical trials



further disincentivized large-scale clinical trials. With a 
relatively small target patient population [93], the mar-
ket for research and development of new or repurposed 
therapies to cure coma is not currently a priority for large 
pharmaceutical companies.

Proposal for Future Therapies
Demonstrating the efficacy of new or repurposed phar-
macologic agents will require methods for selective 
enrollment of patients based on their physiological and 
genetic receptivity to candidate therapies [17, 18, 94, 95]. 
In addition to improving clinical trial design via selec-
tive enrollment, we propose three complementary goals 
for developing pharmacologic therapies for patients with 
DoC: (1) combination therapies that provide synergistic 
effects via concurrent modulation of multiple neuro-
transmitter systems, (2) new pharmacologic agents (e.g., 
psychedelic drugs [85], antinarcolepsy drugs, and orexin 
agonists [96]), and (3) testing of drugs in new settings 
(e.g., in the intensive care unit or at home). The reali-
zation of the first two goals will require a better under-
standing of how neurotransmitter systems modulate 
functional brain networks underlying consciousness. 
Indeed, the development of novel or combination thera-
pies will depend on the activation of functional brain net-
works by targeting specific neurotransmitters and their 
receptors. On the other hand, the third goal will require 
new health care frameworks to test the efficacy of phar-
macologic agents in a wider array of settings (e.g., early 
interventions and long-duration treatments), recogniz-
ing that different treatments may be indicated at different 
stages of recovery.

Electromagnetic Therapies
Direct Central Nervous System Stimulation: State of the 
Science
Direct electrical stimulation of the human CNS began 
with the nineteenth century investigations of Krause, 
Horsley, and others [97, 98] and has evolved into 
advanced techniques, such as deep brain stimulation 
(DBS) [99], which is now in routine clinical use for a 
range of conditions. Contemporary CNS stimulation is 
conducted by using a variety of multicontact electrode 
arrays capable of generating complex and rapidly alter-
nating voltage fields. Adjustment of different stimulus 
parameters can produce a spectrum of effects on the 
underlying neural elements, ranging from activation to 
depolarization blockade, with network-wide physiologi-
cal changes. Furthermore, chronic stimulation influences 
neurotransmitter and growth factor synthesis in ways 
that are currently under investigation [100–103].

With the intention of improving arousal and awareness, 
direct CNS stimulation has been applied to a variety of 

targets in patients with prolonged DoC, including the 
cervical spine [104], midbrain reticular formation [105, 
106], the pallidum [107], nucleus accumbens [108], and 
the central thalamus [109–111]. These studies enrolled 
patients with DoC of varying severity resulting from het-
erogeneous injuries at different postinjury time points 
and used different stimulation paradigms and treatment 
durations. In uncontrolled case series of stimulation of 
the central thalamic nuclei [112] and midbrain reticular 
formation [105], immediate behavioral arousal responses 
have been reported (e.g., eye opening, vocalization), 
along with changes to cerebral blood flow and metabolic 
rate [105].

Of these targets, DBS of the central thalamic nuclei is 
one of the most extensively studied, with reports ranging 
from single patients to larger case series [110–115]. Most 
are uncontrolled experiments, with the notable exception 
of a single, rigorously conducted double-blind crossover 
study of a single subject [110]. In open-label case series, 
longer-term clinical improvements have been observed 
after DBS in patients with DoC [112, 114, 116], but these 
results may have been influenced by biases associated 
with uncontrolled, unblinded studies.

DBS has been used for decades for other indications, 
with a well-established safety profile and rare complica-
tions. However, because DBS and other forms of direct 
CNS stimulation involve direct access to the CNS with 
chronically implanted devices, serious complications can 
occur, including hemorrhage, seizures, infections requir-
ing system removal, and side effects from unintended 
stimulation of nearby tissue [117–119].

Transcranial Electrical Stimulation: State of the Science
Transcranial electrical stimulation (tES) uses weak elec-
trical current (1–2 mA), applied transcranially, to modu-
late cortical excitability via a top-down process [120]. tES 
comprises transcranial direct current stimulation (tDCS) 
(direct, constant current), transcranial alternating cur-
rent stimulation (tACS) (alternating sinusoidal current 
at a specific frequency), and transcranial random noise 
stimulation (sinusoidal current with random amplitude 
and frequency) [121]. Different types of current have 
different mechanisms of action, but generally tES tech-
niques are hypothesized to alter the neuronal membrane 
potential and induce long-term potentiation-like plastic-
ity [120]. tDCS is thought to increase focal cortical excit-
ability under the stimulating electrodes, whereas tACS 
is thought to entrain neural oscillation to a specific fre-
quency [122, 123].

To date, most clinical trials have studied the abil-
ity of tES to ameliorate symptoms or improve function 
in patients with poststroke motor and language defi-
cits, psychiatric disorders, or chronic pain [124]. Most 



studies of tDCS in patients with DoC targeted the dor-
solateral prefrontal cortex [5]. Randomized controlled 
trials have reported that 30–50% of patients in MCS, but 
only a small percentage of patients in VS/UWS, demon-
strate new signs of consciousness following prefrontal 
stimulation [125–129]. Other stimulation sites, including 
the motor cortex and posterior parietal region, yielded 
smaller effect sizes compared with prefrontal stimulation 
[5]. Other paradigms, including tACS and transcranial 
random noise stimulation, applied to small samples of 
patients with DoC have been inconclusive [130].

tES is considered to be a safe technique. Adverse effects 
reported in studies on healthy volunteers include par-
esthesia, itching, skin erythema, and headache, which 
all rapidly resolved when stimulation ended. However, 
some precautions need to be taken in patients with DoC, 
especially those with a craniectomy or a shunt. The main 
limitation of tES is currently its moderate and transient 
clinical effects.

Transcranial Magnetic Stimulation: State of the Science
Transcranial magnetic stimulation (TMS) consists of an 
oscillating current passed through a metal coil, which 
creates a fluctuating magnetic field at the surface of the 
skull, inducing an electric current in a volume of brain 
tissue [131]. Like other means of electrically stimulating 
the CNS, a wide range of stimulation parameters can be 
adjusted, with some patterns modeled after neural oscil-
lations, such as theta burst stimulation [132]. TMS has 
been applied over multiple cortical regions, including 
prefrontal, parietal, motor, and occipital cortices. Evi-
dence of repetitive TMS (rTMS) efficacy has been dem-
onstrated for the following disorders: neuropathic pain, 
depression, stroke, fibromyalgia, Parkinson disease, mul-
tiple sclerosis, and posttraumatic stress disorder [124]. 
For patients with DoC, a few randomized controlled trials 
using 20-Hz stimulation over the motor cortex have been 
conducted, without significant evidence of neurobehav-
ioral improvements [133–135]. Other stimulation sites, 
including the prefrontal cortex and angular gyrus, have 
not yet been tested with control groups [136–140]. TMS 
can also be used in conjunction with EEG as a diagnostic 
tool to measure brain complexity [86], an approach that 
holds potential as a neurophysiologic biomarker of treat-
ment effect in patients with DoC [141–143].

The most common adverse effects of rTMS are tran-
sient headaches, local discomfort in the targeted area, 
dizziness, and, very rarely, seizure [144]. It is important 
to screen for potential (subclinical) seizures in patients 
with DoC prior to rTMS treatment [145]. As with tES, 
the main limitations are the moderate and transient 
behavioral effects.

Peripheral Nerve Stimulation: State of the Science
Two approaches aimed at stimulating peripheral nerves 
have been tested to promote recovery in patients with 
DoC: median nerve stimulation (MNS) and vagus nerve 
stimulation (VNS). Through multiple synaptic connec-
tions, stimulation of primary sensory neurons can induce 
neuroplasticity within somatosensory networks, modu-
lating network responsiveness [146–148]. Pilot studies of 
MNS applied to patients with acute brain injury showed 
that MNS improved the level of consciousness and long-
term outcomes [149–151]. A large (N = 437) open-label 
study reproduced these preliminary findings in patients 
with severe traumatic brain injury, showing better recov-
ery at 6  months in the group that received 2  weeks of 
MNS compared with the control group [152].

VNS is hypothesized to stimulate brainstem, thalamic, 
and cortical activity in a bottom-up manner. Invasive 
VNS, mostly used to treat refractory epilepsy [153], was 
recently shown to induce recovery of consciousness in a 
patient in a prolonged VS/UWS [154]. Noninvasive VNS, 
applied transcutaneously to the auricular branch of the 
vagus nerve, has also been reported to result in behav-
ioral improvement and increased default mode network 
connectivity [155]. Subsequently, other uncontrolled case 
series reported heterogeneous and less clinically appar-
ent treatment effects [156, 157]. However, randomized 
controlled trials are still lacking, both for MNS and VNS, 
to determine the efficacy of peripheral nerve stimulation 
on recovery of consciousness.

As with all noninvasive brain stimulation techniques, 
MNS and noninvasive VNS are typically well tolerated. 
Reported side effects are minor. On the other hand, 
invasive VNS is associated with a risk of adverse events 
related to surgical implantation (e.g., bleeding and infec-
tion). Cost and access to this invasive procedure may also 
limit its use.

Gaps in Knowledge
How electromagnetic stimulation precisely affects neural 
networks is unclear [102] and remains an area of active 
research [158–164]. Furthermore, the mechanisms by 
which stimulation modulates the function of distributed 
networks underlying consciousness are incompletely 
understood. Adding to these challenges, the parameter 
space of electromagnetic stimulation is vast [165, 166]. 
Modern stimulation systems can modulate stimulation 
amplitude, frequency, and pulse width [167] combined 
into a variety of stimulus trains and pulse waveform 
shapes [168] and implemented via current or voltage con-
trol [169]. Perhaps most critically, in invasive stimulation 
techniques, it remains unknown which anatomical site of 
stimulation [170] should be used for individual patients. 
Even if an optimal target for an individual patient were 



identified, ensuring accurate electrode placement, espe-
cially in areas with poor intrinsic MRI contrast, such as 
the thalamus, remains challenging [171–173]. Further-
more, contact localization remains a challenge, with 
many available tools but no consensus on assessing 
anatomic accuracy, especially in patients with preexist-
ing structural brain injury causing distorted anatomy 
[174–177]. Similarly, for noninvasive brain stimulation 
techniques, the stimulation site should account for the 
individual patient’s underlying brain lesions and their 
associated network disconnections [178].

Questions persist regarding when to stimulate (e.g., 
how long after the brain injury, mornings and/or eve-
nings, taking brain state fluctuation into account) and 
for how long (e.g., per session, per treatment period). 
Additionally, although noninvasive techniques, such as 
tACS, offer the opportunity to entrain neuronal oscilla-
tion to a specific frequency [122], which frequencies to 
target remains unknown. Furthermore, although much 
work has been done to model the current field to target a 
specific brain region on the basis of standardized atlases 
[175, 179], it is unknown whether such paradigms exert 
similar effects in the presence of extensive heterogeneous 
structural distortions commonly observed in the brains 
of patients with DoC [180]. It also remains unclear if con-
currently administered medications hamper or facilitate 
brain stimulation efficacy. Finally, a key gap in the field 
of electromagnetic stimulation to promote recovery of 
consciousness is the lack of a large-sample randomized 
controlled trial.

Proposal for Future Therapies
Generating individualized assessments of structural 
injury, functional network connectivity, and regional glu-
cose metabolism may help inform the choice of a stimu-
lation site. As our knowledge advances about how neural 
circuits within distributed brain networks encode and 
process information, strategies for targeted electromag-
netic intervention may present themselves. Many stimu-
lation systems now have sensing capabilities, which are 
needed to assess the effects of ongoing stimulation on 
neural activity. Separately, machine learning approaches 
may be useful for developing registration and segmenta-
tion pipelines that are robust to encephalomalacia and 
distortion and that precisely and reliably identify target 
structures (and electrode and lead location) in the brains 
of patients with DoC [173, 181, 182].

The development of neurophysiological biomarkers to 
measure electromagnetic treatment effects that occur 
independently of any behavioral change will help to guide 
future therapy. EEG properties (functional connectivity, 
spectral shifts) that are correlated with behavioral level of 
awareness may serve as candidate biomarkers by which 

electromagnetic therapies can be targeted and optimized 
[183]. Computational modeling of how stimulation para-
digms applied to different sites affect underlying network 
physiology will be useful in designing treatment proto-
cols with a higher chance of behavioral success [184].

Once treatment paradigms and methods of assessing 
behavioral or neurophysiologic end points are standard-
ized, the variability in stimulation site can then be ana-
lyzed to optimize treatment effect. Such a strategy has 
already been applied successfully to rTMS treatment for 
depression [185]. It is also possible that combining bot-
tom-up (e.g., VNS) and top-down (e.g., tES) therapies 
will provide synergistic effects with enhanced behavioral 
responses. Other future directions are to test simultane-
ous, multitarget stimulations and to use advanced brain 
imaging, such as diffusion MRI tractography and resting-
state fMRI, to guide stimulation [15].

Mechanical Therapies
Transcranial Focused Ultrasound: State of the Science
The ability to focus low-intensity, subthreshold ultra-
sound toward subcortical targets allows ultrasound mod-
ulation to be conducted through an intact skull and scalp, 
permitting noninvasive stimulation [186, 187]. Low-
intensity focused ultrasound pulsation (LIFUP) relies on 
direct mechanical effects on tissue rather than chemical 
or electromagnetic mechanisms. In preclinical studies, 
focused ultrasound has been used in rodents to amelio-
rate the effects of anesthesia and brain injury [188, 189]. 
A first-in-human study of LIFUP thalamic stimulation 
reported behavioral improvement in a single patient with 
acute posttraumatic DoC [190]. However, because the 
therapy was delivered only 19  days after injury, there is 
potential confounding by spontaneous recovery. A recent 
LIFUP study in three patients with chronic DoC provided 
further proof-of-principle evidence for its therapeu-
tic potential, with two patients showing new behavioral 
responses after therapeutic stimulation [191]. Adverse 
events of LIFUP are still being investigated but poten-
tially include the modulation of unintended targets and 
physical discomfort from the device during stimulation.

Gaps in Knowledge
The use of focused ultrasound for patients with DoC 
is still in the early phases of development, and much 
remains unknown. Further research is needed on  opti-
mal anatomic targets, stimulation paradigms, the utility 
of adjuncts, such as microbubbles, and system design for 
robust chronic or intermittent clinical use.



Proposal for Future Therapies
Future investigations with focused ultrasound should 
proceed down two pathways: one to optimize devices and 
protocols for the precise, durable modulation of neural 
tissue and the other to pinpoint appropriate modulation 
targets for patients with DoC. LIFUP research continues 
apace for myriad other uses, and its use in patients with 
DoC will undoubtedly benefit from (and hopefully con-
tribute to) these advances.

Sensory Therapies
Tactile and Auditory Stimulation: State of the Science
Sensory stimulation therapies have been administered 
to patients with DoC for decades in rehabilitation set-
tings [192]. They may be administered through any sen-
sory modality, with tactile and auditory stimuli being 
the most common. The mechanistic rationale for this 
class of therapies is that environmental stimulation may 
enhance neural processing, support neuroplasticity, and 
thus promote reemergence of consciousness [193]. Sen-
sory stimulation is postulated to reengage dormant sub-
cortical networks that modulate arousal, resulting in 
reactivation of cortical networks that mediate awareness. 
Auditory stimulation is targeted toward activating audi-
tory and language networks, as has been demonstrated 
in small placebo-controlled studies [194]. Music ther-
apy aims to optimize the therapeutic impact of sensory 
stimulation by providing a live or recorded music stimu-
lus [195], preferably performed in a personalized way by 
a music therapist [196–198], to activate neural networks 
that mediate attention, emotion, auditory processing, and 
self-awareness [199]. A recent meta-analysis suggested 
that music therapy may improve functional outcomes in 
patients with DoC [200].

Tactile and auditory therapies have an uncertain 
effect because they have thus far only been tested in 
small heterogeneous samples, along with variable ther-
apeutic paradigms and outcome measures [193, 199, 
201]. In the absence of compelling evidence from ran-
domized controlled trials, the justification for these 
therapies rests on their safety and the reasonable 
assumption that sensory deprivation has deleterious 
effects on recovery.

Vestibular Stimulation: State of the Science
There are three main methods of vestibular stimulation: 
motion devices (e.g., rotating chair), caloric vestibular 
stimulation (CVS), and galvanic vestibular stimulation 
(GVS). CVS consists of irrigating the external ear canal 
with warm or cold water. The subsequent change in affer-
ent firing rate of the vestibular nerve simulates head and 

eye movement, which via brainstem and thalamic pro-
jections, produces responses in frontoparietal and stri-
atal networks associated with arousal and goal-directed 
behavior [202]. GVS is a device that applies currents 
(0.1–3  mA) via two electrodes placed over the mastoid 
that provoke a change in equilibrium and nystagmus.

Previous studies investigated the effects of vestibu-
lar stimulation on various clinical conditions (e.g., sleep 
and mood disorders, schizophrenia, chronic pain), with 
positive results [203]. Other studies suggest that vestib-
ular stimulation could serve as a sensory and cognitive 
enhancer [204, 205]. Different mechanisms have been 
suggested to explain its potential therapeutic effect, such 
as relocation of attention, multisensory integration, hem-
isphere-specific activation, and neurotransmitter release 
[203].

Only three studies have investigated the use of vestibu-
lar stimulation in patients with severe brain injuries. Two 
early studies demonstrated a correlation between elec-
trooculographic recordings after CVS and the state of 
consciousness, but the duration of this effect was unclear 
[206, 207]. The third study showed time-locked behavio-
ral improvements in two patients in a chronic MCS using 
a crossover design over 16–18  weeks of CVS and sham 
stimulation [208]. Vestibular stimulations are noninva-
sive, relatively inexpensive, and easy to implement. Mild 
side effects include motion sickness, vertigo, nausea, and 
vomiting.

Gaps in Knowledge
The precise mechanisms underlying a potential therapeu-
tic response to tactile, auditory, and vestibular therapies 
are unknown. Furthermore, knowledge about vestibular 
cortical representations is still limited, compared to other 
senses. Current evidence is based on case reports or 
small-scale studies, not yet replicated, and may be over-
estimating efficacy because of publication bias. Because 
most reported improvements were transient, whether 
sensory stimulation elicits sustained changes in the 
course of recovery is unknown.

Proposal for Future Therapies
Well-controlled large-scale studies are needed, along 
with imaging or electrophysiologic recordings to con-
firm the preliminary results and elucidate the underlying 
mechanisms of tactile, auditory, and vestibular stimu-
lation. Optimal protocols also need to be investigated, 
particularly with respect to the frequency and duration 
of sensory stimulation. Future studies should consider 
comparing efficacy of auditory therapies in which a 
patient actively participates (e.g., tapping a rhythm with 
one’s hand) with efficacy of auditory therapies in which a 



patient listens passively. Another future direction will be 
to determine whether auditory rhythms can induce brain 
rhythms—a neural entrainment similar to that observed 
with tACS [122]. New methods for CVS (e.g., wet air, 
near-infrared radiation) could be tested, and GVS could 
be used with virtual reality-based therapeutic interven-
tions and rehabilitation.

Regenerative Therapies
Stem Cell, Neurogenesis, Gliogenesis, and Axonal 
Regrowth Therapies: State of the Science
Several therapeutic possibilities exist for using stem 
cells capable of neuronal differentiation in patients with 
DoC. These cells can be derived from adult neural stem 
cells, mesenchymal bone marrow stromal cells, umbili-
cal cord blood, and induced pluripotent stem cells [209]. 
The application of this therapy to patients with DoC has 
been influenced by the development of platforms to test 
stem cell therapies in several other neurological diseases 
[210–212].

Few studies have evaluated the therapeutic effect of 
stem cells in patients with DoC. Two early-phase clinical 
trials in patients with traumatic DoC found that intra-
venous [213] or intrathecal [214] infusion of autologous 
bone marrow stromal cells was well tolerated at several 
different doses and possibly associated with faster rates 
of clinical improvement. Several additional case reports 
in children in a VS/UWS after anoxic injury showed clin-
ical improvement following intravenous [215] or intrac-
erebroventricular [216] infusion of umbilical cord blood. 
The safety profile of this therapy is not well established, 
and infusion-site reactions must be considered in addi-
tion to the potential of pluripotent cells to develop into 
malignancies [217].

Gaps in Knowledge
Although efficient means of delivering neuronal precur-
sor cells to brain tissue and evaluating their integration 
are being developed, the optimal approach for functional 
integration of stem cells into injured brain networks is 
unknown. Even in Parkinson’s disease, with well-under-
stood pathophysiology, discrete targets, and well-mapped 
circuitry, achieving functional integration of these cells 
has been difficult [210]. Furthermore, despite emerging 
insights into how the fate of stem cells is regulated [218, 
219], the relative impact of stem cell therapies on neuro-
genesis, gliogenesis, and axonal regrowth has not been 
comprehensively characterized. The relative benefits of 
regenerative therapies that promote functional integra-
tion of neuronal precursor cells, as compared to those 
that provide trophic support for network plasticity, is also 
unknown.

Proposal for Future Therapies
Given that patients with DoC frequently suffer wide-
spread neuronal loss, the ability to deploy stem cells 
capable of reconstituting adult neurons is an appealing 
therapeutic option. Continuing to advance knowledge of 
the utility of regenerative therapies through rigorously 
testing and iteratively evaluating them will improve our 
chances of developing effective therapy for patients with 
DoC. Basic science progress, including the development 
of brain organoids that can be studied neurophysiologi-
cally [220], may offer more tractable models by which 
we can learn how to effectively use regenerative thera-
pies. Cellular and molecular approaches to increasing the 
functional integration of stem cells induced to differenti-
ate into neurons can be developed in vitro, optimized in 
animal models, and eventually tested in patients.

Discussion and Future Directions
The development of effective consciousness-promoting 
therapies for patients with DoC will require a coordi-
nated effort by the international community and a com-
mitment to optimizing the design of clinical trials. We 
recommend that future studies implement multicenter, 
placebo-controlled, randomized, double-blind designs 
with complementary behavioral, neuroimaging, and elec-
trophysiologic outcome measures to assess treatment 
efficacy. Mechanistic biomarkers that predict a therapeu-
tic response are also needed to improve the efficiency of 
clinical trials by enrolling patients whose brain networks 
are amenable to therapeutic modulation. This precision 
medicine approach will require a broad range of meth-
odological advances, including the rigorous characteriza-
tion of patient endotypes [221].

Beyond advances in clinical trial design, we also recom-
mend the development of new therapeutic approaches in 
which multiple therapies are administered concurrently 
to individual patients. Just as no single therapy is likely to 
be efficacious in all patients, it is possible that more than 
one therapeutic modality is needed to stimulate neural 
networks via synergistic mechanisms. For example, elec-
tromagnetic stimulation (e.g., rTMS) may be combined 
with pharmacologic stimulation [222], or electromag-
netic top-down stimulation (e.g., tES) with bottom-up 
approaches (e.g., transauricular  VNS), administered 
either concurrently or consecutively. We encourage the 
development of adaptive clinical trial designs featuring 
conditional therapeutic additions or changes based on 
the patient’s clinical evolution.

For these new approaches to reach their full poten-
tial, we will need a unifying conceptual framework—one 
that accounts for the diverse pathophysiologic mecha-
nisms underlying DoC. This conceptual framework will 
help guide the development of surrogate end points, or 



pharmacodynamic biomarkers, of therapeutic efficacy 
in early-stage clinical trials (i.e., phases 1 and 2). When 
testing whether a new therapy is engaging its target, it is 
likely that subclinical responses will be detectable before 
behavioral responses [17, 141–143, 223]. Pharmacody-
namic biomarkers derived from EEG [17, 183, 223, 224], 
fMRI [17, 225], positron emission tomography [225], 
TMS–EEG [141–143], or near-infrared spectroscopy 
[226] can thus be used to measure brain responses to new 
therapies, identify optimal dosing regimens, and inform 
the design of phase 3 trials that aim to detect behavioral 
and functional responses.

In parallel with the need for surrogate measures in 
early-phase trials, there are fundamental unanswered 
questions about the optimal outcome measures to use for 
phase 3 trials that enroll patients with DoC. Historically, 
the Glasgow Outcome Scale-Extended (GOSE) [227] has 
been the outcome measure recommended by regulatory 
agencies for phase 3 clinical trials of patients with severe 
brain injuries [228, 229]. However, the GOSE is an ordi-
nal eight-point scale with outcome categories that do 
not provide the granular assessment of consciousness or 
cognitive function that may be required to detect subtle, 
yet clinically meaningful, therapeutic effects. A patient 
who transitions from a VS/UWS to a low-level MCS, for 
example, would not be defined as a treatment responder 
by using the GOSE because the score would remain a 2 
[230]. Indeed, the reliance on the GOSE as an outcome 
measure has been proposed as a contributing factor to 
the high failure rate of phase 3 clinical trials in patients 
with severe brain injuries [229]. The Disability Rating 
Scale [231] provides a more comprehensive assessment 
of functional outcome and was used in the phase 3 trial 
of amantadine [6], but the Disability Rating Scale does 
not account for behavioral changes in the visual and 
auditory domains that would be captured by the Coma 
Recovery Scale-Revised [23]. Yet even if future phase 3 
trials include additional behavioral and cognitive out-
come measures derived from the Coma Recovery Scale-
Revised and the Confusion Assessment Protocol [232], 
fundamental questions remain, such as the following: (1) 
What is the minimal clinically important difference [233] 
for outcome measures that assess patients with DoC? (2) 
Does the minimal clinically important difference depend 
on the level of consciousness at the time of trial enroll-
ment? and (3) Are outcome measures that rely on overt 
behaviors suboptimal for patients with covert conscious-
ness, who may only be able to communicate via brain–
computer interfaces [33]? Answering these questions 
may require new partnerships between clinicians, inves-
tigators, ethicists, recovered patients, caregivers, and reg-
ulatory agencies.

Another key consideration in future clinical trial design 
will be the timing of enrollment, particularly for patients 
with cognitive motor dissociation [30] (i.e., active com-
mand-following on task-based fMRI or EEG) or covert 
cortical processing [10] (i.e., passive responses to lan-
guage or music on stimulus-based fMRI or EEG). Emerg-
ing evidence suggests that these two groups of patients 
have a better chance of long-term functional recovery 
than do patients without responses on task-based or 
stimulus-based diagnostic tests [26, 234], which may also 
suggest an increased receptivity to therapeutic stimula-
tion. Investigators will have to consider whether these 
patients should be analyzed as prespecified subgroups in 
future studies and whether a transition from unrespon-
siveness to cognitive motor dissociation or covert cortical 
processing should be defined as a favorable therapeutic 
response.

In summary, the future development of all five classes 
of therapeutic modalities investigated in this gap analysis 
will require multicenter trials to achieve adequate statis-
tical power to test hypotheses about therapeutic efficacy. 
We call for the creation of a global DoC clinical trials net-
work to support this long-term goal. Central to this inter-
national effort will be the selective enrollment of patients 
based on their physiological receptivity to targeted 
therapies [17, 18, 94, 95], as well as the implementation 
of new pharmacodynamic biomarkers and standardized 
outcome measures for the comprehensive evaluation of 
brain function, behavior, and cognition. Advances in clin-
ical trial design and precision medicine are essential for 
the future development of therapies that will improve the 
lives of patients with DoC.
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