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Abstract

Purpose of Review This review discusses the interplay between coronavirus disease 2019 (COVID-19, caused by SARS-CoV-2
infection), diabetes mellitus, and hyperglycemia in the hospital setting. There are data emerging about diabetes and hyperglyce-
mia, their prevalence, and potential risks in the setting of SARS-CoV-2 infection and COVID-19.

Recent Findings It is known that viral infections exert effects on beta cell function and insulin resistance. Therefore, much can be
learned about SARS-CoV-2/COVID-19 from examining these known relationships. Such pathophysiological underpinnings
may unlock greater understanding as we navigate atypical cases of hyperglycemia, severe insulin resistance, and diabetic
ketoacidosis amidst COVID-19. Glycemic outcomes likely have beneficial effects on morbidity and mortality, but this needs
to be studied.

Summary Changes in diabetes-related protocols and new technology can be deployed in the inpatient setting to potentially
improve healthcare worker and patient safety; however, one must weigh the risks and benefits of implementation during a
pandemic. Ultimately, knowledge and research must be shared at record speed to combat this global crisis.

Keywords Diabetes - Covid-19 - SARS-CoV2 - Inpatient management - Hyperglycemia

Introduction: SARS-CoV-2 Infection,
COVID-19, Obesity, and Diabetes Mellitus

On December 31, 2019, The World Health Organization
(WHO) was notified of cases of pneumonia of unknown eti-
ology originating in Wuhan, China. These cases were quickly
linked to a novel beta-coronavirus, initially identified as 2019-
nCoV, now known as SARS-CoV-2 [1]. Less than 3 months
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later, by March 11, 2020, the WHO declared the coronavirus
disease (COVID-19) a pandemic, affecting most if not all
countries across the globe [1, 2]. As of September 9, 2020,
over 27 million cases of COVID-19 have been detected and
confirmed, including: the USA with 6,330,316 cases, Russia
with 1,037,526 cases, the UK with 354,934 cases, Italy with
280,153 cases, and China with 90,087 cases [1], while
898,456 individuals have died [1]. As the crisis has swept
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the globe, over-burdening healthcare systems in the USA and
many other countries, there is an urgent need to better under-
stand phenotypic features that portend greater disease
severity.

In 2003, the coronavirus SARS-CoV was identified
as the pathogen responsible for an outbreak of respira-
tory disease in China [3]. It is known that both a his-
tory of diabetes mellitus (DM) as well as fasting hyper-
glycemia were associated with increased morbidity and
mortality in patients infected with SARS-CoV [4, 5].
Similarly, data have emerged suggesting patients with
DM have a higher risk of severe disease from SARS-
CoV-2 infection [6, 7+¢]. Early on, at the epicenter of
the pandemic at Jinyintan Hospital in Wuhan, China, a
retrospective cohort study of 201 patients with con-
firmed SARS-CoV-2 identified 10.9% with comorbid
DM [8]. Additionally, the presence of DM was found
to be associated with acute respiratory distress syndrome
(ARDS) development [HR 2.34 (CI 1.35-4.05, p=
0.002)] [8]. Subsequent data from the World Health
Organization (WHO)-China Joint Mission on
Coronavirus Disease 2019 suggested the case fatality
rate in patients with underlying DM infected with
SARS-CoV-2 is as high as 9.2% [9]. Likewise, Italian
data supports this notion that patients with DM are par-
ticularly vulnerable to COVID-19. In March 2020,
33.9% of patients who died from COVID-19 in Italy
had comorbid DM [10]. Finally, in the USA, survey
data from 14 states representing 10% of the US popu-
lation estimates 28.3% of patients hospitalized with
symptoms of SARS-CoV-2 infection have comorbid
DM [2]; the presence of DM has been associated with
a higher rate of morbidity and mortality [11]. In a
cross-sectional single-site study in New York City of
2741 hospitalized patients with SARS-CoV-2 infection,
35.3% were obese, 52.1% had any cardiovascular con-
dition, and 22.6% had DM [12]. Of those admitted to
the hospital with COVID-19, both BMI > 40 and dia-
betes were significantly associated with critical illness
[12]. Newer data corroborated the notion that over-
weight BMI and obesity are independent markers asso-
ciated with worse outcomes. Studies by Simonnet et al.
[13] and Tartof et al. [14] showed a close, quasi linear
association between BMI and the risk for requiring me-
chanical ventilation as well as mortality in the setting of
SARS-CoV-2 infection. As cases are amalgamated and
data analyzed, the relationship between DM, obesity and
relevant risk factors for poor outcomes will be elucidat-
ed (see below). With the COVID-19 pandemic driving
population health to the forefront, knowledge surround-
ing the mechanisms by which obesity, hyperglycemia,
and DM may alter the host response to the virus has
also become increasingly vital.
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Hyperglycemia, DM, and COVID-19
in the Hospital Setting

An early observational, retrospective study of 88 US hospitals
(in 10 states across the country) using an electronic glycemic
management system examined 1122 patients with laboratory
confirmed SARS-CoV-2 infection [15]. The mortality rate
was significantly higher (28.8%), in 184 patients with diabe-
tes. Importantly, this also held true for persons with no
preexisting diabetes who presented with significant hypergly-
cemia (two or more blood glucoses > 180 mg/dl in 24 h),
when compared to those without (6.2%, p <0.001). Length
of stay was significantly longer in those with DM and/or un-
controlled hyperglycemia; a within-group subanalysis of 184
patients (47.8% with DM, 52.2% with hyperglycemia) noted
that more patients with hyperglycemia (40/96) died compared
to those with diabetes (13/88, p < 0.001) [15]. Similar findings
were noted from a 19 hospital study in Hubei province, China,
of 7337 cases of COVID-19, with 952 having a previous
history of DM; subjects with type 2 DM had a significantly
higher inpatient death rate (7.8% vs 2.7%, p <0.001), even
following adjustment for age and gender (HR 1.7, 95% CI
1.29-2.24, p<0.001) [16]. Those with type 2 DM also had
significantly greater occurrence of complications such as
ARDS, acute heart, and kidney injury, septic shock, and dis-
seminated intravascular coagulation (DIC), even following
adjustment for age, gender and severity of COVID-19 [16].
Subsequent studies from France, England, and the USA
have confirmed the close association between obesity, age,
and male sex with worse COVID-19-related outcomes in
those with diabetes [7¢¢, 17, 18]. Hemoglobin Alc was less
strongly associated with adverse outcomes, with some
studies showing such association [7¢¢], while others did
not show such an association [17, 18]. In terms of
diabetes-related complications, the CORONADO study
showed that microvascular and macrovascular diabetic
complications as well as chronic renal insufficiency were
independently associated with increased mortality in per-
sons with diabetes hospitalized for SARS-CoV-2 infection
[17]. However, Agrawal et al. [18] did not demonstrate
similar findings following adjustment. It is possible that
the association between higher HbAlc and SARS-CoV-2
complications may be mediated by preexisting DM com-
plications such as chronic renal insufficiency and coronary
artery disease, which also have been shown to be associat-
ed with SARS-Co-V-2 complications [17]. In addition,
both type 1 and type 2 diabetes have been recognized as
common comorbid conditions among patients hospitalized
with COVID-19 infection and are associated with more
severe disease and, therefore, poorer outcomes [6, 7ee,
17]. Insulin usage has also been associated with poor prog-
nosis in retrospective analysis [18, 19]. In addition, fasting
blood glucose at admission (7 mmol/L, 126 mg/dl) was an
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independent predictor of 28-day mortality without previ-
ous diagnosis of diabetes, signaling that hyperglycemia in
and of itself may be predictive [20].

More in-depth research is needed to understand the inter-
action between risk factors, hyperglycemia, DM, and morbid-
ity and mortality in the context of COVID-19.

Glycemic Case Presentations, Severe
Hyperglycemia, Insulin Resistance,
and Diabetic Ketoacidosis

In line with the well-understood physiologic effects the
infectious/inflammatory milieu exerts on glucose levels, it is
not entirely surprising that patients have presented with hy-
perglycemic crises in the context of SARS-CoV-2 positivity
(or suspected SARS-CoV-2 positivity as is the case with “per-
sons of interest,” [POI]). Cases from around the world have
included descriptions of hyperglycemic crisis, severe insulin
resistance, and diabetic ketoacidosis [21-23]. In an article in
the Lancet from authors with experience across several conti-
nents, two types of presentations were noted: severe cases of
diabetic ketoacidosis (DKA) at the time of hospital admission,
and extreme insulin requirements in those with severe infec-
tion [24]. A recent systematic review also noted DKA presen-
tation with high COVID-19 morbidity, with up to 77% having
preexisting type 2 DM and 10% with new diagnosis of DM
[25]. Severe insulin resistance has also been observed during
the proinflammatory metabolic state [26]. The interplay be-
tween possible insulinopenia and/or insulin resistance and
COVID-19 disease and its progression is noted to be an area
for further examination.

Understanding Severe Insulin Resistance and DKA

Hyperglycemia in those without DM, as well as in persons
with preexisting DM (type 1 and type 2), is commonly ob-
served in hospitalized patients. This is especially true during
conditions that precipitate a state of inflammation, including
viral infections. Severe critical illness, steroids, elevated levels
of inflammatory cytokines, enteral feeding, and vasopressors
are all known to cause insulin resistance in the hospital setting.
Several experimental and observational studies suggest that
this may be a result of increased insulin resistance as well as
suppressed insulin secretion from beta cells [27]. Extreme
insulin resistance (defined as > 3 units/kg/day) [28] has been
previously described, albeit rarely, in the hospital setting
[29-32].

Complicating the clinical picture of hyperglycemia in the
setting of COVID-19 is the fact that therapies administered
during the course of the illness such as catecholamines, corti-
costeroids, hydroxychloroquine, as well as various immuno-
modulators, may alter glycemic outcomes and need to be

taken into account [33-35]. It has been reported that
COVID-19, at least in its more severe clinical course, repre-
sents a state of increased inflammation. Whether COVID-19
infection induces hyperglycemia via additional mechanisms,
beyond the effect of this generalized inflammatory state re-
mains unknown.

Reports of an increased incidence of DKA in persons with
COVID-19 may point towards an exaggerated impairment of
beta cell insulin secretion. This could conceivably occur
through a reversible direct toxic effect on beta cells whether
via high levels of inflammatory cytokines or through a yet
unknown mechanism. Although triggering of autoimmune
beta cell destruction in type 1 diabetes has been postulated
by some to be induced through autoimmune mimicry by viral
infections [27, 36-40], this may be an unlikely underlying
mechanism in COVID-19-related DKA, given that several
patients without preexisting type 1 DM perhaps recover with-
out continued need for insulin administration, and the time
course does not seem consistent with autoimmune induced
beta cell dysfunction. The possibility of a pathogenesis similar
to that of ketosis-prone type 2 DM could be considered [41,
42]. Also, more studies are needed to investigate whether
SARS-CoV-2 has the capacity to directly infect islet cells as
has been postulated for SARS and SARS-CoV-2 [43, 44].
This is plausible by virtue of islets having been shown to
express ACE-2 [43, 45]. Expression of TMPRSS2 mRNA in
mouse islets has been observed by us (El Muayed research
group, unpublished data). Both ACE-2 and TMPRSS2 are
thought to be necessary for viral infection [46]. Viremia and
infection of nonrespiratory tract organs have been shown to
occur in a subset of patients with a more severe SARS-CoV-2
course [47, 48]. Complicating the clinical picture of SARS-
CoV-2-related hyperglycemia is the fact that therapies admin-
istered during the course of the illness such as catecholamines,
corticosteroids, (hyperglycemic effects), various immuno-
modulators (mixed effects), and hydroxychloroquine
(hypoglycemic) may be additional contributors towards al-
tered glycemic outcomes that need to be taken into account
[33-35].

It is worth noting that viral infections have been postulated
as playing a role in initiating or accelerating the autoimmune
process of type 1 DM. Indeed, several experimental and hu-
man population studies support the hypothesis of an associa-
tion between infection with viral pathogens, including
Coxsackievirus B, rubella, mumps, Rotavirus,
Cytomegalovirus, and various Enteroviruses, and the onset
of type 1 DM in genetically susceptible individuals.
However, a true causal relationship remains a matter of active
debate [27, 36-40]. Hypothesized mechanisms include mo-
lecular mimicry as well as direct infection of beta cells; these
proposed processes are not necessarily mutually exclusive. It
has also been reported that Hepatitis C Virus (HCV) antibod-
ies in persons with chronic HCV infection may contribute to
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an autoimmune-like destruction of beta cells [49]. Table 1
reviews physiologic concepts of interest and possible testing
strategies related to atypical case presentations of DM/
hyperglycemia in those with or suspected to have SARS-
CoV-2. It has to be cautioned that the antibodies commonly
associated with type 1 DM may not be a reliable indicator of
an autoimmune destruction of beta cells. This is illustrated by
the well-recognized entity of autoimmune DM associated with
the administration of immune checkpoint inhibitors in patients
treated for various neoplasms, where these antibodies are of-
ten undetectable [50].

In those patients with atypical DM presentations, who were
unable to be tested or had negative SARS-CoV-2 polymerase
chain reaction (PCR) based tests, it may be worth setting up
serologic (antibody) testing to evaluate if previous infection
with SARS-CoV-2 occurred. PCR-based assays to date have
shown a sensitivity that is less than optimal. This is thought to
be in part due to variable viral load in the nasopharynx, the
most common sampling site [51, 52]. This may also hamper
future antigen-based assays. Validated serological tests with
reliable performance hold promise to facilitate better retro-
spective correlation of clinical courses with past infection
[53, 54]. This testing could be considered in atypical DM/
hyperglycemia case presentations where symptoms of
COVID-19 were suspected but original PCR testing was neg-
ative or was unable to be done.

Glycemic Goals and Therapeutic Options

At the present time, there is minimal randomized controlled
trial (RCT) evidence in patients who are infected with SARS-

Table 1

CoV-2 or have COVID-19 in the hospital setting to help in-
form best glycemic targets or goals. A retrospective report
utilizing propensity score matching (1:1), in patients with type
2 DM from Hubei Province, China, noted decreased mortality
in those with on-target glucose levels (glycemic variability
within 70-180 mg/dl [3.9-10 mmol/L], median glucose
6.4 mmol, HbAlc 7.3%) than those with above target glucose
levels (upper limit of glycemic variability exceeding 180 mg/
dl [10 mmol/L, median glucose 10.9 mmol/L, HbAlc 8.1%])
(HR 0.13,95% CI10.04-0.44, p < 0.001, following adjustment
for age, gender, severity of COVID-19 comorbidities, and site
effect) [16]. Patients with hyperglycemia and patients with
diabetes also had a significant risk of severe disease as com-
pared to those with diabetes and with normoglycemia [55].
Those who were well managed also developed less ARDS,
acute heart and kidney injury, septic shock, and DIC [16].
General inpatient glycemic management guidelines should
therefore be considered appropriate in keeping with current
American Diabetes Association inpatient guidelines; insulin
therapy should be initiated for those > 180 mg/dl
(10 mmol/L) and a target glycemic goal of 140-180 mg/dl
(7.8-10 mmol/L) is recommended for most patients, with
more stringent goals of 110-140 mg/dl (6.1-7.8 mmol/L)
for select patients if this can occur without hypoglycemia [56].

Both intensive and moderate insulin therapies have been
shown to reduce morbidity in multiple patient populations in
the hospital setting [57, 58]. Insulin has been the preferred
agent in the hospital setting based on a plethora of RCT data
along with years of proven efficacy in the clinical setting and
known safety profile [59]. Mechanisms by which insulin ther-
apy improves outcomes in the inpatient setting have been
hypothesized to include protection of endothelium, perhaps

Potential areas of investigation related to DM and COVID-19 infection

Investigative area of interest

Studies/therapies for further evaluation

Confirmation of SARS-CoV-2
diagnosis
Insulin resistance
c-peptide
Diabetic ketoacidosis
Inflammation

Therapies altering insulin
resistance/sensitivity

Beta cell function (all disease
phases)

Autoimmune diabetes (all disease
phases)

Beta cell injury*

Genetic modulators of glycemic

response™* SNP Array

PCR or other acute tests (antigen once available) during the acute phase, antibody testing postrecovery [102]

Plasma level of human insulin and insulin analogue, response to exogenous insulin, calculated HOMA-IR,

Beta hydroxybutyrate, acetone, acetoacetate
CRP, cytokines, acute phase reactants, triglycerides, free fatty acids [33, 103—106]

Hydroxychloroquine/chloroquine, azithromycin, remdesivir, DPPIV Inhibitors, ACE-inhibitors/ARBs,
catecholamines, corticosteroids, immune modulators (i.e., sarilumab and others) [33-35, 65, 66, 107]

C-peptide and plasma glucose (acute and recovery phase)

Glutamic acid decarboxylase antibodies (GAD-65), Islet cell antibodies, tyrosine phosphatase antibodies (IA-2),
ZnT8 antibodies (acute and recovery phase) [108] genotyping for T1DM associated HLA genotypes [109, 110],

Beta cell specific cell free DNA, or differentially methylated INS DNA [111-113]
Genotyping for known T2DM predisposing SNPs and monogenic diabetes [114], whole-genome sequencing or

*Qccurring via direct islet infection facilitated by islet ACE-2/TMPRSS2 or inflammatory destruction

**Including monogenic diabetes, type 1 diabetes, and type 2 diabetes
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by inhibition of excessive iNOS-induced NO release [60], and
by other direct glycemic and nonglycemic effects (both met-
abolic and nonmetabolic) [61]. Insulin’s role in improving
infection in both clinical and nonclinical studies is also well
known [62, 63]. Insulin can attenuate systematic inflammato-
ry responses and modulate immune functions of monocytes/
macrophages, neutrophils, and T cells in the setting of sepsis
and other disease states [64]. From a physiologic and clinical
perspective, there is no reason to believe that insulin should
not remain our first therapeutic option for hyperglycemia dur-
ing the COVID-19 pandemic, provided it can be administered
and monitored safely while adequately protecting frontline
staff.

There has been discussion about roles of various diabetes
medications in COVID-19 disease [65, 66]. Generally, oral
medications are not recommended in the inpatient setting,
however DPP-IV inhibitors have been considered for more
regular use prior to the pandemic. Sulfonylureas/
secretagogues have elevated risk of hypoglycemia, metformin
is contraindicated in hypoxia/renal/hepatic dysfunction,
SGLT2s increase risk of DKA, and GLPs hold significant risk
of nausea/vomiting [67¢]. Therefore pragmatically, both
DPPIV and insulin have been thought to be best utilized in
the inpatient setting prior to and during the pandemic [67¢]. In
the hospital, prepandemic, DPP-IV inhibitors have been stud-
ied in RCTs and have been found to be efficacious and safe
[68—70]. Their clinical utility in the hospital in relation to
COVID-19 has been considered and in some cases imple-
mented in select patients with mild to moderate hyperglyce-
mia, especially to reduce both workload during a surge as well
as exposure for frontline staff caring for patients with COVID-
19; however, their efficacy and safety in direct comparison to
insulin, and in the setting of health care worker (HCW), safety
is relatively unknown. Some concern about the use of DPP-IV
inhibitors has been raised early on. Specifically, concerns
about the known interactions between DPP-1V inhibitors and
the immune system have caused hypothetical concern. Older
reports have shown an increased incidence of nasopharyngitis
and upper respiratory tract infections (URI) associated with
the intake of DPP-IV inhibitors in the outpatient settings
[71-73]. In addition, DPP-IV, the enzyme targeted by DPP-
IV inhibitors, is known to be involved in immune regulation
[74]. However, there is no evidence of an increased risk of
adverse effects associated with DPP-IV use in the setting of
SARS-CoV-2 infection. Interestingly, the membrane bound
form of DPP-IV acts as a receptor for the MERS variety of
coronaviridae [75]. In contrast, COVID-19 targets angiotensin
converting enzyme-2 (ACE-2) as a cell entry receptor, and
there is no evidence for secondary binding of DPP-IV by
SARS-CoV2 [76]. It is unclear what potential immune mod-
ulatory effect DPP-IV inhibitors may have on the risk of in-
fection or on altering the course of the exaggerated immune
response precipitating ARDS and other complications of

COVID-19. Additionally, whether DPP-IV plays a significant
role in lung parenchyma, where DPP-IV is also expressed, in
the complex pathophysiologic processes occurring in SARS-
CoV-2—infected persons is unclear [77, 78]. Overall, the like-
lihood of a significant effect of DPP-IV inhibitor use on alter-
ing the course of a SARS-CoV-2 infection is low.
Nevertheless, we suggest that surveillance of data on patients
who receive DPP-IV inhibitors during the course of SARS-
CoV-2 infection should be undertaken. This should also in-
clude a careful analysis to help distinguish differences be-
tween DPP-IV inhibitors since various DPP-1V inhibitors ex-
hibit different affinities on target half-lives and distribution
patterns [74, 79, 80].

Insulin therefore remains the likely best therapeutic option
for patients with COVID-19 with hyperglycemia in the hos-
pital. For those with DKA/severe hyperglycemia/severe insu-
lin resistance, intravenous insulin drips are likely the preferred
method of treatment in those with high dose requirements,
given its short half-life and ability to titrate quickly.
However, it is unknown whether such high amounts of insulin
are effective and if and how they affect morbidity and mortal-
ity. Hypoglycemia following the sudden resolution of insulin
resistance must also be closely examined [31]. There is a need
for an increase in monitoring for hypoglycemia as insulin drip
rates rise and insulin resistance seemingly resolves. Safety
mechanisms will likely need to be put in place should drip
rates exceed 20 units/h. A preemptive decrease in insulin
doses may be needed once rates of change show a potential
decrease in requirements.

Health Care Worker Safety

Many workflow changes have been proposed to potentially
protect HCW safety. This is a critically important consider-
ation given the frequency of encounters required for blood
glucose monitoring and insulin delivery, especially for pa-
tients treated with insulin infusions. These intensive regimens
require careful consideration in the setting of risk of exposure
especially when there may be suboptimal availability of per-
sonal protective equipment (PPE) for HCW. Opportunities for
treatment modifications that reduce staff face-to-face time
with patients with COVID-19 and mitigation of PPE use be-
came critical considerations early on in the USA, especially in
the New York City area. The practice of “bundling care,”
originated years ago by the Institute for Healthcare
Improvement, was introduced in hard-hit New York City hos-
pitals (http://www.ihi.org/resources/Pages/
ImprovementStories/WhatlsaBundle.aspx); this approach has
been used to reduce other nosocomial infections [81]. During
the COVID-19 surge, nurses caring for many patients with
COVID-19 would bundle care, along with other interventions,
combining as many tasks as possible when entering a patient
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room to conserve both precious time and PPE. In CDC guid-
ance for long-term care facilities during the pandemic, health
care professionals were advised to “bundle care” to reduce
exposure and PPE use (https://www.cdc.gov/coronavirus/
2019-ncov/hep/nursing-homes-responding.html). The CDC
also endorsed implementing “contingency strategies” in all
US healthcare facilities by modifying some work practices
to conserve PPE and staff exposure (https://www.cdc.gov/
coronavirus/2019-ncov/hep/ppe-strategy/index.html).

The hospital setting, during an outbreak such as SARS-
CoV-2, can also change dramatically to include novel
workflows and engineering of spaces, and in some cases,
new providers and team compositions. In addition, use and
availability of adequate PPE plays a major factor in protection
of HCW. The WHO has issued interim guidance on rational
use of PPE for COVID-19, which includes implementation of
prevention and mitigation measures and minimizing PPE
need, while utilizing PPE appropriately [82]. In addition, cur-
rent and previous work (2003) in Taiwan has demonstrated
decreased nosocomial severe acute respiratory syndrome
(SARS) among HCW with implementation of their traffic
control bundle (fever screening, separating SARS patients,
increasing handwashing stations) [83, 84].

Theoretically, decreasing face-to-face time could be one
way to reduce HCW risk of infection, however this one factor
or action cannot be undertaken or understood in isolation. In
addition, this strategy does not take into account the increased
risk of HCW infection when doffing PPE. Therefore, it would
be prudent to try to minimize the frequency of glucose mon-
itoring and insulin administration when possible, if this prac-
tice would truly decrease face-to-face time (i.e., nurses were
not going into the room otherwise) without significantly
compromising patient safety or glycemic outcomes.
Bundling blood glucose monitoring, insulin administration,
and meal tray delivery would keep within current recommen-
dations while conserving staff exposure and PPE.

Many institutions in the USA have converted some or
all of their face-to-face DM consults by endocrinologists,
fellows, and diabetes care and education specialists to
telehealth encounters, especially in areas with high
COVID-19 patient populations [85]. With proper docu-
mentation of the visit in time segments, it is hoped that
reimbursement will occur. Due to fluctuating guidance on
reimbursement based on telehealth services in the USA,
this will not be reviewed or taken into account in this doc-
ument. Electronic glycemic management systems (both al-
gorithm and/or personnel driven) have been shown to be
effective for glycemic management in small and large hos-
pital systems and could also be safely implemented [86,
87]. Creative solutions to problems are being shared rap-
idly across sites, such as off-site clinicians placing orders
or supporting new work teams to place insulin or glycemic
related orders, to temporary practice changes such as

@ Springer

keeping IV pumps outside the ICU hospital rooms so
nurses do not have to enter the room to check alarms or
adjust rates, and consideration of utilizing continuous glu-
cose monitoring in select patients.

Alternatives to intravenous insulin drips could be consid-
ered if needed (if there is a lack of IV pumps, insulin, staffing,
and/or need for minimization of face-to-face time), in certain
mild to moderate cases of hyperglycemia and/or DKA. In the
UK and the USA for example, g4 hour dosing of rapid acting
insulin algorithms have been created (based on weight and/or
TDD), along with the addition of long-acting insulin for those
with hyperglycemia when an insulin drip is not available [88,
89]. Subcutaneous DK A protocols, with g4 dosing, from prior
literature [90] and adapted for COVID-19 (additionally
adapted for BMI, steroid use, glucose levels), have also been
implemented [88, 89]. In general, such protocols may not be
appropriate for those with advanced glycemic disease (severe
DKA and/or severe insulin resistance) unless deemed abso-
lutely necessary based on lack of PPE or large patient
volumes.

Decisions on modifying existing DM/hyperglycemia pro-
tocols should be data driven when at all possible, as clinical
care, safety parameters, plans for HCWs (including PPE avail-
ability), and COVID-19 case mix likely differ from region to
region and institution to institution. Data such as number of
patients with COVID-19, POI, regional location of such pa-
tients, nursing/care team staffing and workflows, amount and
type of PPE available, and burn rate of PPE will all likely
factor in on decision-making regarding changes in DM/
hyperglycemia related protocols and workflows.

The Potential Role of Continuous Glucose
Monitoring in the COVID-19 Era

One identified area of potential broadened use of technology
in the COVID-19 era has been utilization of continuous glu-
cose monitoring (CGM) in the hospital with the theoretical
benefit to decrease face-to-face time. Dexcom and Abbott, at
the time of this writing, have issued press releases regarding
use of their products in the inpatient setting [91, 92]. To this
end, the FDA has recently put out guidance on the potential
use of CGM in the hospital (https://www.fda.gov/medical-
devices/blood-glucose-monitoring-devices/faqs-home-use-
blood-glucose-meters-utilized-within-hospitals-during-covid-
19-pandemic); the FDA has exercised “enforcement
discretion” for hospital use of CGMs during the current
pandemic, thereby temporarily sanctioning off label use.
Some have interpreted this to mean the FDA has approved
CGM use, which is not the case. In addition, CGM studies
of hospitalized patients prior to COVID-19 have shown that
circumstances commonly occurring in critically ill patients
such as dehydration, edema, hypotension, and dialysis may
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negatively impact accuracy because of fluid shifts and chang-
es in perfusion in this population [93]. Because of accuracy
concerns, correlation studies should still be performed, and/or
correlation protocols between the hospital blood glucose mon-
itor (usual care), and the CGM should be completed to guide
safe use.

Case series have been published evaluating the feasibility
of remote glucose monitoring and medical management based
on CGM data during the pandemic [94-96]. In addition, an
RCT interim analysis showed that use of real time CGM via a
telemetry system reduces inpatient hypoglycemia in those
with type 2 DM on insulin [97], another RCT demonstrated
significantly lower mean glucose and increased time in range
with the use of real time CGM in the nonICU hospital setting
[98ee]. Careful review of the benefits and the barriers to im-
plementation of CGM during this pandemic needs to occur on
an institution to institution basis, along with a discussion with
quality, safety, and risk teams. Some hospitals have piloted
(under research) the use of CGM whereas others concluded
that the accuracy limitations and the burden of a novel tech-
nology implementation during a pandemic are too great. One
main theoretical benefit to remote monitoring is that the nurse
can obtain the glucose level outside the room. For patients on
an insulin drip, the IV pump could be on a long extension cord
also outside the room so that the nurse could view the sensor
glucose (SG) on a receiver or phone and adjust the insulin drip

Fig. 1 Implementation of CGM
during COVID-19
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rate without additional exposure and use of PPE. Although the
Dexcom receiver can transmit up to 20 ft, the Freestyle Libre
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ill patients, the patient could be an active participant in mon-
itoring SG by scanning the device if applicable (e.g., Libre),
viewing the receiver/reader or phone and communicating glu-
cose levels via intercom or phone to the nurse outside the
room.

There are many moving parts to planning and
implementing CGM use in the inpatient setting during the
COVID-19 pandemic. Diabetes specialists should work col-
laboratively with the hospital’s legal team, nursing, medicine,
and senior leadership to gain buy-in and approval. Quality
improvement frameworks and models, such as the quality
implementation framework and the SEIPs (systems engineer-
ing model for patient safety) model [99, 100] can be utilized to
help with planning and implementation. Figure 1 delineates
each SEIPs domain as it relates to potential CGM implemen-
tation in the hospital setting.

The FDA also recently released “FAQs on Home-Use
Blood Glucose Meters Utilized Within Hospitals During the
COVID-19 Pandemic.” [101]. This document allows patients
who are willing and able to use their home BG meters tempo-
rarily during the hospital stay. If patients did not bring a BG
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meter, hospitals can also dispense meters that are intended for
home use to inpatients. This theoretically reduces the number
of BGs nurses need to obtain, thereby reducing risk of expo-
sure and waste of PPE; however, careful consideration of how
and when data will be entered into the medical record is need-
ed. All of these changes can result in unintended conse-
quences that have not been identified, so benefits, risks, qual-
ity, and safety must be continuously assessed.

Conclusions

In the end, we must recognize that this global pandemic rep-
resents a time when critical decisions must be made quickly,
informed by first-hand experience along with evidence-based
literature when available. We can resourcefully turn to accept-
ed scientific principles from the past to inform the questions of
the present and future. We must work with our institutions and
our communities closely, in an unprecedented public-private-
non-profit partnership, to bend the curve on diabetes and
COVID-19. We may need to harness and modify our existing
institutional frameworks to safely meet the needs of our pa-
tients while protecting the welfare and safety of HCW during
this unprecedented crisis. This is the time to share data and
information faster and more generously than ever before to
most efficiently gain an understanding of disease pathophys-
iology and best practice. Most of all, we must ensure that we
maintain guidance by the ethos to “do no harm,” but do ev-
erything we can to prepare for any potential resurgence of this
disease.
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