Skip to main content

Advertisement

Log in

Use of Perfusion Imaging and Other Imaging Techniques to Assess Risks/Benefits of Acute Stroke Interventions

  • Cardiovascular Disease and Stroke (D Leifer and JE Safdieh, Section Editors)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

The advent of multimodal neuroimaging has provided acute stroke care providers with an armamentarium of sophisticated imaging options to utilize for guidance in clinical decision-making and management of acute ischemic stroke patients. Here, we propose a framework and potential algorithm-based methodology for imaging modality selection and utilization for the purpose of achieving optimal stroke clinical care. We first review imaging options that may best inform decision-making regarding revascularization eligibility, with a focus on the imaging modalities that best identify critical inclusion and exclusion criteria. Next, we review imaging methods that may guide the successful achievement of revascularization once it has been deemed desirable and feasible. Further, we review imaging modalities that may best assist in both the noninterventional care of acute stroke as well as the identification of stroke-mimics. Finally, we review imaging techniques under current investigation that show promise to improve future acute stroke management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kidwell CS, Chalela JA, Saver JL, Starkman S, Hill MD, Demchuk AM, et al. Comparison of MRI and CT for detection of acute intracerebral hemorrhage. JAMA. 2004;292(15):1823–30.

    Article  PubMed  CAS  Google Scholar 

  2. Noguchi K, Ogawa T, Seto H, Inugami A, Hadeishi H, Fujita H, et al. Subacute and chronic subarachnoid hemorrhage: diagnosis with fluid-attenuated inversion-recovery MR imaging. Radiology. 1997;203(1):257–62.

    PubMed  CAS  Google Scholar 

  3. Mohamed M, Heasly DC, Yagmurlu B, Yousem DM. Fluid-attenuated inversion recovery MR imaging and subarachnoid hemorrhage: not a panacea. AJNR Am J Neuroradiol. 2004;25(4):545–50.

    PubMed  Google Scholar 

  4. Latchaw RE, Alberts MJ, Lev MH, Connors JJ, Harbaugh RE, Higashida RT, et al. Recommendations for imaging of acute ischemic stroke: a scientific statement from the American Heart Association. Stroke. 2009;40(11):3646–78.

    Article  PubMed  Google Scholar 

  5. Edgell RC, Vora NA: Neuroimaging markers of hemorrhagic risk with stroke reperfusion therapy. Neurology, 79(13 Suppl 1):S100-104.

  6. Hacke W, Kaste M, Fieschi C, Toni D, Lesaffre E, von Kummer R, et al. Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke. The European Cooperative Acute Stroke Study (ECASS). JAMA. 1995;274(13):1017–25.

    Article  PubMed  CAS  Google Scholar 

  7. Demaerschalk BM, Silver B, Wong E, Merino JG, Tamayo A, Hachinski V. ASPECT scoring to estimate >1/3 middle cerebral artery territory infarction. Can J Neurol Sci. 2006;33(2):200–4.

    PubMed  Google Scholar 

  8. Hill MD, Demchuk AM, Tomsick TA, Palesch YY, Broderick JP. Using the baseline CT scan to select acute stroke patients for IV-IA therapy. AJNR Am J Neuroradiol. 2006;27(8):1612–6.

    PubMed  CAS  Google Scholar 

  9. Albers GW, Thijs VN, Wechsler L, Kemp S, Schlaug G, Skalabrin E, et al. Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Ann Neurol. 2006;60(5):508–17.

    Article  PubMed  Google Scholar 

  10. Bhatt A, Vora NA, Thomas AJ, Majid A, Kassab M, Hammer MD, et al. Lower pretreatment cerebral blood volume affects hemorrhagic risks after intra-arterial revascularization in acute stroke. Neurosurgery. 2008;63(5):874–8. discussion 878–879.

    Article  PubMed  Google Scholar 

  11. Gupta R, Yonas H, Gebel J, Goldstein S, Horowitz M, Grahovac SZ, et al. Reduced pretreatment ipsilateral middle cerebral artery cerebral blood flow is predictive of symptomatic hemorrhage post-intra-arterial thrombolysis in patients with middle cerebral artery occlusion. Stroke. 2006;37(10):2526–30.

    Article  PubMed  Google Scholar 

  12. Warach S, Latour LL. Evidence of reperfusion injury, exacerbated by thrombolytic therapy, in human focal brain ischemia using a novel imaging marker of early blood–brain barrier disruption. Stroke. 2004;35(11 Suppl 1):2659–61.

    Article  PubMed  Google Scholar 

  13. Hom J, Dankbaar JW, Soares BP, Schneider T, Cheng SC, Bredno J, Lau BC, Smith W, Dillon WP, Wintermark M: Blood–brain barrier permeability assessed by perfusion CT predicts symptomatic hemorrhagic transformation and malignant edema in acute ischemic stroke. AJNR Am J Neuroradiol, 32(1):41–48.

  14. Senior K. Microbleeds may predict cerebral bleeding after stroke. Lancet. 2002;359(9308):769.

    Article  PubMed  Google Scholar 

  15. Nighoghossian N, Hermier M, Adeleine P, Derex L, Dugor JF, Philippeau F, et al. Baseline magnetic resonance imaging parameters and stroke outcome in patients treated by intravenous tissue plasminogen activator. Stroke. 2003;34(2):458–63.

    Article  PubMed  CAS  Google Scholar 

  16. Fiehler J, Albers GW, Boulanger JM, Derex L, Gass A, Hjort N, et al. Bleeding risk analysis in stroke imaging before thromboLysis (BRASIL): pooled analysis of T2*-weighted magnetic resonance imaging data from 570 patients. Stroke. 2007;38(10):2738–44.

    Article  PubMed  Google Scholar 

  17. Lee SH, Bae HJ, Kwon SJ, Kim H, Kim YH, Yoon BW, et al. Cerebral microbleeds are regionally associated with intracerebral hemorrhage. Neurology. 2004;62(1):72–6.

    Article  PubMed  CAS  Google Scholar 

  18. Lam WW, So NM, Wong KS, Rainer T. B0 images obtained from diffusion-weighted echo planar sequences for the detection of intracerebral bleeds. J Neuroimaging. 2003;13(2):99–105.

    PubMed  CAS  Google Scholar 

  19. Lu CY, Chiang IC, Lin WC, Kuo YT, Liu GC. Detection of intracranial hemorrhage: comparison between gradient-echo images and b0 images obtained from diffusion-weighted echo-planar sequences on 3.0T MRI. Clin Imaging. 2005;29(3):155–61.

    Article  PubMed  Google Scholar 

  20. Kim JT, Park MS, Yoon W, Cho KH: Detection and significance of incidental unruptured cerebral aneurysms in patients undergoing intravenous thrombolysis for acute ischemic stroke. J Neuroimaging, 22(2):197–200.

  21. Moseley ME, Kucharczyk J, Mintorovitch J, Cohen Y, Kurhanewicz J, Derugin N, et al. Diffusion-weighted MR imaging of acute stroke: correlation with T2-weighted and magnetic susceptibility-enhanced MR imaging in cats. AJNR Am J Neuroradiol. 1990;11(3):423–9.

    PubMed  CAS  Google Scholar 

  22. Hoehn-Berlage M, Eis M, Back T, Kohno K, Yamashita K. Changes of relaxation times (T1, T2) and apparent diffusion coefficient after permanent middle cerebral artery occlusion in the rat: temporal evolution, regional extent, and comparison with histology. Magn Reson Med. 1995;34(6):824–34.

    Article  PubMed  CAS  Google Scholar 

  23. Venkatesan R, Lin W, Gurleyik K, He YY, Paczynski RP, Powers WJ, et al. Absolute measurements of water content using magnetic resonance imaging: preliminary findings in an in vivo focal ischemic rat model. Magn Reson Med. 2000;43(1):146–50.

    Article  PubMed  CAS  Google Scholar 

  24. • Thomalla G, Cheng B, Ebinger M, Hao Q, Tourdias T, Wu O, Kim JS, Breuer L, Singer OC, Warach S et al.: DWI-FLAIR mismatch for the identification of patients with acute ischaemic stroke within 4.5 h of symptom onset (PRE-FLAIR): a multicentre observational study. Lancet Neurol, 10(11):978–986. This study showed that FLAIR positivity on MRI can be a predictor of stroke onset. With variable onset to FLAIR positivity, this sets up the idea of a 'tissue clock' that may be more relevant than the time clock.

  25. Jovin TG, Liebeskind DS, Gupta R, Rymer M, Rai A, Zaidat OO, Abou-Chebl A, Baxter B, Levy EI, Barreto A et al.: Imaging-based endovascular therapy for acute ischemic stroke due to proximal intracranial anterior circulation occlusion treated beyond 8 hours from time last seen well: retrospective multicenter analysis of 237 consecutive patients. Stroke, 42(8):2206–2211.

  26. Schramm P, Schellinger PD, Klotz E, Kallenberg K, Fiebach JB, Kulkens S, et al. Comparison of perfusion computed tomography and computed tomography angiography source images with perfusion-weighted imaging and diffusion-weighted imaging in patients with acute stroke of less than 6 hours' duration. Stroke. 2004;35(7):1652–8.

    Article  PubMed  Google Scholar 

  27. Keedy A, Soares B, Wintermark M: A pictorial essay of brain perfusion-CT: not every abnormality is a stroke! J Neuroimaging, 22(4):e20-33.

  28. Szabo K, Poepel A, Pohlmann-Eden B, Hirsch J, Back T, Sedlaczek O, et al. Diffusion-weighted and perfusion MRI demonstrates parenchymal changes in complex partial status epilepticus. Brain. 2005;128(Pt 6):1369–76.

    Article  PubMed  Google Scholar 

  29. Hedna VS, Stead LG, Bidari S, Patel A, Gottipati A, Favilla CG, Salardini A, Khaku A, Mora D, Pandey A et al.: Posterior reversible encephalopathy syndrome (PRES) and CT perfusion changes. Int J Emerg Med, 5:12.

  30. Sato K, Shimizu H, Fujimura M, Inoue T, Matsumoto Y, Tominaga T: Compromise of brain tissue caused by cortical venous reflux of intracranial dural arteriovenous fistulas: assessment with diffusion-weighted magnetic resonance imaging. Stroke, 42(4):998–1003.

  31. Katzan IL, Hammer MD, Hixson ED, Furlan AJ, Abou-Chebl A, Nadzam DM. Utilization of intravenous tissue plasminogen activator for acute ischemic stroke. Arch Neurol. 2004;61(3):346–50.

    Article  PubMed  Google Scholar 

  32. Smith EE, Fonarow GC, Reeves MJ, Cox M, Olson DM, Hernandez AF, Schwamm LH: Outcomes in mild or rapidly improving stroke not treated with intravenous recombinant tissue-type plasminogen activator: findings from Get With The Guidelines-Stroke. Stroke, 42(11):3110–3115.

  33. Barber PA, Zhang J, Demchuk AM, Hill MD, Buchan AM. Why are stroke patients excluded from TPA therapy? An analysis of patient eligibility. Neurology. 2001;56(8):1015–20.

    Article  PubMed  CAS  Google Scholar 

  34. Rajajee V, Kidwell C, Starkman S, Ovbiagele B, Alger JR, Villablanca P, et al. Early MRI and outcomes of untreated patients with mild or improving ischemic stroke. Neurology. 2006;67(6):980–4.

    Article  PubMed  CAS  Google Scholar 

  35. Kidwell CS, Saver JL, Starkman S, Duckwiler G, Jahan R, Vespa P, et al. Late secondary ischemic injury in patients receiving intraarterial thrombolysis. Ann Neurol. 2002;52(6):698–703.

    Article  PubMed  Google Scholar 

  36. Kidwell CS, Saver JL, Mattiello J, Starkman S, Vinuela F, Duckwiler G, et al. Thrombolytic reversal of acute human cerebral ischemic injury shown by diffusion/perfusion magnetic resonance imaging. Ann Neurol. 2000;47(4):462–9.

    Article  PubMed  CAS  Google Scholar 

  37. Olivot JM, Mlynash M, Thijs VN, Kemp S, Lansberg MG, Wechsler L, et al. Optimal Tmax threshold for predicting penumbral tissue in acute stroke. Stroke. 2009;40(2):469–75.

    Article  PubMed  Google Scholar 

  38. Calamante F, Christensen S, Desmond PM, Ostergaard L, Davis SM, Connelly A: The physiological significance of the time-to-maximum (Tmax) parameter in perfusion MRI. Stroke, 41(6):1169–1174.

  39. Teng MM, Cheng HC, Kao YH, Hsu LC, Yeh TC, Hung CS, et al. MR perfusion studies of brain for patients with unilateral carotid stenosis or occlusion: evaluation of maps of "time to peak" and "percentage of baseline at peak". J Comput Assist Tomogr. 2001;25(1):121–5.

    Article  PubMed  CAS  Google Scholar 

  40. Wintermark M, Flanders AE, Velthuis B, Meuli R, van Leeuwen M, Goldsher D, et al. Perfusion-CT assessment of infarct core and penumbra: receiver operating characteristic curve analysis in 130 patients suspected of acute hemispheric stroke. Stroke. 2006;37(4):979–85.

    Article  PubMed  Google Scholar 

  41. Kamalian S, Konstas AA, Maas MB, Payabvash S, Pomerantz SR, Schaefer PW, Furie KL, Gonzalez RG, Lev MH: CT perfusion mean transit time maps optimally distinguish benign oligemia from true "at-risk" ischemic penumbra, but thresholds vary by postprocessing technique. AJNR Am J Neuroradiol, 33(3):545–549.

  42. Warach S, Al-Rawi Y, Furlan AJ, Fiebach JB, Wintermark M, Lindsten A, Smyej J, Bharucha DB, Pedraza S, Rowley HA: Refinement of the magnetic resonance diffusion-perfusion mismatch concept for thrombolytic patient selection: insights from the desmoteplase in acute stroke trials. Stroke, 43(9):2313–2318.

  43. • Lansberg MG, Straka M, Kemp S, Mlynash M, Wechsler LR, Jovin TG, Wilder MJ, Lutsep HL, Czartoski TJ, Bernstein RA et al.: MRI profile and response to endovascular reperfusion after stroke (DEFUSE 2): a prospective cohort study. Lancet Neurol, 11(10):860–867. In this study, reperfusion was associated with good clinical outcome in patients with perfusion/diffusion mismatch but not in those with no mismatch. Contrary to MR RESCUE, this suggests that there is strong reason to believe that perfusion imaging can identify patients who stand to benefit from endovascular reperfuson.

  44. • Kidwell CS, Jahan R, Gornbein J, Alger JR, Nenov V, Ajani Z, Feng L, Meyer BC, Olson S, Schwamm LH et al.: A trial of imaging selection and endovascular treatment for ischemic stroke. N Engl J Med, 368(10):914–923. This MR RESCUE study showed that endovascular thrombectomy was not beneficial for patients with penumbral pattern or non-penumbral pattern on perfusion imaging. Contrary to the DEFUSE study, this suggests little utility of using perfusion imaging to select appropriate patients for endovascular reperfusion.

  45. Caplan LR, Hennerici M. Impaired clearance of emboli (washout) is an important link between hypoperfusion, embolism, and ischemic stroke. Arch Neurol. 1998;55(11):1475–82.

    Article  PubMed  CAS  Google Scholar 

  46. Alexandrov AW, Ribo M, Wong KS, Sugg RM, Garami Z, Jesurum JT, et al. Perfusion augmentation in acute stroke using mechanical counter-pulsation-phase IIa: effect of external counterpulsation on middle cerebral artery mean flow velocity in five healthy subjects. Stroke. 2008;39(10):2760–4.

    Article  PubMed  Google Scholar 

  47. • Bang OY, Saver JL, Kim SJ, Kim GM, Chung CS, Ovbiagele B, Lee KH, Liebeskind DS: Collateral flow predicts response to endovascular therapy for acute ischemic stroke. Stroke, 42(3):693–699.This study demonstrated a correlation between collateral grade and reperfusion score with endovascular therapy. More robust collaterals predicted better reperfusion.

  48. • Bang OY, Saver JL, Kim SJ, Kim GM, Chung CS, Ovbiagele B, Lee KH, Liebeskind DS: Collateral flow averts hemorrhagic transformation after endovascular therapy for acute ischemic stroke. Stroke, 42(8):2235–2239. This study showed that good collaterals decrease the risk of reperfusion related hemorhage across all reperfusion scores. This and the study above suggest that collateral status should be strongly considered when making the clinical decision to give reperfusion therapies or not.

  49. Tan IY, Demchuk AM, Hopyan J, Zhang L, Gladstone D, Wong K, et al. CT angiography clot burden score and collateral score: correlation with clinical and radiologic outcomes in acute middle cerebral artery infarct. AJNR Am J Neuroradiol. 2009;30(3):525–31.

    Article  PubMed  CAS  Google Scholar 

  50. Kucinski T, Koch C, Eckert B, Becker V, Kromer H, Heesen C, et al. Collateral circulation is an independent radiological predictor of outcome after thrombolysis in acute ischaemic stroke. Neuroradiology. 2003;45(1):11–8.

    PubMed  CAS  Google Scholar 

  51. Higashida RT, Furlan AJ, Roberts H, Tomsick T, Connors B, Barr J, et al. Trial design and reporting standards for intra-arterial cerebral thrombolysis for acute ischemic stroke. Stroke. 2003;34(8):e109–37.

    Article  PubMed  Google Scholar 

  52. Liebeskind DS. Collateral circulation. Stroke. 2003;34(9):2279–84.

    Article  PubMed  Google Scholar 

  53. Chng SM, Petersen ET, Zimine I, Sitoh YY, Lim CC, Golay X. Territorial arterial spin labeling in the assessment of collateral circulation: comparison with digital subtraction angiography. Stroke. 2008;39(12):3248–54.

    Article  PubMed  Google Scholar 

  54. Wu B, Wang X, Guo J, Xie S, Wong EC, Zhang J, et al. Collateral circulation imaging: MR perfusion territory arterial spin-labeling at 3T. AJNR Am J Neuroradiol. 2008;29(10):1855–60.

    Article  PubMed  CAS  Google Scholar 

  55. Gacs G, Fox AJ, Barnett HJ, Vinuela F. CT visualization of intracranial arterial thromboembolism. Stroke. 1983;14(5):756–62.

    Article  PubMed  CAS  Google Scholar 

  56. Rovira A, Orellana P, Alvarez-Sabin J, Arenillas JF, Aymerich X, Grive E, et al. Hyperacute ischemic stroke: middle cerebral artery susceptibility sign at echo-planar gradient-echo MR imaging. Radiology. 2004;232(2):466–73.

    Article  PubMed  Google Scholar 

  57. Sakamoto Y, Kimura K, Sakai K. M1 susceptibility vessel sign and hyperdense middle cerebral artery sign in hyperacute stroke patients. Eur Neurol. 2012;68(2):93–7.

    Article  PubMed  Google Scholar 

  58. Barber PA, Demchuk AM, Hudon ME, Pexman JH, Hill MD, Buchan AM. Hyperdense sylvian fissure MCA "dot" sign: A CT marker of acute ischemia. Stroke. 2001;32(1):84–8.

    Article  PubMed  CAS  Google Scholar 

  59. Leary MC, Kidwell CS, Villablanca JP, Starkman S, Jahan R, Duckwiler GR, et al. Validation of computed tomographic middle cerebral artery "dot"sign: an angiographic correlation study. Stroke. 2003;34(11):2636–40.

    Article  PubMed  Google Scholar 

  60. Krings T, Noelchen D, Mull M, Willmes K, Meister IG, Reinacher P, et al. The hyperdense posterior cerebral artery sign: a computed tomography marker of acute ischemia in the posterior cerebral artery territory. Stroke. 2006;37(2):399–403.

    Article  PubMed  Google Scholar 

  61. Ozdemir O, Leung A, Bussiere M, Hachinski V, Pelz D. Hyperdense internal carotid artery sign: a CT sign of acute ischemia. Stroke. 2008;39(7):2011–6.

    Article  PubMed  Google Scholar 

  62. Tomsick T, Brott T, Barsan W, Broderick J, Haley EC, Spilker J, et al. Prognostic value of the hyperdense middle cerebral artery sign and stroke scale score before ultraearly thrombolytic therapy. AJNR Am J Neuroradiol. 1996;17(1):79–85.

    PubMed  CAS  Google Scholar 

  63. Moulin T, Cattin F, Crepin-Leblond T, Tatu L, Chavot D, Piotin M, et al. Early CT signs in acute middle cerebral artery infarction: predictive value for subsequent infarct locations and outcome. Neurology. 1996;47(2):366–75.

    Article  PubMed  CAS  Google Scholar 

  64. Kharitonova T, Ahmed N, Thoren M, Wardlaw JM, von Kummer R, Glahn J, et al. Hyperdense middle cerebral artery sign on admission CT scan–prognostic significance for ischaemic stroke patients treated with intravenous thrombolysis in the safe implementation of thrombolysis in Stroke International Stroke Thrombolysis Register. Cerebrovasc Dis. 2009;27(1):51–9.

    Article  PubMed  Google Scholar 

  65. Puetz V, Dzialowski I, Hill MD, Subramaniam S, Sylaja PN, Krol A, et al. Intracranial thrombus extent predicts clinical outcome, final infarct size and hemorrhagic transformation in ischemic stroke: the clot burden score. Int J Stroke. 2008;3(4):230–6.

    Article  PubMed  Google Scholar 

  66. Shobha N, Bal S, Boyko M, Kroshus E, Menon BK, Bhatia R, Sohn SI, Kumarpillai G, Kosior J, Hill MD et al.: Measurement of Length of Hyperdense MCA Sign in Acute Ischemic Stroke Predicts Disappearance after IV tPA. J Neuroimaging 2013.

  67. Kimura K, Iguchi Y, Shibazaki K, Watanabe M, Iwanaga T, Aoki J. M1 susceptibility vessel sign on T2* as a strong predictor for no early recanalization after IV-t-PA in acute ischemic stroke. Stroke. 2009;40(9):3130–2.

    Article  PubMed  CAS  Google Scholar 

  68. Tartaglia MC, Di Legge S, Saposnik G, Jain V, Chan R, Bussiere M, et al. Acute stroke with hyperdense middle cerebral artery sign benefits from IV rtPA. Can J Neurol Sci. 2008;35(5):583–7.

    PubMed  CAS  Google Scholar 

  69. Liebeskind DS, Sanossian N, Yong WH, Starkman S, Tsang MP, Moya AL, et al. CT and MRI early vessel signs reflect clot composition in acute stroke. Stroke. 2011;42(5):1237–43.

    Article  PubMed  Google Scholar 

  70. Marder VJ, Chute DJ, Starkman S, Abolian AM, Kidwell C, Liebeskind D, et al. Analysis of thrombi retrieved from cerebral arteries of patients with acute ischemic stroke. Stroke. 2006;37(8):2086–93.

    Article  PubMed  Google Scholar 

  71. • Froehler MT, Tateshima S, Duckwiler G, Jahan R, Gonzalez N, Vinuela F, Liebeskind D, Saver JL, Villablanca JP, For the USI: The hyperdense vessel sign on CT predicts successful recanalization with the Merci device in acute ischemic stroke. J Neurointerv Surg 2012. With ever-changing armamentarium of methods for achieving reperfusion, this study sets a precedent for being able to use imaging to help guide which therapy is used. Therefore imaging should strive to guide not only whether to perform reperfusion but also how to accomplish it.

  72. Moftakhar P, English JD, Cooke DL, Kim WT, Stout C, Smith WS, et al. Density of thrombus on admission CT predicts revascularization efficacy in large vessel occlusion acute ischemic stroke. Stroke. 2013;44(1):243–5.

    Article  PubMed  Google Scholar 

  73. Ricci S, Dinia L, Del Sette M, Anzola P, Mazzoli T, Cenciarelli S, et al. Sonothrombolysis for acute ischaemic stroke. Cochrane Database Syst Rev. 2012;10:CD008348.

    PubMed  Google Scholar 

  74. Aftab A, Lyeo L, Zhou Y, Murugappan K, Sharma V: Ultrasound Assisted Thrombolysis For Fresh Clots With Higher Cholesterol Content. In: International Stroke Conference Poster Abstracts. 2013.

  75. Provenzale JM. Dissection of the internal carotid and vertebral arteries: imaging features. AJR Am J Roentgenol. 1995;165(5):1099–104.

    Article  PubMed  CAS  Google Scholar 

  76. Chen CJ, Tseng YC, Lee TH, Hsu HL, See LC. Multisection CT angiography compared with catheter angiography in diagnosing vertebral artery dissection. AJNR Am J Neuroradiol. 2004;25(5):769–74.

    PubMed  Google Scholar 

  77. Kaufmann TJ, Huston 3rd J, Mandrekar JN, Schleck CD, Thielen KR, Kallmes DF. Complications of diagnostic cerebral angiography: evaluation of 19,826 consecutive patients. Radiology. 2007;243(3):812–9.

    Article  PubMed  Google Scholar 

  78. Vertinsky AT, Schwartz NE, Fischbein NJ, Rosenberg J, Albers GW, Zaharchuk G. Comparison of multidetector CT angiography and MR imaging of cervical artery dissection. AJNR Am J Neuroradiol. 2008;29(9):1753–60.

    Article  PubMed  CAS  Google Scholar 

  79. Gottesman RF, Sharma P, Robinson KA, Arnan M, Tsui M, Saber-Tehrani A, et al. Imaging characteristics of symptomatic vertebral artery dissection: a systematic review. Neurologist. 2012;18(5):255–60.

    Article  PubMed  Google Scholar 

  80. Provenzale JM, Sarikaya B. Comparison of test performance characteristics of MRI, MR angiography, and CT angiography in the diagnosis of carotid and vertebral artery dissection: a review of the medical literature. AJR Am J Roentgenol. 2009;193(4):1167–74.

    Article  PubMed  Google Scholar 

  81. Engelter ST, Rutgers MP, Hatz F, Georgiadis D, Fluri F, Sekoranja L, et al. Intravenous thrombolysis in stroke attributable to cervical artery dissection. Stroke. 2009;40(12):3772–6.

    Article  PubMed  Google Scholar 

  82. •• Kennedy F, Lanfranconi S, Hicks C, Reid J, Gompertz P, Price C, et al. Antiplatelets vs anticoagulation for dissection: CADISS nonrandomized arm and meta-analysis. Neurology. 2012;79(7):686–9. An initial analysis of the ongoing CADISS study showed that, when these data were pooled with data from other nonrandomized studies, no evidence for superiority of antiplatelet therapy or anticoagulation in prevention of stoke after carotid and vertebral artery dissection was found.

  83. Lyrer P, Engelter S. Antithrombotic drugs for carotid artery dissection. Cochrane Database Syst Rev. 2010;10, CD000255.

    PubMed  Google Scholar 

  84. Hassan AE, Zacharatos H, Souslian F, Suri MF, Qureshi AI. Long-term clinical and angiographic outcomes in patients with cervico-cranial dissections treated with stent placement: a meta-analysis of case series. J Neurotrauma. 2012;29(7):1342–53.

    Article  PubMed  Google Scholar 

  85. Kadkhodayan Y, Jeck DT, Moran CJ, Derdeyn CP, Cross 3rd DT. Angioplasty and stenting in carotid dissection with or without associated pseudoaneurysm. AJNR Am J Neuroradiol. 2005;26(9):2328–35.

    PubMed  Google Scholar 

  86. Mohan IV: Current Optimal Assessment and Management of Carotid and Vertebral Spontaneous and Traumatic Dissection. Angiology 2013.

  87. Kasner SE, Demchuk AM, Berrouschot J, Schmutzhard E, Harms L, Verro P, et al. Predictors of fatal brain edema in massive hemispheric ischemic stroke. Stroke. 2001;32(9):2117–23.

    Article  PubMed  CAS  Google Scholar 

  88. Berrouschot J, Sterker M, Bettin S, Koster J, Schneider D. Mortality of space-occupying ('malignant') middle cerebral artery infarction under conservative intensive care. Intensive Care Med. 1998;24(6):620–3.

    Article  PubMed  CAS  Google Scholar 

  89. Thomalla G, Hartmann F, Juettler E, Singer OC, Lehnhardt FG, Kohrmann M, et al. Prediction of malignant middle cerebral artery infarction by magnetic resonance imaging within 6 hours of symptom onset: A prospective multicenter observational study. Ann Neurol. 2010;68(4):435–45.

    Article  PubMed  Google Scholar 

  90. Vahedi K, Hofmeijer J, Juettler E, Vicaut E, George B, Algra A, et al. Early decompressive surgery in malignant infarction of the middle cerebral artery: a pooled analysis of three randomised controlled trials. Lancet Neurol. 2007;6(3):215–22.

    Article  PubMed  Google Scholar 

  91. •• Hofmeijer J, Kappelle LJ, Algra A, Amelink GJ, van Gijn J, van der Worp HB, et al. Surgical decompression for space-occupying cerebral infarction (the Hemicraniectomy After Middle Cerebral Artery infarction with Life-threatening Edema Trial [HAMLET]): a multicentre, open, randomised trial. Lancet Neurol. 2009;8(4):326–33. In 64 patients with hemispheric infarct randomized to surgical decompression or medical management, hemicraniectomy resulted in significantly decreased mortality but not good functional outcome as measured by mRS 0-3.

  92. Cho DY, Chen TC, Lee HC. Ultra-early decompressive craniectomy for malignant middle cerebral artery infarction. Surg Neurol. 2003;60(3):227–32. discussion 232–223.

    Article  PubMed  Google Scholar 

  93. Wartenberg KE. Malignant middle cerebral artery infarction. Curr Opin Crit Care. 2012;18(2):152–63.

    Article  PubMed  Google Scholar 

  94. Hwang DY, Silva GS. Furie KL. Greer DM: Comparative sensitivity of computed tomography vs magnetic resonance imaging for detecting acute posterior fossa infarct J Emerg Med. 2012;42(5):559–65.

    Google Scholar 

  95. Teasdale GM, Hadley DM, Lawrence A, Bone I, Burton H, Grant R, et al. Comparison of magnetic resonance imaging and computed tomography in suspected lesions in the posterior cranial fossa. BMJ. 1989;299(6695):349–55.

    Article  PubMed  CAS  Google Scholar 

  96. Goldmakher GV, Camargo EC, Furie KL, Singhal AB, Roccatagliata L, Halpern EF, et al. Hyperdense basilar artery sign on unenhanced CT predicts thrombus and outcome in acute posterior circulation stroke. Stroke. 2009;40(1):134–9.

    Article  PubMed  Google Scholar 

  97. Montavont A, Nighoghossian N, Derex L, Hermier M, Honnorat J, Philippeau F, et al. Intravenous r-TPA in vertebrobasilar acute infarcts. Neurology. 2004;62(10):1854–6.

    Article  PubMed  CAS  Google Scholar 

  98. Mordasini P, Brekenfeld C, Byrne JV, Fischer U, Arnold M, Heldner MR, et al. Technical feasibility and application of mechanical thrombectomy with the Solitaire FR Revascularization Device in acute basilar artery occlusion. AJNR Am J Neuroradiol. 2013;34(1):159–63.

    Article  PubMed  CAS  Google Scholar 

  99. Koh MG, Phan TG, Atkinson JL, Wijdicks EF. Neuroimaging in deteriorating patients with cerebellar infarcts and mass effect. Stroke. 2000;31(9):2062–7.

    Article  PubMed  CAS  Google Scholar 

  100. Juttler E, Schweickert S, Ringleb PA, Huttner HB, Kohrmann M, Aschoff A. Long-term outcome after surgical treatment for space-occupying cerebellar infarction: experience in 56 patients. Stroke. 2009;40(9):3060–6.

    Article  PubMed  Google Scholar 

  101. Pfefferkorn T, Eppinger U, Linn J, Birnbaum T, Herzog J, Straube A, et al. Long-term outcome after suboccipital decompressive craniectomy for malignant cerebellar infarction. Stroke. 2009;40(9):3045–50.

    Article  PubMed  Google Scholar 

  102. • Struffert T, Deuerling-Zheng Y, Kloska S, Engelhorn T, Strother CM, Kalender WA, et al. Flat detector CT in the evaluation of brain parenchyma, intracranial vasculature, and cerebral blood volume: a pilot study in patients with acute symptoms of cerebral ischemia. AJNR Am J Neuroradiol. 2010;31(8):1462–9. By piloting perfusion imaging in the angiography suite, this study introduces a paradigm of performing diagnostic perfusion imaging at the 'point of care'.

    Article  PubMed  CAS  Google Scholar 

  103. •• Struffert T, Deuerling-Zheng Y, Engelhorn T, Kloska S, Golitz P, Kohrmann M, et al. Feasibility of cerebral blood volume mapping by flat panel detector CT in the angiography suite: first experience in patients with acute middle cerebral artery occlusions. AJNR Am J Neuroradiol. 2012;33(4):618–25. Flat panel CT detectors have been used in the angiography suite to generate experimental cerebral blood volume perfusion maps and parenchymal brain images.

  104. Strother CM: The Neurointerventional Suite as an Acute Stroke Intervention Unit. Endovascular Today 2012:38–40.

  105. Golestani AM, Tymchuk S, Demchuk A, Goodyear BG, Group V-S. Longitudinal evaluation of resting-state FMRI after acute stroke with hemiparesis. Neurorehabil Neural Repair. 2013;27(2):153–63.

    Article  PubMed  Google Scholar 

  106. He BJ, Snyder AZ, Vincent JL, Epstein A, Shulman GL, Corbetta M. Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect. Neuron. 2007;53(6):905–18.

    Article  PubMed  CAS  Google Scholar 

  107. Carter AR, Shulman GL, Corbetta M. Why use a connectivity-based approach to study stroke and recovery of function? NeuroImage. 2012;62(4):2271–80.

    Article  PubMed  Google Scholar 

  108. Puig J, Pedraza S, Blasco G, Daunis IEJ, Prados F, Remollo S, et al. Acute damage to the posterior limb of the internal capsule on diffusion tensor tractography as an early imaging predictor of motor outcome after stroke. AJNR Am J Neuroradiol. 2011;32(5):857–63.

    Article  PubMed  CAS  Google Scholar 

  109. Harris AD, Pereira RS, Mitchell JR, Hill MD, Sevick RJ, Frayne R. A comparison of images generated from diffusion-weighted and diffusion-tensor imaging data in hyper-acute stroke. J Magn Reson Imaging. 2004;20(2):193–200.

    Article  PubMed  Google Scholar 

  110. Madai VI, von Samson-Himmelstjerna FC, Bauer M, Stengl KL, Mutke MA, Tovar-Martinez E, et al. Ultrahigh-field MRI in human ischemic stroke–a 7 tesla study. PLoS One. 2012;7(5):e37631.

    Article  PubMed  CAS  Google Scholar 

  111. Kang CK, Park CA, Park CW, Lee YB, Cho ZH, Kim YB. Lenticulostriate arteries in chronic stroke patients visualised by 7 T magnetic resonance angiography. Int J Stroke. 2010;5(5):374–80.

    Article  PubMed  Google Scholar 

  112. van der Kolk AG, Hendrikse J, Zwanenburg JJ, Visser F, Luijten PR: Clinical applications of 7T MRI in the brain. Eur J Radiol 2011.

  113. Li ML, Xu WH, Song L, Feng F, You H, Ni J, et al. Atherosclerosis of middle cerebral artery: evaluation with high-resolution MR imaging at 3T. Atherosclerosis. 2009;204(2):447–52.

    Article  PubMed  CAS  Google Scholar 

  114. Turan TN, Rumboldt Z, Brown TR. High-resolution MRI of basilar atherosclerosis: three-dimensional acquisition and FLAIR sequences. Brain Behav. 2013;3(1):1–3.

    Article  PubMed  Google Scholar 

  115. Kerwin WS, O'Brien KD, Ferguson MS, Polissar N, Hatsukami TS, Yuan C. Inflammation in carotid atherosclerotic plaque: a dynamic contrast-enhanced MR imaging study. Radiology. 2006;241(2):459–68.

    Article  PubMed  Google Scholar 

  116. Takaya N, Yuan C, Chu B, Saam T, Underhill H, Cai J, et al. Association between carotid plaque characteristics and subsequent ischemic cerebrovascular events: a prospective assessment with MRI–initial results. Stroke. 2006;37(3):818–23.

    Article  PubMed  Google Scholar 

  117. van der Kolk AG, Zwanenburg JJ, Brundel M, Biessels GJ, Visser F, Luijten PR, et al. Intracranial vessel wall imaging at 7.0-T MRI. Stroke. 2011;42(9):2478–84.

    Article  PubMed  Google Scholar 

  118. Wu O, Koroshetz WJ, Ostergaard L, Buonanno FS, Copen WA, Gonzalez RG, et al. Predicting tissue outcome in acute human cerebral ischemia using combined diffusion- and perfusion-weighted MR imaging. Stroke. 2001;32(4):933–42.

    Article  PubMed  CAS  Google Scholar 

  119. Kidwell CS, Wintermark M, De Silva DA, Schaewe TJ, Jahan R, Starkman S, et al. Multiparametric MRI and CT models of infarct core and favorable penumbral imaging patterns in acute ischemic stroke. Stroke. 2013;44(1):73–9.

    Article  PubMed  Google Scholar 

  120. Scalzo F, Hao Q, Alger JR, Hu X, Liebeskind DS. Regional prediction of tissue fate in acute ischemic stroke. Ann Biomed Eng. 2012;40(10):2177–87.

    Article  PubMed  Google Scholar 

  121. Huang S, Shen Q, Duong TQ. Artificial neural network prediction of ischemic tissue fate in acute stroke imaging. J Cereb Blood Flow Metab. 2010;30(9):1661–70.

    Article  PubMed  Google Scholar 

Download references

Sources of Funding

This work has been funded by NIH-National Institute of Neurological Disorders and Stroke Awards NIH/NINDS P50NS044378, K24NS072272, R01NS077706, R13NS082049.

Conflict of interest

Jason Tarpley declares that he has no conflicts of interest.

Dan Franc declares that he has no conflicts of interest.

Aaron P Tansy declares that he has no conflicts of interest.

David S Liebeskind is a scientific consultant regarding trial design and conduct to Stryker (modest) and Covidien (modest).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Liebeskind.

Additional information

Jason Tarpley and Dan Franc contributed equally

This article is part of the Topical Collection on Cardiovascular Disease and Stroke

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarpley, J., Franc, D., Tansy, A.P. et al. Use of Perfusion Imaging and Other Imaging Techniques to Assess Risks/Benefits of Acute Stroke Interventions. Curr Atheroscler Rep 15, 336 (2013). https://doi.org/10.1007/s11883-013-0336-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-013-0336-6

Keywords

Navigation