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Abstract
Purpose of Review Pulmonary arterial hypertension (PAH) is a progressive disease with high mortality. A greater understanding
of the physiology and function of the cardiovascular system in PAH will help improve survival. This review covers the latest
advances within cardiovascular magnetic resonance imaging (CMR) regarding diagnosis, evaluation of treatment, and prognos-
tication of patients with PAH.
Recent Findings New CMRmeasures that have been proven relevant in PAH include measures of ventricular and atrial volumes
and function, tissue characterization, pulmonary artery velocities, and arterio-ventricular coupling.
Summary CMRmarkers carry prognostic information relevant for clinical care such as treatment response and thereby can affect
survival. Future research should investigate if CMR, as a non-invasive method, can improve existing measures or even provide
new and better measures in the diagnosis, evaluation of treatment, and determination of prognosis of PAH.

Keywords Pulmonary arterial hypertension . Ventricular remodelling . Atrial remodelling . Pulmonary artery . Tissue
characterization . Outcome . Risk assessment

Introduction

Pulmonary arterial hypertension (PAH) is a progressive disease
with increased vascular resistance and arterial pressure in the
pulmonary circulation. Symptoms such as dyspnoea and fa-
tigue are vague, while there can be a long latency and delay
to diagnosis [1]. Mortality is high and most commonly related
directly or indirectly to right ventricular (RV) function [1].
While echocardiography currently is the first-line modality to
assess cardiac function, assessment of RV volumes and

function is challenged by the one- and two-dimensional nature
of echocardiography [2–5]. With the complexity of the RV
structure, cardiovascular magnetic resonance imaging (CMR)
plays an important role in the diagnosis and follow-up of pa-
tients with PAH [1, 6]. CMR is the gold standard for cardiac
volumes, function, blood flow, andmass (Fig. 1), due to its high
accuracy and reproducibility. Furthermore, CMR offers tissue
characterization of the ventricular myocardium. In the 2015
ESC/ERS guidelines for diagnosis and treatment of pulmonary
hypertension, the only imaging-related parameters included in
the risk stratification are right atrial area and pericardial effusion
with evidence from echocardiography alone (Table 1) [1].
However, several CMR-related parameters are proven relevant
for diagnosis, assessment of disease severity, and prognostica-
tion. The purpose of this review is to provide an overview of the
latest advances within CMR regarding diagnosis, evaluation of
treatment, and prognostication of patients with PAH.

Mass, Volumes, and Function

The increased afterload in PAH can lead to a compensatory
RV hypertrophy (Fig. 1(A)), increased ventricular mass index
(defined as RV mass divided by left ventricular (LV) mass),
and increased RV and atrial volumes (Fig. 1(B–D)).
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Mass

The ventricular mass index has been associated with
outcomes such as all-cause death in patients with
Eisenmenger PAH [7] and with the composite endpoint
comprising a combination of all-cause and cardiopulmo-
nary death, lung transplant, rehospitalization, and clini-
cal worsening in patients with PAH [8–10]. However, in
a meta-analysis from 2016, RV mass and ventricular
mass index were not predictive of all-cause death in
PAH [11]. This finding was confirmed in a more recent
systematic review and meta-analysis, where RV mass
was only related to composite endpoint and not all-
cause death [12••]. On the contrary, a compensatory
RV hypertrophy has been linked to a better survival,
while a decrement in RV mass at serial examinations
was a sign of poor prognosis. Both of these results
indicate that adaptive RV modelling is beneficial for
patients with PAH [13].

Ventricular Volumes and Ejection Fraction

Increased RV volume (Fig. 1(C)) and reduced LV volume,
RV ejection fraction (RVEF), and stroke volume (SV) are
noted to be prognostic markers for PAH [14]. When used in
conjunction with existing risk assessment tools, these CMR
markers show increased value over current prognostic
methods for risk classification [15, 16••]. After adjusting for
age, sex, and body surface area, 11% could be reclassified as
having a higher risk and 36% a lower risk of 1-year mortality
[16••].

RVEF has been shown to be the strongest predictor
of mortality among these variables in patients with pul-
monary hypertension [11, 12••]. When including only
patients with pulmonary arterial hypertension, RVEF
was the only parameter predicting death and the com-
posite of adverse events comprising all-cause and car-
diopulmonary mortality, rehospitalization, lung/lung-
heart transplant, and clinical worsening [12••]. It is
worth noticing that when excluding patients with con-
genital heart disease from the PAH group, RVEF only
predicted adverse events, not mortality [12••]. This is in
agreement with three recent studies on patients with
non-congenital PAH, in which RVEF was not associated
with death or lung transplant [17•, 18, 19].

Atrial Volumes and Function

The importance of right atrial volume (Fig. 1(D)) and func-
tion is becoming more clear regarding the prognosis of
patients with PAH [9, 17•, 20, 21••, 22, 23], as they have
been shown to be associated with clinical worsening [9].
Patients with right atrial maximum volumes > 74 ml/m2

doubled their risk for death or lung transplant compared
with patients with normal right atrial volumes [17•].
Moreover, reduced left atrial volumes could be indicative
of a LV underfilling in PAH [17•] and have been presented
as an indicator of poor prognosis [24, 25].

Regional Function and Strain

Ejection fraction is a crude measurement and while many
patients with PAH have a preserved LVEF, and at times even
a preserved RVEF, this should not be mistaken for a normal
ventricular function. Regional RV function, such as myocar-
dial strain (a deformation measured as a change in length; ΔL/
L), RV fractional area change, and tricuspid annular plane
systolic excursion (TAPSE), are regularly assessed in patients
with PAH using echocardiography [1, 2]. Novel techniques to
characterize regional ventricular function with CMR are
emerging [20, 23, 26–31]. However, and of note,

Table 1 Determinant groups and measures for risk assessment and
suggestion for possible adjustments to current measures and/or addition
of new measures [1, 115–117]

Selected determinant groups in

the risk assessment tool
Present measures Possible additional or new measures

Right heart function

NT-proBNP

Right atrial area

Pericardial effusion

NT-proBNP cut-off adjusted for age and sex

Right atrial and ventricular function by

CMR 

Left heart function (new)

NA Left atrial function by CMR 

Left ventricular function by CMR

Haemodynamic

measurements Right atrial pressure

Cardiac Index

Mixed venous oxygen saturation

Right atrial function by CMR 

Right and left cardiac index by CMR

Pulmonary artery pressure 

and vascular resistance (new) NA Non-invasive assessment of MPAP and 

PVR from:

MPAP by presence and duration of

vortical blood flow in the main PA

MPAP from ventricular mass and 

septal angle PVR by PA mean

velocity and RVEF

In the table, the column to the right suggests new measures that could be
additional, alternative, or a replacement of measures included in the cur-
rent ESC/ERS risk stratification (middle column). In line with the scope
of this paper, focus is put on how non-invasive measures with CMR
might add to the risk assessment in PAH. The CMR images illustrate
some of the possible variables of right and left heart function and pulmo-
nary arterial measures that could be considered included in guideline-
recommended risk stratification. Here illustrated with an example of right
ventricular circumferential strain of the free wall (magenta) and septum
(yellow) at a midventricular level, left ventricular longitudinal strain in a
three-chamber view (each colour represents a segment), and pulmonary
artery vortex formation with posterior retrograde flow (red arrows) during
systolic forward flow (yellow arrows) (reprinted from [119], with permis-
sion from Elsevier)

WHO World Health Organization, 6MWD 6-min walked distance, NT-
proBNP N-terminal pro-brain natriuretic peptide, CMR cardiovascular
magnetic resonance imaging, NA not applicable,MPAPmean pulmonary
artery pressure, PVR pulmonary vascular resistance, PA pulmonary ar-
tery, RVEF right ventricular ejection fraction, RVOT right ventricular
outflow tract
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echocardiographic and CMR equivalent measures are not di-
rectly interchangeable [32].

Myocardial Strain

It is well documented that RV and atrial strain measured by
CMR are lower in patients with PAH than in controls [20,
26–29]. LV global longitudinal strain is also lower, despite
preserved LVEF (Fig. 1(E, F)) [21••, 27, 29]. Therefore, in
addition of being a diagnostic tool, myocardial strain might
have utility in prognosis and follow-up of treatment re-
sponse in patients with PAH [20, 21••, 28]. Reduced strain
increases the risk for adverse events such as death, lung
transplant, and functional class deterioration, incurring a
hazard ratio (HR) of 1.06 for LV longitudinal strain, 2.52
for RV longitudinal strain, and even as much as 4.5 for RV
circumferential strain [28]. Importantly, LV and RV longi-
tudinal strain values increased after initiation of PAH-
dedicated treatment [21••]. The improved strain values cor-
relate with improvements in known prognostic markers of
PAH such as 6-min walk test, pro-BNP, and mean pulmo-
nary arterial pressure (MPAP) [21••]. Furthermore, an in-
terventricular dyssynchronous contraction has been docu-
mented with a left-to-right delay assessed by strain in adult
and paediatric patients with PAH [33–36].

As such, strain assessment with CMR is increasingly inter-
esting in the evaluation of patients with PAH. Moreover, it
shows that there are left-sided implications of this otherwise
considered right-sided disease. The implications are important
for understanding the pump physiology and mechanisms of
the disease as well as for finding early signs of treatment
effect.

Atrio-Ventricular Plane Displacement

Atrio-ventricular plane displacement (and tricuspid annu-
lar plane systolic excursion), regional contribution to SV,
and RV fractional area change are novel CMR techniques
for evaluating regional cardiac function in PAH [23, 30,
31, 37]. Both tricuspid annular plane systolic excursion
and fraction area change are shown to have a good corre-
lation with invasive measures such as pulmonary vascular
resistance (PVR) index, MPAP, and RV stroke volume
index [18]. In addition, tricuspid annular plane systolic
excursion ≤ 18 mm, RV fraction shortening ≤ 16.7%, and
RV fractional area change ≤ 18.8% are associated with sur-
vival in PAH, with HRs of 4.8, 3.6, and 3.8, respectively.

Right atrio-ventricular plane displacement (Fig. 1(G, H))
has been shown to be lower in patients with pulmonary hy-
pertension compared with controls, while the longitudinal
contribution to RV stroke volume did not differ between the
groups, owing to increased RV diameter and lower SV among
patients [31]. Interestingly, LV atrio-ventricular plane

displacement and longitudinal contribution to LV SV were
both lower in patients with PAH than controls, despite a pre-
served LVEF in both groups [31]. However, the importance of
these regional alterations regarding morbidity and mortality is
unknown.

Tissue Characterization

Myocardial tissue characterization in PAH has been suggested
as a prognostic marker using late gadolinium enhancement
(LGE) and T1 values [1] (Fig. 1(I, J)).

Late Gadolinium Enhancement

A gadolinium-based contrast is distributed in relation to
the amount of extracellular space. This results in an
increased concentration of gadolinium and consequently
higher signal intensity (hyperenhancement) in myocardi-
al scar, fibrosis, or infarction compared to viable myo-
cardium. Typically for PAH, hyperenhancement is pres-
ent at the RV insertion (Fig. 1(I)) [8] and associated
with poor clinical status and survival [8, 38–41].
However, if the fibrosis stretches into the interventricu-
lar septum, hyperenhancement appears to have a stron-
ger association with outcome than fibrosis in the RV
insertion alone [38].

The appearance of fibrosis can vary among aetiologies
of PAH. As such, in patients with congenital heart disease
and PAH (e.g. Eisenmenger with right-to-left shunt and
PAH), the fibrosis in the right ventricle and septum does
not fully resemble that of non-congenital PAH, as in idio-
pathic PAH or PAH associated with connective tissue dis-
orders, such as scleroderma [38, 42]. Furthermore, patients
with sclerodermas have been shown to have intrinsic myo-
cardial involvement besides PAH-related alterations [29,
43–48]. In addition, localized LV fibrosis and infarctions
have been shown even in cardiac asymptomatic patients
with scleroderma suggesting a more complex fibrosis pat-
tern in this population of PAH [43, 44].

T1 Mapping

While localized fibrosis can be detected by LGE, diffuse pa-
thology such as general myocardial inflammation and diffuse
fibrosis can be assessed using T1 mapping. Furthermore, T1
mapping can be performed both before and after contrast ad-
ministration which enable calculation of extracellular volume
fraction (ECV) in the myocardium (Fig. 1(J)) [43, 49–56]. T1
mapping and ECV for tissue characterization are relatively
new features applied to patients with PAH [57–65] and have
been shown elevated which indicate fibrosis in the RV inser-
tion points [57, 59–61, 63, 66].
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It is, however, still unclear how T1 values should be
interpreted, as studies are diverging on whether values
are higher in patients with PAH compared with controls
[57, 61, 63, 67] or not [58–60, 66, 68]. It should be
noted that there is a multitude of different sequences for
T1 mapping of which some are heart rate dependent

[69]. Patients with PAH are prone to having high heart
rate. This is a concern, if special measures are not taken
in the acquisition of images [69]. Furthermore, as many
of the studies comprise diverse groups of patients,
pooling the values into a uniform conclusive value
could be considered infeasible. As an example, patients
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with scleroderma, including those cardiac asymptomatic,
have been shown to have increased T1 values [44].
However, the distribution can stand in contrast to pa-
tients with congenital heart disease with fibrosis in the
right ventricle and septum that does not resemble that of
non-congenital PAH [42]. The diversity of patients as
well as different sequences are drawbacks for finding
a generalizable cut-off value for pathology and outcome.
Moreover, the low spatial resolution (1.8 mm × 1.8 mm ×
8–10 mm) when assessing the relatively thin RV wall
(on average 3–5 mm) is a caveat for generating reliable
values as the risk of accidentally including blood in the
trabeculations or epicardial fat in the assessment is sub-
stantial [49, 50, 69]. One should therefore interpret the
T1 values of the right ventricle with caution.

Estimates of Mean Pulmonary Pressure
and Pulmonary Resistance

Cardiac and pulmonary artery (PA) pressures and resis-
tance are essential parts of both diagnosis and prognosis
of PAH (Fig. 1(K–M)) [1]. Current guidelines denote
MPAP ≥ 25 mmHg (> 20 mmHg is borderline pulmo-
nary hypertension), PVR ≥ 3 WU, and a normal function
of the left ventricle (PA wedge pressure (PAWP)) ≤
15 mmHg as manifesting the diagnosis [1, 70]. These
key measures determine treatment response [1, 70] and
are recommended to be obtained from invasive right
heart catheterization (RHC) [1]. While RHC incurs a
low morbidity and mortality rate, there are still risks
of complications during the intervention, and the exam-
ination includes radiation exposure [71]. However, non-
invasive methods are emerging as promising alternatives
[72, 73].

Estimation of Pulmonary Arterial Pressure with CMR

Estimation of MPAP with CMR using ventricular mass
index and interventricular septal angle [74], including
RV function along with PA size (Fig. 1(K, L)) [75],
has been performed in patients with pulmonary hyper-
tension and chronic obstructive pulmonary disease and
showed moderate to good correlation with RHC-derived
MPAP. While each of these measurements seems plau-
sible, the use of multiple variable calculations for esti-
mations of values introduces possible sources of error,
which is why more direct measures are preferable.

RV pressure overload results in an interventricular shift of
the septum toward the left ventricle in patients with PAH (Fig.
1(C)) [76–78]. Leftward septal bowing occurs when the RV
pressure is ≥ 5 mmHg higher than LV pressure [79]. This will
contribute to an altered filling of the left ventricle—i.e. cause
an underfilling and a decreased LV stroke volume [34]. The
ventricular septal curvature has been shown to correlate with
systolic PA pressure with a premise of the close correlation
between RV systolic pressure and systolic PA pressure [79].
Quantification of the septal curvature duration index (defined
as the proportion of CMR frames with a septal bow toward the
left that was present during one cardiac cycle) has been shown
to be associated with worse prognosis if it lasts > 2/3 of the
cardiac cycle [80].

A more recent, and direct, method for estimatingMPAP by
CMR assesses the presence and duration of vortical blood
flow in the main PA (Table 1) [81••, 82–85]. A vortex is a
formation of concentric ring- or spiral-shaped curves [86–89]
and is an effect of coexisting forward flow and retrograde flow
at the posterior wall during systole in the main PA (Fig. 1(N))
[81••, 82–85]. The premises for estimatingMPAP from vortex
formation are (1) detection of a vortex (indicating increased

� Fig. 1 Cardiovascular magnetic resonance (CMR) images in a patient
with idiopathic pulmonary arterial hypertension. (A) Cine image of 4-
chamber view in end diastole showing an enlarged right ventricle (RV)
and atrium (RA) and a small left ventricle (LV) and atrium (LA). The RV
is hypertrophied, and pericardial effusion is present. (B) Cine short axis
stack covering the heart from apex to the base is used for the volumetric
assessment of ventricle (C) and atria (D). (C) Example of epicardial and
endocardial delineations of both ventricles (in white) and (D) endocardial
delineations of both atria. (E) RV and LV tracking for strain analysis in 4-
chamber view. (F) Time resolved strain analysis curves for RV and LV
(here global longitudinal strain (GLS)). (G) Atrio-ventricular plane in end
diastole (red line) in 4-chamber view and (H) in end systole (blue line).
Atrio-ventricular displacement (AVPD) is measured as the distance
moving from base to apex between the red line in end diastole and the
blue line in end systole. The longitudinal contribution to stroke volume
(SV) is the volume encompassed by the atrio-ventricular plane marked
with blue colour in the left ventricle and green colour in the right
ventricle. (I) Phase-sensitive inversion recovery late gadolinium image
of short-axis view showing RV insertion fibrosis (white arrows) and (J)
increased native T1 values in the corresponding areas. (K) Anatomical
view of the pulmonary artery delineated in white. (L) Phase-contrast
imaging of the pulmonary artery delineated in white from which the
flow is computed. (M) Time-resolved pulmonary flow curve during one
cardiac cycle. Notice the systolic notch (black arrow), which is indicative
of increased pulmonary vascular resistance [111, 120, 121]. (N) 3D plot
of pulmonary flow marking the velocity of each voxel from late systolic
phase. Simultaneously with the systolic forward flow, backward flow
(arrows) is present in the posterior part of the pulmonary artery. This
patient had the following data: Volumes and function—RV: end-
diastolic volume 356 ml, end-systolic volume 284 ml, stroke volume
72 ml, ejection fraction 20%, mass 83 g; LV: end-diastolic volume
117 ml, end-systolic volume 72 ml, stroke volume 45 ml, ejection
fraction 39%, mass 88 g; RA maximum volume 292 ml, LA maximum
volume 51ml. Strain and regional function—peak LVGLS − 8.5%, peak
RV free wall GLS − 9.2%, RV atrio-ventricular plane displacement
11.2 mm, RV longitudinal contribution to SV 64%, RV lateral
contribution to SV 36%, LV atrio-ventricular plane displacement
7.5 mm, LV longitudinal contribution to SV 53%, LV lateral
contribution to SV 43%, septal contribution to SV 5%. Tissue
characterization—T1 values 1420 ms (increased) at the RV insertion
points and 1030 ms (normal) in the RV and LV. Pulmonary artery—
pulmonary net flow 66ml, peak velocity 52 cm/s, mean velocity 17 cm/s,
area 15.03 cm2, distensibility 0.13%/mmHg
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resistance and decreased elastance) and (2) the time it exists in
relation to the full cardiac phase (to evaluate the pressure
increase). With these prerequisites, vortex duration has been
shown to be accurate in the identification of pulmonary hy-
pertension (a vortex duration ≥ 14.3% of the cardiac cycle
resulted in sensitivity of 0.97 and specificity of 0.96 of detect-
ing pulmonary hypertension) [85]. The accuracy of MPAP
needs, however, to be verified in larger, prospective studies
from other groups. Furthermore, investigation of the possible
effects of pulse wave reflection and PA trunk width would, in
the context of vortex formation in the PA, be of interest.

Estimation of Pulmonary Vascular Resistance and
Stiffness with CMR

PVR, assessed by RHC, is calculated as a ratio of the mean
pressure gradient and blood flow in the PA [1]. Non-invasive
PVR has been suggested using CMR PA flow metrics (Fig.
1(M, N)) (average and peak velocities) [90–94]. In a meta-
analysis, a multitude of different methods (some a combina-
tion of PA and RV variables) were compiled and showed a
high correlation with PVR from RHC (pooled r = 0.81 (95%
CI 0.74, 0.87)) [95]. Combining RV measures with PA flow
metrics (Fig. 1(M)) adds important components in cases with
advanced stages of PAH and high PVR, when the PA does not
distend further. Hence, the average PA velocity in this late
state will only reduce slightly, while RVEF will be more af-
fected [92].

PA stiffness occurs before severe symptoms develop
and is an early manifestation of PA remodelling
[96–99]. Thus, direct measurements of the stiffness might
add accuracy and value to the diagnosis and prognostica-
tion of PAH [96, 97]. PA distensibility is one of several
measures of PA stiffness and reflects the degree of vascu-
lar remodelling as the percent increase in pulmonary ves-
sel diameter in relation to the increase in pressure [74, 96,
100]. It is a strong prognostic marker [74] and has been
associated with RV pulmonary arterial uncoupling in pa-
tients with unexplained exercise intolerance and normal
resting echocardiography results [101].

A novel measure reflecting PA stiffness is PA velocity
transfer function, which describes the influence of vessel ge-
ometry and compliance/stiffness causing frequency-
dependent changes in the input velocity profile (in the proxi-
mal part of the PA) as it travels through the artery and thus
produces an output velocity profile (in the distal part of the
PA) [102•]. PA velocity transfer function is strongly associat-
ed with invasive measures of PA impedance, stiffness, and
vascular resistance. Furthermore, changes in PA velocity
transfer function have been shown to be independent of ele-
vation in PAWP. This could be perceived as an advantage in
the aging PAH population, as PAWP is affected by age and
comorbidities [103]. However, it is yet unknown if alterations

in PA velocity transfer function are related to morbidity and
outcome.

Arterial-Ventricular Coupling

RV failure occurs when the right ventricle can no lon-
ger adapt to the elevated pulmonary vascular load. RV
pulmonary arterial coupling refers to the energy transfer
between ventricular contractility and arterial afterload. It
reflects the load imposed upon the right ventricle, as a
measure of the right ventricle compensation to the in-
creasing PA stiffness [104–107]. Ventricular contractili-
ty is a load-independent measure of systolic function
and can be expressed as end-systolic elastance (Ees)
[108, 109•, 110•]. Arterial afterload is the net vascular
stiffness and can be expressed as arterial elastance (Ea)
[108]. RV pulmonary arterial coupling, measured as
Ees/Ea (end-systolic elastance/arterial elastance), has
been presented as being useful for prognostication in
PAH [111]—to detect pending RV failure [112] in pa-
tients with preserved RVEF [109•], for example.

Simultaneous information on both function and loading
conditions can be interpreted from RV pressure-volume
loops. These are in general generated from invasive mea-
sures from RHC and volumes. Computation of RV
pressure-volume loops could, besides assessing Ees, Ea,
and Ees/E, be of interest in the investigation of stroke
work, potential energy, and ventricular efficiency [107].
A non-invasive computation of pressure-volume loops has
been shown to be applicable on the left side using a time-
varying elastance model, CMR, and brachial pressure
[113]. However, calculating potential energy and mechan-
ical efficiency on the right side requires RV pressure
values and an estimation of the RV volume at zero pres-
sure, the V0. Both linear regression models [106, 107] and
a fixed value [104, 105] have been used to determine V0,
and future studies are needed for a fully non-invasive
computation of RV stroke work and ventricular efficiency
as applicable in pulmonary hypertension.

Outcome and Risk Assessment

Risk stratification to predict outcome in PAH is vital in the
individualization of treatment strategies and improvement of
survival (Table 1). Several tools, of different complexity, have
been developed [114–118]. To be accepted in daily practice,
the tool needs to be clinically applicable and simple to use. On
the other hand, PAH is a complex disease and requires ad-
vanced investigation to detect disease progression [1] and
thus, for a risk assessment tool to be useful, oversimplifying
could be a mistake.
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Right atrial measures, such as pressure, volume, or area, are
not part of the diagnosis, but are important prognostic param-
eters that can be obtained with RHC, echocardiography, or
CMR [1, 2, 119, 120]. It should be noted that in the ESC/
ERS risk stratification, the only imaging variables currently
included are the right atrial area and pericardial effusion and
no RHC measure [1]. In the REVEAL risk score, pericardial
effusion is the only imaging-related parameter, while RHC
measures of MPAP and PVR are also included [114].

Despite improved treatments and treatment strategies, sur-
vival for patients with PAH is still poor. At the first 1-year
follow-up after diagnosis, only 17–29% of patients were in a
low risk according to the ESC/ERS risk stratification tool
[115–117]. There are several ways to construe this informa-
tion, but two plausible interpretations are that either treatment
is not effective enough yet or that other variables need to be
assessed for a better prediction—or a combination of these.

Conclusion

Pulmonary arterial hypertension is a progressive disease with
high mortality. Haemodynamic measurements, utilizing right
heart catheterization, are the gold standard for diagnosis in
PAH and to some extent for prognosis. To date, substantial
effort is put into mimicking these measures using non-
invasive methods like echocardiography and CMR. However,
several CMR markers carry prognostic information in them-
selves and incur a better survival when improved. It is thus
warranted that future research investigates these non-invasive
methods to see if they can improve existing measures or even
provide new and better measures in the diagnosis, evaluation of
treatment effect, and determination of prognosis of PAH.
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