Skip to main content

Advertisement

Log in

Anchoring of greenhouse whitefly eggs on different rose cultivars

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Whiteflies attach their eggs to plants by implanting the egg pedicel into the epidermis of the underside of leaves. This pedicel works like a wall plug embedded in sealing cement, presenting a smart interconnection, which was exemplarily studied in Trialeurodes vaporariorum eggs on two stages of abaxial leaflets of four cut rose cultivars using a combination of microscopic and biomechanical techniques. The penetration force obtained by piercing single epidermal cells with an insect minuten pin did not significantly correlate with the force which was applied to pull off the greenhouse whitefly eggs from abaxial leaves. A maximum pull-off force of 5.4 mN was measured on young leaves of the rose cultivar ‘Schloss Ippenburg®’, corresponding to maximum 941 times the egg weight. Egg pull-off force significantly differed between cut rose cultivars and leaf ages. On greenhouse whitefly-susceptible cultivars ‘Poesie®’ and ‘Reggae®’, eggs detached, applying less force compared to that on resistant cultivars. Leaf structural features had no significant impact on greenhouse whitefly egg pull-off forces. A major effect of leaf turgor pressure and swelling of colleterial gland secretion (cement) surrounding the whitefly egg is assumed to facilitate the firm interconnection between egg and plant epidermis by a combination of form closure, friction locking, and adhesive bond forming a composite material in the contact region. This bond exhibits a maximum adhesive strength of 12.2 MPa, which is much higher than those in beetle and moth eggs glued to oviposition substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al Bitar L, Gorb SN, Zebitz CPW, Voigt D (2012) Egg adhesion of the codling moth Cydia pomonella to various substrates: I. Leaf surfaces of different apple cultivars. Arthropod-Plant Interact 6:471–488. (https://doi.org/10.1007/s11829-012-9198-z)

    Article  Google Scholar 

  • Al Bitar L, Gorb SN, Zebitz CPW, Voigt D (2014) Egg adhesion of the codling moth Cydia pomonella to various substrates: II. Fruit surfaces of different apple cultivars. Arthropod-Plant Interact 8:57–77. (https://doi.org/10.1007/s11829-013-9288-6)

    Article  Google Scholar 

  • Avery BA, Kumar V, Simmonds MSJ, Faull J (2015) Influence of leaf trichome type and density on the host plant selection by the greenhouse whitefly, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). Appl Entomol Zool 50:79–87

    Article  CAS  Google Scholar 

  • Bährmann R (2002) Die Mottenschildläuse Aleyrodina. In: Moritz G (ed) Pflanzensaftsaugende Insekten—Band 2, Die neue Brehm-Bücherei Bd, 664. Westarp Wissenschaften, Hohenwarsleben

    Google Scholar 

  • Bas N, Mollema C, Lindhout P (1992) Resistance in Lycopersicon hirsutum f. glabratum to the greenhouse whitefly (Trialeurodes vaporariorum) increases with plant age. Euphytica 64:189–195

    Article  Google Scholar 

  • Beament JWL, Lal R (1957) Penetration through the egg-shell of Pieris brassicae (L.). Bull Entomol Res 48:109–125. (https://doi.org/10.1017/S0007485300054134)

    Article  CAS  Google Scholar 

  • Betz O (2010) Adhesive exocrine glands in insects: morphology, ultrastructure, and adhesive secretion. In: von Byern J, Grunwald I (eds) Biological adhesive systems: from nature to technical and medical application. Springer, Vienna, pp 111–152

    Chapter  Google Scholar 

  • Bradford KJ, Hsiao TC (1982) Physiological responses to moderate water stress. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology II. Encyclopedia of plant physiology, New series, vol 12B. Springer, Berlin, pp 263–324

    Chapter  Google Scholar 

  • Buckner JS, Freeman TP, Ruud RL, Chu C-C, Henneberry TJ (2002) Characterization and functions of the whitefly egg pedicel. Arch Insect Biochem Physiol 49:22–33

    Article  CAS  PubMed  Google Scholar 

  • Byrne DN, Cohen AC, Draeger EA (1990) Water uptake from plant tissue by the egg pedicel of the greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Homoptera: Aleyrodidae). Can J Zool 68:1193–1195

    Article  Google Scholar 

  • CABI (2018) Trialeurodes vaporariorum (whitefly, greenhouse). Invasive Species Compendium. https://www.cabi.org/isc/datasheet/54660

  • Carter D (1990) Insect egg glue. An investigation of the nature and secretion of insect egg glues, with special reference to the human louse, Pediculus humanus and the cabbage white butterfly, Pieris brassicae. Ph.D. thesis, Cambridge University, Cambridge

  • Castañé C (1989) Estudio de una relación insecto-planta: Trialeurodes vaporariorum y Pelargonium x domesticum. Ph.D. thesis, University of Barcelona, Spain

  • Castañé C, Albajes R (1994) Mortality of immature stages of Trialeurodes vaporariorum (Homoptera: Aleyrodidae) on regal Geranium Pelargonium x domesticum. Environ Entomol 23:1443–1449

    Article  Google Scholar 

  • Castañé C, Savé R (1993) Leaf osmotic potential decrease: a possible cause of mortality of greenhouse whitefly eggs. Entomol Exp Appl 69:1–4

    Article  Google Scholar 

  • Cerkvenik U, van de Straat B, Gussekloo SWS, van Leeuwen JL (2017) Mechanisms of ovipositor insertion and steering of a parasitic wasp. Proc Natl Acad Sci USA 114:E7822–E7831

    Article  CAS  PubMed  Google Scholar 

  • Cerkvenik U, Dodou D, van Leeuwen JL, Gussekloo SWS (2018) Functional principles of steerable multi-element probes in insects. Biol Rev. https://doi.org/10.1111/brv.12467

    Article  PubMed  Google Scholar 

  • Coombe PE (1982) Visual behaviour of the greenhouse whitefly, Trialeurodes vaporariorum. Physiol Entomol 7:243–251

    Article  Google Scholar 

  • Darshanee HLC, Ren H, Ahmed N, Zhang Z-F, Liu Y-H, Liu T-X (2017) Volatile-mediated attraction of greenhouse whitefly Trialeurodes vaporariorum to tomato and eggplant. Front Plant Sci 8:1825

    Article  Google Scholar 

  • de Ponti OMB, Pet G, Hogenboom NG (1975) Resistance to the glasshouse whitefly (Trialeurodes vaporariorum Westw.) in tomato (Lycopersicon esculentum Mill.) and related species. Euphytica 24:645–649

    Article  Google Scholar 

  • de la Riva EG, Olmo M, Poorter H, Ubera JL, Villar R (2016) Leaf mass per area (LMA) and its relationship with leaf structure and anatomy in 34 mediterranean woody species along a water availability gradient. PLoS ONE 11(2):e0148788. https://doi.org/10.1371/journal.pone.0148788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dereser E (2006) Wer trägt wie und was. Würth Ratgeber Befestigungstechnik 2006:15–17

    Google Scholar 

  • Deshpande VG (1936) Miscellaneous observations on the biology of Aleurodidae (Aleurodes brassicae). J Bombay Nat Hist Soc 39:190–193

    Google Scholar 

  • Dombrowski J (2006) Gut gedübelt. Würth Ratgeber Befestigungstechnik 2006:18–19

    Google Scholar 

  • Dowell RV (1979) Host selection by the Citrus blackfly Aleurocanthus woglumi (Homoptera: Aleyrodidae). Entomol Exp Appl 25:289–296

    Article  Google Scholar 

  • Duffey SS (1986) Plant glandular trichomes: their partial role in defense against insects. In: Juniper BE, Southwood TRE (eds) Insects and plant surface. Edward Arnold, London, pp 173–183

    Google Scholar 

  • Eigenbrode SD (1996) Plant surface waxes and insect behaviour. In: Kerstiens G (ed) Plant cuticles—an integral functional approach. BIOS Publ., Oxford, pp 201–222

    Google Scholar 

  • Eigenbrode SD (2004) The effects of plant epicuticular waxy blooms on attachment and effectiveness of predatory insects. Arthr Struct Dev 33:91–102

    Article  CAS  Google Scholar 

  • Eligehausen R, Fuchs W (2012) Befestigungstechnik. In: Zilch K, Diedrichs CJ, Katzenbach R, Beckmann KJ (eds) Handbuch für Bauingenieure. Technik, Organisation und Wirtschaftlichkeit. 2. aktuelle Auflage. Springer, Heidelberg, pp 1440–1471

    Google Scholar 

  • Emeljanov AF (2014) The evolutionary role and fate of the primary ovipositor in insects. Entomol Rev 93:91–130

    Google Scholar 

  • Fatouros NE, Bukovinszkine´Kiss G, Kalkers LA, Soler Gamborena R, Dicke M, Hilker M (2005) Oviposition-induced plant cues: do they arrest Trichogramma wasps during host location? Entomol Exp Appl 115:207–215

    Article  Google Scholar 

  • Frey-Wyssling A (1959) Die pflanzliche Zellwand. Springer Verlag, Berlin

    Book  Google Scholar 

  • Gamarra H, Carhuapoma P, Mujica N, Kreuze J, Kroschel J (2016) Greenhouse whitefly, Trialeurodes vaporariorum (Westwood 1956). In: Kroschel J, Mujica N, Carhuapoma P, Sporleder M (eds) Pest distribution and risk atlas for Africa. Potential global and regional distribution and abundance of agricultural and horticultural pests and associated biocontrol agents under current and future climates. International Potato Center (CIP), Lima, pp 154–168. https://doi.org/10.4160/9789290604761-12

    Chapter  Google Scholar 

  • Gill RJ (1990) The morphology of whiteflies. In: Gerling D (ed) Whiteflies: their bionomics, pest status and management. Intercept Ltd Andover, Hants, pp 13–46

    Google Scholar 

  • Gorman K, Cahill M, Denholm I (1998) Response of European populations of the glasshouse whitefly, Trialeurodes vaporariorum, to conventional and novel insecticides. In: NN (ed) Brighton crop protection conference: pests & diseases.Volume 2: Proceedings of an international conference, Brighton, 16–19 November 1998, pp 491–496

  • Götte E, Sell P (2002) Biologische Schädlingsbekämpfung bei Schnittrosen unter Glas mit der “offenen Zucht von Aphidoletes aphidimyza (Rond.) and Getreideblattläusen” als Kernelement. Gesunde Pfl 54:81–85

    Google Scholar 

  • Grimaldi D, Engel MS (2005) The sucking insects: Hemiptera. In: Grimaldi D, Engel, MS (eds) Evolution of the insects. Cambridge University Press, New York, pp 287–330

    Google Scholar 

  • Guershon M, Gerling D (2001) Effect of foliar tomentosity on phenotypic plasticity in Bemisia tabaci (Hom., Aleyrodidae). J Appl Ent 125:449–453

    Article  Google Scholar 

  • Hasanuzzaman ATM, Islam MN, Zhang Y, Zhang C-Y, Liu T-X (2016) Leaf morphological characters an be a factor of intra-varietal preference of whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) among eggplant varieties. PLoS ONE 11:e0153880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassel MP, Southwood TRE (1978) Foraging strategies of insects. Ann Rev Ecol Syst 9:75–98

    Article  Google Scholar 

  • Hilker M (1994) Egg deposition and protection of eggs in Chrysomelidae. In: Jolivet PH, Cox ML, Petitpierre E (eds) Novel aspects of the biology of Chrysomelidae. Kluwer Academic Publishers, Netherlands, pp 263–276

    Chapter  Google Scholar 

  • Hilker M, Meiners T (2006) Early herbivore alert, insect eggs induce plant defense. J Chem Ecol 32:1379–1396. https://doi.org/10.1007/s10886-006-9057-4

    Article  CAS  PubMed  Google Scholar 

  • Hilker M, Rohfritsch O, Meiners T (2002) The plant´s response towards insect oviposition. In: Hilker M, Meiners T (eds) Chemoecology of insect eggs and egg deposition. Blackwell, Berlin, pp 205–234

    Google Scholar 

  • Hilker M, Stein C, Schroeder R, Varama M, Mumm R (2005) Insect egg deposition induces defence responses in Pinus sylvestris: characterisation of the elicitor. J Exp Biol 208:1849–1854. https://doi.org/10.1242/jeb.01578

    Article  PubMed  Google Scholar 

  • Hinton HE (1961) The structure and function of the egg-shell in the Nepidae (Hemiptera). J Ins Physiol 7:224–257

    Article  CAS  Google Scholar 

  • Hinton HE (1981) Biology of insect eggs, vol. I–III. Pergamon Press, Oxford

    Google Scholar 

  • Iida H, Kitamura T, Honda K-I (2009) Comparison of egg-hatching rate, survival rate and developmental time of the immature stage between B- and Q-biotypes of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) on various agricultural crops). Appl Entomol Zool 44:267–273

    Article  Google Scholar 

  • Jaenike J (1978) On optimal behavior in phytophagous insects. Theor Pop Biol 14:350–356

    Article  CAS  Google Scholar 

  • Janz N (2002) Evolutionary ecology of oviposition strategies. In: Hilker M, Meiners T (eds) Chemoecology of insect eggs and egg deposition. Blackwell, Berlin, pp 349–376

    Google Scholar 

  • Kenny JS (1958) Physiological condition of the host-plant and susceptibility to aphid attack. Entomol Exp Appl 1:50–65

    Article  Google Scholar 

  • Kiefer JS (2005) Wirtspräferenz von Trialeurodes vaporariorum (Westwood) (Homoptera, Aleyrodidae) für verschiedene Rosensorten. BSc Thesis, Fakultät Agrarwissenschaften Institut für Phytomedizin, Stuttgart, Universität Hohenheim, Germany

  • Kiefer J (2008) Die Verankerung des Eis von Trialeurodes vaporariorum (Westwood) (Homoptera, Aleyrodidae) im Wirtsgewebe. MSc Thesis, Fakultät Agrarwissenschaften Institut für Phytomedizin, Stuttgart, Universität Hohenheim, Germany

  • Knoll F (1914) Über die Ursache des Ausgleitens der Insektenbeine an wachsbedeckten Pflanzenteilen: ein Beitrag zur experimentellen Ökologie der Gattungen Iris, Cotyledon und Nepenthes. Jb Wiss Bot 54:448–497

    Google Scholar 

  • Lambert AL, McPherson RM, Sparks B (1995) Evaluation of fourteen soybean genotypes for resistance to two whitefly species (Homoptera: Aleyrodidae) in the greenhouse. J Entomol Sci 30:519–526

    Article  Google Scholar 

  • Lang A (2006) Auf den Grund gegangen. Würth Ratgeber Befestigungstechnik 2006:9–14

    Google Scholar 

  • Lauritsen K, Paulson GS (1998) A microscopic examination of whitefly (Homoptera: Aleyrodidae) egg pedicel insertion into host plant tissues. J Pennsylvania Acad Sci 71:99–103

    Google Scholar 

  • Lei H, van Lenteren JC, Xu RM (2001) Effects of plant tissue on the acceptance of four greenhouse vegetable host plants by the greenhouse whitefly: an electrical graph (EPG) study. Eur J Entomol 98:31–36

    Article  Google Scholar 

  • Li D, Huson MG, Graham LD (2008) Proteinaceous adhesive secretions from insects, and in particular the egg attachment glue of Opodiphthera sp. moths. Arch Insect Biochem Physiol 69:85–105. https://doi.org/10.1002/arch.20267

    Article  CAS  PubMed  Google Scholar 

  • Lindquist RK, Bauerle WL, Spadafora R (1972) Effect of the greenhouse whitefly on yields of greenhouse tomatoes. J Econ Entomol 65:1406–1408

    Article  CAS  PubMed  Google Scholar 

  • Lloyd L (1922) The control of the greenhouse whitefly (Asterochiton vaporariorum) with notes on its biology. Ann Appl Biol 9:1–32

    Article  Google Scholar 

  • Maliepaard C, Bas N, van Heusden S, Kos J, Pet G, Verkerk R, Vrielink R, Zabel P, Lindhout P (1995) Mapping of QTLs for glandular trichome densities and Trialeurodes vaporariorum (greenhouse whitefly) resistance in an F2 from Lycopersicon esculentum x L. hirsutum f. glabratum. Heredity 75:425–433

    Article  Google Scholar 

  • McDaniel T, Tosh CR, Gatehouse AMR, George D, Robson M, Brogan B (2016) Novel resistance mechanisms of a wild tomato against the glasshouse whitefly. Agron Sustain Dev 36:14

    Article  CAS  Google Scholar 

  • Meier U, Bleiholder H, Brumme H, Bruns E, Mehring B, Proll T, Wiegand J (2009) Phenological growth stages of roses (Rosa sp.): codification and description according to the BBCH scale. Ann Appl Biol 154:231–238

    Article  Google Scholar 

  • Meiners T, Hilker M (1997) Host location in Oomyzus gallerucae (Hymenoptera: Eulophidae), an egg parasitoid of the elm leaf beetle Xanthogaleruca luteola (Coleoptera: Chrysomelidae). Oecologia 112:87–93

    Article  PubMed  Google Scholar 

  • Morgan JM (1984) Osmoregulation and water stress in higher plants. Ann Rev Physiol 35:299–319

    Article  Google Scholar 

  • Nakazawa K, Hayashi H, Hosoda A, Naba K (1976) Studies on the biology and control of the greenhouse whitefly Trialeurodes vaporariorum Westwood 1. A tentative catalogue of host plants of Trialeurodes vaporariorum in Japan. Bull Hiroshima Prefectural Agric Exp St 37:57–61

    Google Scholar 

  • Noldus LPJJ, Rumei X, van Lenteren JC (1985) The parasite-host relationship between Encarsia formosa Gahan (Hymenoptera: Aphelinidae) and Trialeurodes vaporariorum (Westwood) (Homoptera: Aleyrodidae). XVII. Within-plant movement of adult greenhouse whiteflies. Z Ang Ent 100:494–503

    Article  Google Scholar 

  • Oana P, Pop D, Cuc G, Oros S, Oltean I, Bunescu H, Bodiș I (2007) Studies regarding the whitefly external morphology of the egg and larvae (Trialeurodes vaporariorum Westw.). Bull USAMV-CN 63:249–253

    Google Scholar 

  • Omer AD, Johnson MW, Tabashnik BE, Ullman DE (1993) Association between insecticide use and greenhouse whitefly (Trialeurodes vaporariorum Westwood) resistance to, insecticides in Hawaii. Pestic Sci 37:253–259

    Article  CAS  Google Scholar 

  • Ortega Arenas LD, Lagunes Tejeda A, Rodriguez Maciel JC, Rodriguez Hernandez C, Alatorre Rosas R, Barcenas Ortega NM (1998) Susceptibility to insecticides in adults of whitefly Trialeurodes vaporariorum (West.) (Homoptera. Aleyrodidae) from Tepoztlan, Morelos Mexico. Agrociencia 32:249–254

    Google Scholar 

  • Paulson GS, Beardsley JW (1985) Whitefly (Hemiptera: Aleyrodidae) egg pedicel insertion into host plant stomata. Ann Entomol Soc Am 78:506–508

    Article  Google Scholar 

  • Pijnakker J, Ramakers P (2009) Development of integrated pest management in greenhouse cut roses (in the Netherlands). Floricult Ornam Biotechnol 2009:117–120

    Google Scholar 

  • Pijnakker J, García Victoria N, Ramakers PMJ (2007) Predatory mites for biocontrol of the greenhouse whitefly, Trialeurodes vaporariorum in cut roses. Acta Hortic 751:259–264

    Article  Google Scholar 

  • Poinar GO Jr (1965) Observations on the biology and ovipositional habits of Aleurocybotus occiduus (Homoptera: Aleyrodidae) attacking grasses and sedges. Ann Ent Soc Am 58:618–620

    Article  Google Scholar 

  • Quaintance AL, Baker AC (1915) Classification of the Aleyrodidae. Government Printing Office, Washington, 114 pp

    Google Scholar 

  • R Core Team (2018) A language and environment for statistical computing. Version 3.5.0. R Foundation for Statistical Computing, Vienna

  • Raspel S, Götte E, Richter E, Klose F, Sell P (2006) Langzeitkosten des biologisch-integrierten Pflanzenschutzes mit Nützlingen in Schnittrosen. Nachrichtenbl Deut Pflanzenschutzd 58:174–180

    Google Scholar 

  • Roditakis NE (1990) Host plants of greenhouse whitefly Trialeurodes vaporariorum Westwood (Homoptera: Aleyrodidae) in Crete. Attractiveness and impact on whitefly life stages. Agric Ecosyst Environ 31:217–224

    Article  Google Scholar 

  • Roermund HJW, van Lenteren JC (1992) The parasite-host relationship between Encarsia formosa (Hymenoptera: Aphelinidae) and Trialeurodes vaporariorum (Homoptera: Aleyrodidae) XXXIV. Life-history parameters of the greenhouse whitefly, Trialeurodes vaporariorum as a function of host plant and temperature. Wageningen Agricultural University Papers, pp 1–35

  • Scherge M, Gorb SN (2001) Biological micro- and nanotribology. Nature’s solutions. Springer, Berlin

    Book  Google Scholar 

  • Slifer EH (1938) The formation and structure of a special water-absorbing area in the membranes covering the grasshopper egg. J Cell Sci s2–80:437–457

    Google Scholar 

  • Soria C, Sesé AIL, Gómez-Guillamón ML (1996) Resistance mechanisms of Cucumis melo var. agrestis against Trialeurodes vaporariorum and their use to control a closterovirus that causes a yellowing disease of melon. Plant Pathol 45:761–766

    Article  Google Scholar 

  • Southwood R (1986) Plant surfaces and insects-an overview. In: Juniper B, Southwood R (eds) Insects and the plant surface. Edward Arnold Publishers, London, pp 1–22

    Google Scholar 

  • Stork NE (1980) Role of waxblooms in preventing attachment to Brassicas by the mustard beetle Phaedon cochleariae. Entomol Exp Appl 28:100–107

    Article  Google Scholar 

  • Stork NE (1986) The form of plant waxes: a means of preventing insect attachment? In: Juniper B, Southwood R (eds) Insects and the plant surface. Edward Arnold Publishers, London, pp 346–347

    Google Scholar 

  • Strümpel H (1983) Homoptera (Pflanzensauger). In: Beier M, Fischer M, Helmcke J-G, Starck D, Wermuth H (eds) Handbook of zoology. A natural history of the phyla of the animal kingdom, vol IV, Arthropoda: Insecta, Part 28. Walter de Gruyter, Berlin

    Google Scholar 

  • Torre S, Fjeld T, Gislerød HR, Moe R (2003) Leaf anatomy and stomatal morphology of greenhouse roses grown at moderate of high air humidity. J Am Soc Hortic Sci 128:598–602

    Article  Google Scholar 

  • Toscano N, Zalom F, Bi J (2007) Greenhouse whitefly management. Calif Strawb Comm 2:1–4

    Google Scholar 

  • Tosh CR, Brogan B (2015) Control of tomato whiteflies using the confusion effect of plant odours. Agron Sustain Dev 35:183–183

    Article  Google Scholar 

  • Turnipseed SG (1977) Influence of trichome variations on populations of small phytophagous insects in soybean. Environ Entomol 6:815–817

    Article  Google Scholar 

  • van Lenteren JC, Noldus LPJJ (1990) Whitefly-plant relationships: behavioural and ecological aspects. In: Gerling D (ed) Whiteflies: their bionomics, pest status and management. Intercept Ltd Andover, Hants, pp 47–88

    Google Scholar 

  • van Boxtel W, Woets J, van Lenteren JC (1978) Determination of host-plant quality of eggplant (Solanum melongena L.), cucumber (Cucumis sativus L.), tomato (Lycopersicum esculentum L.) and paprika (Capsicum annuum L.) for the greenhouse whitefly (Trialeurodes vaporariorum) (Westwood) (Homoptera: Aleyrodidae). Mededelingen van de Faculteit Landbouwwetenschappen Rijksuniversiteit Gent 43:397–408

    Google Scholar 

  • van Sas J, Woets J, van Lenteren JC (1978) Determination of host-plant quality of gherkin (Cucumis sativus L.), melon (Cucumis melo L.) and gerbera (Gerbera jamesonii Hook) for the greenhouse whitefly Trialeurodes vaporariorum (Westwood) (Homoptera: Aleyrodidae). Mededelingen van de Faculteit Landbouwwetenschappen Rijksuniversiteit Gent 43:409–420

    Google Scholar 

  • van der Kamp RJ, van Lenteren JC (1981) The parasite-host relationship between Encarsia formosa Gahan (Hymenoptera: Aphelinidae) and Trialeurodes vaporariorum (Westwood) (Homoptera: Aleyrodidae). J Appl Entomol 92:149–159

    Google Scholar 

  • Voigt D, Gorb S (2010) Egg attachment of the asparagus beetle Crioceris asparagi to the crystalline waxy surface of Asparagus officinalis. Proc R Soc B 277:895–903. (https://doi.org/10.1098/rspb.2009.1706)

    Article  PubMed  Google Scholar 

  • Walker GP (1987) Probing and oviposition behavior of the bayberry whitefly (Homoptera: Aleyrodidae) on young and mature lemon leaves. Ann Entomol Soc Am 80:524–529

    Article  Google Scholar 

  • Walker GP (1988) The role of leaf cuticle and leaf age preference by bayberry whitefly (Homoptera: Aleyrodidae) on lemon. Ann Entomol Soc Am 81:365–369

    Article  Google Scholar 

  • Walker GP, Perring TM (1994) Feeding and oviposition behavior of whiteflies (Homoptera: Aleyrodidae) interpreted from AC electronic feeding monitor waveforms. Ann Entomol Soc Am 87:363–374

    Article  Google Scholar 

  • Wardlow LR, Ludlam FAB, French N (1972) Insecticide resistance in glasshouse whitefly. Nature 239:164–165

    Article  CAS  Google Scholar 

  • Weber H (1930) Biologie der Hemipteren. Eine Naturgeschichte der Schnabelkerfe. In: Schoenichen W (ed) Biologische Studienbücher XI, Verlag von Julius Springer, Berlin

    Chapter  Google Scholar 

  • Weber H (1931) Lebensweise und Umweltbeziehungen von Trialeurodes vaporariorum (Westwood) (Homoptera-Aleurodina). Erster Beitrag zu einer Monographie dieser Art. Zoomorphology 23:575–753

    Google Scholar 

  • Wigglesworth VB (1965) The principles of insect physiology, 6th edn. Methuen, London

    Google Scholar 

  • Willmer P (1986) Microclimatic effects on insects at the plant surface. In: Juniper B, Southwood R (eds) Insects and the plant surface. Edward Arnold Publishers, London, pp 65–80

    Google Scholar 

  • Wyss U (2006) Lebensweise und Entwicklung der weißen Fliegen Trialeurodes vaporariorum und Bemisia tabaci. Institute for Phytopathology, Videodokumentation Kiel. http://entofilm.com

  • Zhang G-F, Wan F-H (2012) Suitability changes with host leaf age for Bemisia tabaci B biotype and Trialeurodes vaporariorum. Environ Entomol 41:1125–1130

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Harald Schneller (Landwirtschaftliches Technologiezentrum Augustenberg LTZ, Karlsruhe, Germany; Department 3: Pflanzengesundheit, Futtermittel- und Saatgutuntersuchung, Referat 32: Pflanzenschutz—Ackerbau, Gartenbau, Biologischer Pflanzenschutz) encouraged the study and delivered preliminary observational results of greenhouse whiteflies in commercial cut rose production. Michael Reichert (Gärtnerei Reichert, Pettstadt, Germany) and Stefan Raab (Raab Rosen, Rockenberg/Oppershofen, Germany) kindly provided plant material and background knowledge of rose cultivars and breeding. Juliane Braun (consultative garden engineer, Hamburg, Germany), Fabian Gülk (Kordes Rosen, W. Kordes’ Söhne Rosenschulen GmbH & Co KG, Klein Offenseth-Sparrieshoop, Germany), and Alexander Letkow (Rosen Tantau Vertrieb GmbH & Co. KG, Uetersen, Germany) are acknowledged for valuable information about growing and breeding of cut roses. The first author thanks Michael Voigt (Zwickau/Sa., Germany) for constructive brainstorming.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dagmar Voigt.

Additional information

Handling Editor: Heikki Hokkanen.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 30983 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voigt, D., Schrameyer, K., Kiefer, J. et al. Anchoring of greenhouse whitefly eggs on different rose cultivars. Arthropod-Plant Interactions 13, 335–348 (2019). https://doi.org/10.1007/s11829-019-09680-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-019-09680-5

Keywords

Navigation