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Abstract
Purpose of Review Immune checkpoint inhibitors (ICI) are only effective in a subset of patients. Here, we will review the
rationale and data supporting the combination of PD-1 pathway inhibition with recombinant cytokines and neoantigen-based
cancer vaccines that can potentially increase the number of patients who will benefit from immunotherapy.
Recent Findings The safety and tolerability of new interleukin(IL)-2 formulations, IL-15 super agonist, and PEGylated IL-10
have been evaluated in early phase clinical trials with promising efficacy data, both as monotherapy and in combination with ICI.
Larger studies focusing on the efficacy of these combinations are ongoing. Personalized neoantigen-based cancer vaccines,
enabled by improvements in sequencing computational capabilities, have been proven to be feasible, safe, and able to trigger
a consistent vaccine-specific immune response in cancer patients.
Summary New pharmacologically modified recombinant cytokines and personalized neoantigen-based vaccines may turn these
approaches into powerful tools for effective combination immunotherapy.
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Introduction

Immune checkpoint inhibitors (ICI) are now considered one
of the pillars of anticancer therapy. In particular, anti-PD-1/
PD-L1 antibodies have demonstrated broad clinical efficacy,
and currently, these agents are approved for the treatment of
several different cancer types, including one histology-
agnostic approval for patients with unresectable or metastatic,
microsatellite instability-high (MSI-H) or mismatch repair-
deficient tumors [1–3]. However, despite these encouraging
results, the majority of patients do not derive benefit from ICI
when they are given in monotherapy, suggesting that there
must be additional factors causing resistance to ICI. Thus, it
is likely that combinatorial approaches will be needed, i.e.,

adding other agents to anti-PD-1/PD-L1 therapy, in order to
increase the number of patients who respond in a given tumor
type, have complete, and most importantly, have durable
responses.

Towards this end, the combination of the anti-CTLA-4 anti-
body ipilimumab and the anti-PD-1 antibody nivolumab has
been shown superiority over ipilimumab alone in advanced
melanoma [4, 5]. However, this regimen is associated with high
(> 50%) rates of severe immune-related adverse events (irAEs),
including dermatologic, endocrine, gastrointestinal, pulmonary,
and hepatic toxicities [4]. Moreover, a still significant propor-
tion of patients showed primary resistance to this therapy, indi-
cating a need for alternative strategies for these patients. The
broad efficacy of ICI across cancers supports the rationale for
further development of anticancer immunotherapy in general
and provides a rationale to revisit “older” immunotherapy ap-
proaches. Importantly, many of these approaches rely on the
activation of the first steps of the cancer-immunity cycle [6]
(antigen presentation, activation of APCs, and activation and
survival of naïve T cells) and can synergize with ICI, which
works by unleashing T cells from negative regulatory mode. In
this review, we will review cytokine therapy and cancer
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vaccines as potential combination partners with PD-1/PD-L1
inhibitors for the treatment of melanoma and other cancers.

Interleukin (IL)-2

High-Dose IL-2

The recognition that a cytokine now called IL-2 could expand
T cells and sustain their functional activity was crucial for the
current understanding of the cellular aspects of anticancer im-
munity as well as the development of cancer immunotherapy
[7]. Interleukin-2 is secreted predominantly by activated CD4
T cells, but it can also be released by other immune cells,
including CD8 T cells, natural killer (NK) cells, and dendritic
cells (DCs). Following its binding to the receptor-signaling
complex containing alpha (IL2Rα, CD25), beta (IL2Rβ,
CD122), and common gamma chain receptors (IL2Rγ,
CD132) [8], IL-2 acts as a potent T cell growth factor, with a
pleiotropic effect on both CD8 and CD4 T cell function, sur-
vival, and differentiation [9]. At high doses, IL-2 binds to
heterodimeric IL2Rβγ causing expansion of CD8 T cells
[10]. IL-2 also binds with higher affinity to its heterotrimeric
receptor containing the subunit IL-2Rα (CD25) forming the
IL-2αβγ complex, leading to expansion and maintenance of
T regulatory (T-reg) cells [7], which constitutively express
high levels of IL-2Rα.

Pioneering work by Rosenberg [11] and colleagues dem-
onstrated that administration of recombinant IL-2 led to sub-
stantial regression of established tumor metastases in murine
models, paving the way to the first clinical trials using recom-
binant IL-2 in patients with advanced cancer. The studies
demonstrated for the first time that targeted immune interven-
tion with stimulated T lymphocytes could mediate complete
elimination of metastatic cancers in humans. However, IL-2 is
effective only in a small fraction of patients with advanced
melanoma or renal cell cancer and requires administration in
high doses, resulting in substantial toxicity related to the cy-
tokine outburst, with a reported treatment-related mortality
rate of 2–4% [12–16]. Retrospective series of patients with
advanced melanoma and renal cell carcinoma (RCC) showed
that the objective response achieved with the approved regi-
men of high-dose IL-2 is between 15 and 20% in these pa-
tients [12–16]. Importantly, approximately 5% of patients
achieved durable response, some of which have lasted for
20 years or longer. This excellent response durability associ-
ated with high-dose IL-2 played a role in the Food and Drug
Administration (FDA) approval of recombinant IL-2 for the
treatment of advanced renal cell carcinoma in 1992 and met-
astatic melanoma in 1998.

A more contemporary experience, including 170 patients
with melanoma and 192 patients with RCC treated with high-
dose IL-2 between 2005 and 2012 from 40 centers, showed

similar objective response rates, with longer overall survival
than historical control [17]. However, because of the serious
AEs that include hypotension, cardiac arrhythmias, metabolic
acidosis, dyspnea, and renal failure, neurotoxicity, and derma-
tologic complications, the administration of high-dose IL-2
requires an in-patient setting where close monitoring and
blood pressure support can be provided. Although these tox-
icities are manageable and reversible after stopping IL-2 infu-
sion, they limit the use of IL-2 outside large and experienced
centers. This limitation, in conjunction with the low response
rates and the emergence of ICI, led to a decrease in the utili-
zation of high-dose IL-2.

NKTR-214

NKTR-214 is a conjugated IL-2 and itself conjugated to 6
releasable polyethylene glycol (PEG) chains. PEGylation of
recombinant molecules can improve half-life and biological
activity [18] and, depending on where the PEG chains are
located, can also alter its target cell specificity. In the case of
NKTR-214, PEG chains are slowly released leading to gener-
ation of active IL-2 conjugates. In addition, PEG chains are
strategically located to mask the region of IL-2 that interacts
with the IL2Rα subunit responsible for activating T-regs, with
no impairment at the binding site to IL2Rβ. In preclinical
studies, NKTR-214 was shown to increase the ratio of CD8/
T-reg cells in the tumor microenvironment and mediated anti-
tumor activity in aggressive murine tumors as a single agent
and in combination with anti-CTLA-4. Furthermore, the mol-
ecule was well tolerated in non-human primates, without ev-
idence of hypotension or vascular leak syndrome at its maxi-
mum tolerated dose.

The phase 1 dose escalation trial of NKTR monotherapy
assessing safety and tolerability enrolled 25 patients with lo-
cally recurrent or metastatic solid tumors including RCC (N =
16), melanoma (N = 6), and other solid tumors [19]
(NCT02869295). Patients received outpatient intravenous
dosing over 15 min every 2 or 3 weeks. NKTR-214 had a
favorable safety profile, with no immune-related AEs; grade
3 hypotension was observed in 3/25 patients and was rapidly
reversible with fluids; notably, all three patients continued
dosing after these events; no capillary leak syndrome was
observed. Furthermore, the drug showed antitumor activity,
with antitumor immune response in agreement with pre-
clinical data: elevation of newly proliferating Ki67+ CD8+
T cells and NK cells in the blood also observed in the
tumor; greater abundance of CD8+ T cells to T regulatory
immune suppressive cells accumulating in the tumor and
increased PD-1 expression on CD4+ and CD8+ T cells in
blood and tumor. Clinical trials evaluating the combination
of NKTR-214 and PD-1/PD-L1 inhibitors are ongoing and
will be discussed below.
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Combination of IL-2 and PD-1/PD-L1 Inhibitors

Even if better tolerated formulations of IL-2 will be devel-
oped, the low overall response rate is still the problem regard-
ing most patients who do not benefit from monotherapy. At
the time of the clinical development of the regimen with high-
dose IL-2 in patients with advanced cancer, little was known
about the mechanisms regulating T cell activation. The dis-
covery and investigation of CTLA-4 and subsequently PD-1
and its ligands PD-L1 and PD-L2 in the context of cancer
therapy brought to light the critical role of these immune
checkpoints in the anti-tumor immune response and provided
the basis for the clinical development of ICI [20–24].

Based on their distinct roles of IL-2 and PD-1-PD-L1 inter-
actions within the cancer immunity cycle [6], IL-2 and PD-1/
PD-L1 blockade have the potential to act synergistically. While
IL-2 secretion is relevant during the priming and activation of
tumor-specific T cells, PD-1/PD-L1 inhibitors act “down-
stream” during the effector phase in the tumor. In line with this
hypothesis, West et al. showed that PD-L1 blockade synergizes
with IL-2 therapy in enhancing virus-specific CD8+ T cell re-
sponses and decreasing viral load in a mouse model of chronic
lymphocytic choriomeningitis virus (LCMV) infection [25].

Preliminary results of the phase 1/2 PIVOT-02 trial
(NCT02983045), evaluating the safety and activity of the
combination of NKTR-214 and Nivolumab in patients with
advanced melanoma, RCC, non-small cell lung cancer
(NSCLC) were recently presented [26•]. Following the dose-
escalation phase of the study, the recommended phase 2 dose
was the combination of NKTR-214 0.006 mg/kg q3w +
nivolumab 360 mg q3w. The phase 2 portion of the trial is
ongoing and is planned to accrue a total of 330 patients with
different cancer types, including advanced melanoma,
NSCLC, RCC, bladder cancer, and triple-negative breast can-
cer. At ASCO 2018 Diab et al. presented data for frontline
melanoma, frontline RCC, and frontline cisplatin-ineligible
urothelial carcinoma (UC) cohorts included in the phase 2
portion of the trial. As of May 2018, the best overall response
by RECIST 1.1 was 50% (14/28) in treatment-naive melano-
ma patients; 46% (12/26) in treatment-naive RCC patients;
14% (6/10) in treatment-naive cisplatin-ineligible UC pa-
tients. Safety data were available for 283 patients treated at
the RP2D. Grade ≥ 3 treatment-related AEs occurred in 14.1%
of patients, including syncope (n = 5), hypotension (n = 5),
rash (n = 4), increased lipase (n = 4), and dehydration (n = 3).
Grade ≥ 3 irAEs were reported in 3.5% of patients. One pa-
tient died of grade 5 pneumonitis. Another phase 1 study
(NCT03138889) is evaluating the safety of the combination
of NKTR-214 with Pembrolizumab or with Atezolizumab in
patients advanced NSCLC, bladder cancer, and melanoma.
Currently, multiple clinical trials are ongoing evaluating the
combination of high- and low-dose recombinant IL-2 with
PD-1/PD-L1 inhibitors.

Interleukin 15

Both IL-2 and IL-15 signal through the IL-2Rβγ het-
erodimeric receptor. Therefore, similar to IL-2, IL-15
promotes CD8-positive T cell and NK cell activation
and proliferation. However, IL-2 also leads to expansion
of T-reg cells that express the unique IL-2Rα subunit,
facilitating high-affinity IL-2 binding. Preclinical studies
in mice suggested that IL-15 had a more favorable tox-
icity profile than IL-2, with robust efficacy, including
induction of antitumor immunity [27–29], leading to
the possibility that IL-15 could in fact be a therapeutic
alternative to IL-2 [10]. Treatment with recombinant-
human IL-15 (rhIL-15) was shown to be safely admin-
istered to patients and to induce biological activity on
NK cells and CD8+ memory T cells [30]. While prom-
ising antitumor activity of IL-15 was seen preclinically,
it was observed that its biological activity could be fur-
ther augmented by pre-association with its soluble re-
ceptor (IL-15Rα) [31–35].

ALT-803 is a pharmacological grade IL-15/IL-15Rα com-
plex fused to an IgG1 Fc, in which IL-15 is additionally mu-
tated (asn72asp) to further increase biological activity making
this complex an IL-2 and IL-15Rβγ superagonist [36].
Recently, Wrangle et al. reported the results of a phase 1b trial
assessing the safety of ALT-803 in combination with
nivolumab and the anti-tumor activity of the combination in
patients with advanced NSCLC [37•]. The study enrolled pa-
tients with previously treated stage IIIB or IV NSCLC from
three academic hospitals in the United States. Patients re-
ceived the IL-15 superagonist ALT-803 subcutaneously once
per week, on weeks 1 to 5 of four 6-week cycles for 6 months
in escalating dose combination with nivolumab. The primary
endpoint was to define safety and tolerability and to establish a
recommended phase 2 dose of ALT-803 in combination with
nivolumab. A total of 23 patients were enrolled and 21 were
treated at four dose levels of ALT-803 in combination with
nivolumab. No dose-limiting toxicities were observed, and the
maximum tolerated dose was not reached. The most common
adverse events were injection-site reactions (90% of patients)
and flu-like symptoms (71%). The most common grade 3
adverse events, occurring in two patients each, were
lymphocytopenia and fatigue. No grade 4 or 5 adverse events
were recorded. The recommended phase 2 dose of ALT-803 is
20 μg/kg given once per week subcutaneously in combination
with 240 mg intravenous nivolumab every 2 weeks, and the
ongoing portion of this trial is ongoing. In a post hoc analysis,
six (29%) of 21 patients achieved an objective response clas-
sified as partial response per RECIST 1.1. Notably, 11 patients
had previously received single-agent PD-1 monoclonal anti-
body and progressed after at least 3 months of treatment, and
three (27%) of them achieved partial response and seven
(64%) stable disease.
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Interferon-Alpha

For two decades, high-dose interferon-α (IFN-α) was the only
approved adjuvant therapy for the treatment of stage III high-
risk melanoma; however, the drug was not consistently used
mainly because of considerable toxicity and conflicting data
regarding overall survival benefit. Efficacy was initially dem-
onstrated in the Eastern Cooperative Oncology Group
(ECOG) 1684 [38] and Intergroup E1694 studies [39], as well
as a meta-analysis that included results from trials with differ-
ent regimens of IFN-α [40]. PD-1 inhibition (in addition to
targeted therapy for BRAFV600 mutant melanoma) now has
largely replaced IFN-α for the treatment of resected stage III
melanoma [41, 42]. IFN-α is also approved as therapy for
patients with advanced RCC, in combination with
bevacizumab [43]. With regards to the potential of IFN-α as
a combination partner with PD-1/PD-L1 inhibitors, preclinical
data showed that IFN-α increases and prolongs PD-1 expres-
sion on T cells, and the combination of this cytokine with PD-
1 inhibition was synergistic [44]. Thus, there was a compel-
ling rationale to explore IFN-α in combination with PD-1
inhibition. Nevertheless, only modest clinical efficacy was
seen in patients who were treated with maximum tolerated
doses of pembrolizumab plus PEGylated IFN-α on the phase
1b trial KEYNOTE-029 (NCT02089685) [45].

IL-10

IL-10 is produced by activated T cells and antigen presenting
cells; its cognate receptor IL-10R is induced in CD8+ T cells
upon antigen recognition. Traditionally, this cytokine has been
considered as anti-inflammatory, and recombinant IL-10 has
been studied in clinical trials as an anti-inflammatory mole-
cule in psoriasis, inflammatory disease, and liver fibrosis [46].
Altogether, it was supposed that IL-10 would negatively impact
anticancer immunity. However, at higher doses, IL-10 was
shown to cause activation and proliferation of intratumoral
CD8+ T cells [47, 48]. To allow sustained high systemic con-
centrations of IL-10, a pegylated recombinant IL-10 called
AM0010 was developed. Preclinical data showed that this form
of IL-10 leads to the expansion, activation, and cytotoxicity of
tumor-infiltrating CD8+ T cells [49]. In preclinical tumor
models, AM0010 induces a CD8+ T cell-mediated rejection
of large tumors and metastases [49].

A phase 1/1b basket trial is evaluating the safety, pharma-
codynamics, and antitumor activity of AM0010 monotherapy
or in combination with chemotherapy or PD-1 inhibitors
(NCT02009449). Preliminary results on 33 heavily pretreated
cancer patients treated with daily subcutaneous injection of
AM0010 in the dose escalation phase of this trial showed that
the drug is well tolerated, and a maximum tolerated dose was
not defined [50]. The most frequently observed AEs were

anemia (51%), fatigue (45%), thrombocytopenia (42%), injec-
tion site reactions (36%), and fever (30%). Grade 3 to 4
nonhematopoietic treatment-related AEs were observed in
15% of patients. Treatment-related grade 3 to 4 anemia or
thrombocytopenia was observed in six patients (18%). The
RP2D was identified as 20 mg/kg. An additional expansion
cohort including 18 patients with RCC received AM0010 at a
dose of 20 mg/kg. The type and frequency of AEs observed in
the expansion cohort in patients with RCC were comparable
in number and severity to those observed at the 20-mg/kg dose
in the escalation cohort. Among the 15 patients who had at
least one scheduled assessment during treatment, four had a
PR (27%). More recently, safety and efficacy results of the
cohorts combining AM00100 (10 mg/kg or 20 mg/kg) with
PD-1 inhibitors (pembrolizumab or nivolumab) were presented
[51•]. The combination was well tolerated with no significant
increase in AE profile over either agent in monotherapy.
Furthermore, the combination weer suggestive of synergy with
ORR of 41% (15 of 34) and 41% (11 of 27), respectively, in
patients with RCC and NSCLC. Correlative studies demonstrat-
ed clonal Tcell expansion upon treatment with AM0010 alone as
well as the combination of AM0010 and PD-1 inhibition.

Vaccines

The efficacy of most cancer immunotherapy approaches crit-
ically depends on tumor-specific effector T cells that can traf-
fic to the tumor microenvironment and mediate specific lysis
of cancer cells. While many immunotherapies rely on endog-
enously activated tumor-specific T cells, cancer vaccines are
aimed at inducing de novo tumor-specific T cell responses, as
well as amplifying and expanding the antigen repertoire of
pre-existing tumor-directed T cell responses. The successful
engagement of professional antigen-presenting cells (APCs),
most importantly DCs, is key to the efficacy of any cancer
vaccine. Antigen presenting cells process tumor antigens and
present antigen fragments (peptides) in the context of major
histocompatibility complex (MHC) molecules to T cells in the
draining lymph nodes, leading to activation and priming of T
cells specific for these antigens.

To generate an effective cancer vaccine, four components
must be addressed: (1) selection of a suitable tumor antigen as
well as (2) immune-adjuvant, (3) formulation, and (4) vehicle
used to deliver the antigenic target (Table 1). The different
types of immune adjuvants, formulations, and delivery
methods have been reviewed elsewhere [52]. Tumor antigens
can be categorized as tumor-associated antigens (TAA) or
tumor-specific antigens (TSA). Tumor-associated antigens
are proteins that are (i) overexpressed (such as human epider-
mal growth factor 2, HER2; human telomerase reverse tran-
scriptase, TERT), (ii) involved in tissue differentiation (such
as mammaglobin-A; prostate-specific antigen, PSA), or the so
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called cancer-testis antigen, that are preferentially expressed
by tumor cells (and germline and trophoblastic cells) instead
of normal tissues (such as melanoma-associated antigen,
MAGE; cancer-testis antigen 1,NY-ESO-1), except for fetal
or immune privileged tissues). Tumor-specific antigens de-
rived from an oncogenic virus can be found in hepatitis B
virus-associated hepatocellular carcinoma, human papilloma-
virus (HPV)-associated cervical and head and neck cancers,
and the Merkel cell polyomavirus-associated Merkel cell car-
cinoma. Since oncogenic viruses are associated with only a
relatively small subset of cancers, these antigens are not suit-
able for broad use in cancer vaccines. In contrast, neoantigens
which arise from somatic mutations, most of which are per-
sonal, i.e., not recurrent across a specific tumor type, are
broadly expressed across the spectrum of solid and hemato-
logic malignancies. In contrast to TAAs, neoantigens are not
affected by central tolerance and are exquisitely specific to
tumors (i.e., not expressed in healthy tissues). As a result,
neoantigens have been established as highly suitable for use
in cancer vaccines. Several lines of evidence support this no-
tion: (1) higher neoantigen load has been associated with bet-
ter clinical outcome in cancer patients both prognostically and
in the context of immune checkpoint blockade [53–60]; (2)
neoantigen-specific T cell populations are expanded in set-
tings of effective antitumor immunity following the use of
ICI [57, 58, 61]; (3) preclinical and human studies have dem-
onstrated that neoantigen-specific T cells are cytolytic for tu-
mor cells that present mutated peptides, and they can contrib-
ute to tumor regression [62–69].

Despite a relatively long history of cancer vaccine devel-
opment, clinical efficacy has so far been limited; even the only
FDA-approved cancer vaccine Sipuleucel-T only provides a
4-month overall survival benefit for patients with hormone-
resistant prostate cancer with limited disease burden [70].
However, technological advances including fast and relatively
cost-efficient next generation sequencingmethods now enable

the utilization of personal neoantigens; moreover, innovations
in adjuvant technology and delivery methods are on the hori-
zon [71].

Personalized Cancer Vaccines Targeting Tumor
Neoantigens

Taking into consideration the genetic heterogeneity of tumor
cells (both between individuals with the same type of cancer
and even within individual tumors), and the complexity and
diversity of HLA molecules, a critical challenge for personal-
ized vaccines is the fact that the spectrum of neoepitopes de-
rived from the same neoantigen may be very diverse across
individuals. Furthermore, past studies have suggested that
vaccines targeting single tumor antigens are unlikely to be
successful due to tumor heterogeneity, and cancer immune
editing, ultimately leading to clonal selection and immune
evasion by the cancer cells [72••]. Consequently, targeting
multiple neoantigens is likely required for personalized cancer
vaccines to be effective.

To achieve this goal, it is necessary to accurately determine
the cancer mutanome (the mapping of all mutations in a can-
cer) in order to select the most immunogenic neoantigens for
use in the vaccine Fig. 1, an effort that is now feasible in the
clinical arena largely due to the rapid evolution of sequencing
and bioinformatic tools. Tumor DNA and RNA need to be
extracted from single-cell suspensions of cells and matched
normal tissue cells. Tumor somatic mutations are identified by
whole-exome sequencing (WES) and orthogonally validated
by RNA sequencing (to confirm mutations that likely result in
altered gene expression). HLA typing should be carried out, in
order to predict the affinity of the neoepitopes for binding the
specific HLA type of that individual, thereby generating can-
didate vaccine epitopes. Validated epitopes are selected for
incorporation into the personalized cancer vaccine, which is

Table 1 Key ingredients of a
cancer vaccine Antigens: Formulation/delivery: Immune adjuvants:

• Cancer testis antigens
(e.g., NY-ESO-1)

• Protein • TLR agonists (e.g., poly-ICLC,
imiquimod, CPG)• Peptide

• DNA • Cytokines (e.g., GM-CSF)

• Differentiation antigens
(e.g., MART-1 etc)

• RNA • STING activation

• Autologous tumor cells • Saponin-based agents (e.g., ISCOMATRIX
• Dendritic Cells • Agonistic antibodies (e.g., CD40, DEC205)

Overexpressed antigens: • Viral/bacterial vector

• (e.g., Her-2 neu) l • Emulsions (Montanide)

• Viral antigens (e.g., HPV) • Liposomes
• Neoantigens (based on tumor

mutations)
• Nanodiscs

CpG ODN CpG oligodeoxynucleotide, GM-CSF granulocyte–macrophage colony-stimulating factor, poly-ICLC
polyinosinic–polycytidylic acid with polylysine and carboxymethylcellulose, STING stimulator of interferon gene
protein, TCR T cell receptor, TLR toll-like receptor
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administered to patients in combination with an immune
adjuvant.

Recently, we and two other groups reported feasibility,
safety, and immunogenicity of neoantigen-based cancer
vaccines tested in three independent cohorts and phase 1
clinical trials of patients with melanoma [73••, 74••, 75].
Different vaccine platforms were used in these three re-
ports. The first included three patients with advanced mel-
anoma previously treated with ipilimumab. In this study,
autologous DCs were pulsed ex vivo with seven synthetic
(8–10-mer) HLA-A2-restricted neoantigen peptides and
injected intravenously [73••]. Both de novo and expansion
of pre-exisiting neoantigen CD8+ T cell responses were
observed and vaccination led to an expansion of the T
cell receptor repertoire. Our group conducted a study in
patients with high-risk melanoma using a peptide vaccine
(NeoVax) based on the neoantigen discovery pipeline.
Synthetic long peptides (15–30-mers) representing up to
20 neoantigens specific to each patient’s tumor were co-
administered subcutaneously with the adjuvant poly-ICLC
on a prime–boost schedule [74••]. Robust ex vivo T cell
responses as measured by IFN-γ ELISPOT were detected
in all six patients. Sixty percent of immunizing epitopes
induced CD4+ T cell responses (including 18% ex vivo),
whereas 16% of immunizing epitopes induced CD8 re-
sponses. Complete regression of all metastatic melanoma
and a broadening of the T cell repertoire was seen in two
patients who had melanoma recurrence after vaccination
and subsequently were treated with the PD-1 inhibitor
pembrolizumab; the four patients with stage III melanoma
remained without melanoma recurrence after 32 months
from vaccination start. Another clinical trial using an
mRNA vaccine called IVAC MUTANOME was conducted
in 13 patients with melanoma [75]. Robust CD4+ T cell
responses against 60% of vaccine epitopes and CD8+ T
cell responses against 25% of vaccine epitopes were de-
tected; in a subset of two patients, vaccine-induced T cell

infiltration and neoantigen-specific T cell mediated killing
of autologous melanoma cells were observed. There was
also a preliminary signal of antitumor activity: all eight
patients who had no radiographic evidence of metastasis
remained tumor-free during the entire study follow-up.
Moreover, two of five patients with metastatic disease at
baseline had objective responses following the vaccine
alone, and one patient who was discontinued from vacci-
nation on the trial because of rapid progression had a
complete response after receiving a PD-1 inhibitor. All
three studies demonstrated that neoantigen-based vaccina-
tion is feasible, safe, and importantly, induced robust T
cell responses in all vaccinated patients. Furthermore, they
suggest that personalized vaccination against neoantigens
can be synergistic in combination with subsequently ad-
ministered ICI, providing a strong rationale for combining
these vaccines with ICI. Clinical trials assessing a
neoantigen long-peptide vaccine in combination with
nivolumab (NCT02897765) and a personalized mRNA
mutanome vaccine in combination with atezolizumab
(NCT03289962) are ongoing. Beyond the fact that
neoantigen are promising targets for personalized vaccines,
there is no agreement on the best formulation, adjuvants,
and delivery to be used.

Conclusion

To increase the number of patients who will derive benefit
from PD-1/PD-L1 inhibition, combined approaches are nec-
essary. As reviewed here, pharmacologically modified cyto-
kine therapy and a novel approach to cancer vaccines targeting
tumor neoantigens, enabled by vastly improved sequencing
technology and computational capabilities, may turn these
two “old” immunotherapy approaches into powerful tools
for effective combination immunotherapy.

a b c
Figure 1 Workflow of manufacturing a personalized neoantigen-based
cancer vaccine. a Source material and next-generating sequencing:
Patient tumor biopsies and matched normal cells (e.g., peripheral blood
white blood cells) are obtained and undergo next-generation sequencing;
Tumor DNA is compared with germ line DNA, and tumor-specific
nonsynonymous single-nucleotide variations or short indels in protein-
coding genes are identified. RNA sequencing (RNA-seq) is used to
orthogonally validate mutations of expressed genes. b Bioinformatics

processing, including tumor mutation calling, and prediction of peptide
binding affinity for HLA class I and other epitope selection criteria. c
Vaccine manufacturing: validated epitopes are selected for incorporation
into the personalized cancer vaccine, which is administered to patients in
combination with an immune adjuvant. After final formulation and
quality control, the peptide vaccine is administered to the patient and
immune responses are monitored
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