Skip to main content
Log in

Cleaning of gaseous hydrogen chloride in a syngas by spray-dried potassium-based solid sorbents

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

There are corrosive gases such as H2S and HCl in a coal- or biomass-derived syngas. HCl can be removed by Na2CO3 or K2CO3 at hot temperatures. Hot syngas cleaning has the advantage of improving thermal efficiency. We investigated HCl removal by spray-dried potassium-based solid sorbents which were originally developed for post-combustion CO2 capture. Both fresh and spent CO2 sorbents were tested to confirm the applicability as a sorbent for HCl cleaning. Saturation chlorine sorption capacity was measured using a fixed-bed reactor at a temperatures of 300–500 °C under an ambient pressure. Both fresh and spent CO2 sorbents showed saturation chlorine sorption capacity above 15 wt%. HCl removal performance of the sorbents was investigated in a micro fluidized-bed reactor and a bench-scale bubbling fluidized-bed reactor. HCl concentration was lowered from 150–900 ppmv to less than 5 ppmv and from 130–390 ppmv to less than 1 ppmv in a micro fluidized-bed reactor and in a bench-scale bubbling fluidized-bed reactor, respectively, at 300–540 °C and 20 bar. It could be concluded that both fresh and spent spray-dried potassium-based CO2 sorbents could be utilized as a disposable HCl sorbent for hot syngas cleaning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DOE/NETL advanced carbon dioxide capture R&D program: Technology update,” National Energy Technology Laboratory, U.S. Department of Energy (2010).

  2. Finkenrath, M. “Cost and Performance of Carbon Dioxide Capture from Power Generation,” OECD/IEA (2011).

    Book  Google Scholar 

  3. Gerdes, K. “Current and future technologies for gasification-based power generation,” DOE/NETL-2009/1389, National Energy Technology Laboratory (2009).

    Google Scholar 

  4. Preliminary Feasibility Analysis of RTI Warm Gas Cleanup (WGCU) Technology” Nexant (2007).

  5. S. H. Kang, S. J. Lee, W.H. Jung, S.W. Chung, Y. Yun, S.-H. Jo, Y. C. Park and J.-I. Baek, Korean J. Chem. Eng., 30(1), 67 (2013).

    Article  CAS  Google Scholar 

  6. Y. C. Park, S.-H. Jo, H.-J. Ryu, J.-H. Moon, C.-K. Yi, Y. Yoon and J.-I. Baek, Korean J. Chem. Eng., 29(12), 1812 (2012).

    Article  CAS  Google Scholar 

  7. S. Y. Jung, J. J. Park, S. J. Lee, H. K. Jun, S. C. Lee and J. C. Kim, Korean J. Chem. Eng., 27(5), 1428 (2010).

    Article  CAS  Google Scholar 

  8. S. Cheah, D. L. Carpenter and K. A. Magrini-Bair, Energy Fuels, 23(11), 5291 (2009).

    Article  CAS  Google Scholar 

  9. Y. Ohtsuka, N. Tsubouchi, T. Kikuchi and H. Hashimoto, Powder Technol., 190, 340 (2009).

    Article  CAS  Google Scholar 

  10. C. S. Chyang, Y.-L. Han and Z.-C. Zhong, Energy Fuels, 23, 3948 (2009).

    Article  CAS  Google Scholar 

  11. B. Coda, M. Aho, R. Berger and K.R.G. Hein, Energy Fuels, 15, 680 (2001).

    Article  CAS  Google Scholar 

  12. C. E. Weinell, P. J. Jensen, K. Dam-Johansen and H. Livbjerg, Ind. Eng. Chem. Res., 31, 164 (1992).

    Article  CAS  Google Scholar 

  13. J. Partanen, P. Backman, R. Backman and M. Hupa, Fuel, 84(12–13), 1674 (2005).

    CAS  Google Scholar 

  14. W. Duo, N. F. Kirkby, J. P.K. Seville, J.H.A. Kiel, A. Bos and H. Den Uil, Chem. Eng. Sci., 51, 2541 (1996).

    Article  CAS  Google Scholar 

  15. N. Verdone and P. De Filippis, Chem. Eng. Sci., 61, 7487 (2006).

    Article  CAS  Google Scholar 

  16. B. Dou, J. Gao, S.W. Baek and X. Sha, Energy Fuels, 17, 874 (2003).

    Article  CAS  Google Scholar 

  17. B. Dou, J. Gao and X. Sha, Fuel Process. Technol., 72, 23 (2001).

    Article  CAS  Google Scholar 

  18. G. N. Krishnan, R. P. Gupta, A. Canizales, S. Sheluka and R. Ayala, In: Schmidt, E., P. Gäng, T. Pilz and A. Dittler, Eds. “High Temperature Gas Cleaning” Karlsruhe: G. Braun Printconsult GmbH, 405 (1996).

  19. M. Nunokawa, M. Kobayashi and H. Shirai, In: Dittler, A, G. Hemmer and G. Kasper, Eds. “High Temperature Gas Cleaning, Vol. II” Karlsruhe: G. Braun Printconsult GmbH, 684 (1999).

  20. J. B. Lee, J.-I. Baek, C. K. Ryu, C. K. Yi, S. H. Jo and S. H. Kim, Ind. Eng. Chem. Res., 47, 4455 (2008).

    Article  CAS  Google Scholar 

  21. J. B. Lee, C. K. Ryu, J.-I. Baek, J. H. Lee, T. H. Eom and S. H. Kim, Ind. Eng. Chem. Res., 47, 4465 (2008).

    Article  CAS  Google Scholar 

  22. J.-I. Baek, C. K. Ryu, J. Ryu, J.-W. Kim, T. H. Eom, J. B. Lee and J. Yi, Energy Fuels, 24, 5757 (2010).

    Article  CAS  Google Scholar 

  23. J. B. Lee, T. H. Eom, B. S. Oh, J.-I. Baek, J. Ryu, W. S. Jeon, Y. H. Wi and C. K. Ryu, Energy Procedia, 4, 1494 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeom-In Baek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baek, JI., Eom, T.H., Lee, J.B. et al. Cleaning of gaseous hydrogen chloride in a syngas by spray-dried potassium-based solid sorbents. Korean J. Chem. Eng. 32, 845–851 (2015). https://doi.org/10.1007/s11814-014-0256-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0256-3

Keywords

Navigation