Skip to main content

Advertisement

Log in

Roux en Y Gastric Bypass Increases Ethanol Intake in the Rat

  • Animal Research
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Roux en Y gastric bypass (RYGB) surgery is currently the most effective therapy employed to treat obesity and its associated complications. In addition to weight loss and resolution of metabolic syndromes, such as diabetes, the RYGB procedure has been reported to increase alcohol consumption in humans. Using an outbred rodent model, we demonstrate that RYGB increases postsurgical ethanol consumption, that this effect cannot be explained solely by postsurgical weight loss and that it is independent of presurgical body weight or dietary composition. Altered ethanol metabolism and postsurgical shifts in release of ghrelin were also unable to account for changes in alcohol intake. Further investigation of the potential physiological factors underlying this behavioral effect identified altered patterns of gene expression in brain regions associated with reward following RYGB surgery. These findings have important clinical implications as they demonstrate that RYGB surgery leads directly to increased alcohol intake in otherwise alcohol nonpreferring rat and induces neurobiological changes in brain circuits that mediate a variety of appetitive behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Orci L, Chilcott M, Huber O. Short versus long Roux-limb length in Roux en gastric bypass surgery for the treatment of morbid and super obesity: a systematic review of the literature. Obes Surg. 2011;21(6):797–804.

    Article  PubMed  Google Scholar 

  2. Ertelt TW, Mitchell JE, et al. Alcohol abuse and dependence before and after bariatric surgery: a review of the literature and report of a new data set. Surg Obes Relat Dis. 2008;4(5):647–50.

    Article  PubMed  Google Scholar 

  3. Kalarchian MA, Marcus MD, et al. Psychiatric disorders among bariatric surgery candidates: relationship to obesity and functional health status. Am J Psychiatry. 2007;164(2):328–34. quiz 374.

    Article  PubMed  Google Scholar 

  4. Carr KD. Augmenting of drug reward by chronic food restriction: behavioral evidence and underlying mechanisms. Physiol Behav. 2002;76(3):353–64.

    Article  PubMed  CAS  Google Scholar 

  5. Engleman EA, Ding ZM, et al. Ethanol is self-administered into the nucleus accumbens shell, but not the core: evidence of genetic sensitivity. Alcohol Clin Exp Res. 2009;33(12):2162–71.

    Article  PubMed  CAS  Google Scholar 

  6. Lawrence AJ, Cowen MS, et al. The orexin system regulates alcohol-seeking in rats. Br J Pharmacol. 2006;148(6):752–9.

    Article  PubMed  CAS  Google Scholar 

  7. Dunn JP, Cowan RL, et al. Decreased dopamine type 2 receptor availability after bariatric surgery: preliminary findings. Brain Res. 2010;1350:123–30.

    Article  PubMed  CAS  Google Scholar 

  8. Volkow N, Wang GJ, Telang F, et al. Profound decreases in dopamine release in striatum in detoxified alcoholics: possible orbitofrontal involvement. J Neurosci. 2007;27(46):12700–6.

    Article  PubMed  CAS  Google Scholar 

  9. Cummings DE, Weigle DS, et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med. 2002;346(21):1623–30.

    Article  PubMed  Google Scholar 

  10. Shin AC, Zheng H, Townsend RL, et al. Meal-induced hormone responses in a rat model of Roux en Y gastric bypass surgery. Endocrinology. 2010;151(4):1588–97.

    Article  PubMed  CAS  Google Scholar 

  11. Dickson SL, Egecioglu E, Landgren S, et al. The role of the central ghrelin system in reward from food and chemical drugs. Mol Cell Endocrinol. 2011;340(1):80–7.

    Article  PubMed  CAS  Google Scholar 

  12. Jerlhag E, Egecioglu E, et al. Requirement of central ghrelin signaling for alcohol reward. Proc Natl Acad Sci U S A. 2009;106(27):11318–23.

    Article  PubMed  CAS  Google Scholar 

  13. Suzuki J, Haimovici F, Chang G. Alcohol use disorders after bariatric surgery. Obes Surge. 2012;22(2):201–7.

    Article  Google Scholar 

  14. Wang GJ, Volkow ND, Logan J, et al. Brain dopamine and obesity. Lancet. 2001;357(9253):354–7.

    Article  PubMed  CAS  Google Scholar 

  15. Zheng H, Shin AC, et al. Meal patterns, satiety, and food choice in a rat model of Roux-en-Y gastric bypass surgery. Am J Physiol Regul Integr Comp Physiol. 2009;297(5):R1273–82.

    Article  PubMed  CAS  Google Scholar 

  16. Carroll ME, France CP, Meisch RA. Food deprivation increases oral and intravenous drug intake in rats. Science. 1979;20(205):319–21.

    Article  Google Scholar 

  17. Klockhoff H, Naslund I, et al. Faster absorption of ethanol and higher peak concentration in women after gastric bypass surgery. Br J Clin Pharmacol. 2002;54(6):587–91.

    Article  PubMed  CAS  Google Scholar 

  18. Woodward GA, Downey J, Hernandez-Boussard T, et al. Impaired alcohol metabolism after gastric bypass surgery: a case-cross over trial. J Am Coll Surg. 2011;212(2):209–14.

    Article  Google Scholar 

  19. Korner J, Inabnet W, Febres G, et al. Prospective study of gut hormone and metabolic changes after adjustable gastric banding and Roux en Y gastric bypass. Int J Obes. 2009;33(7):786–95.

    Article  CAS  Google Scholar 

  20. Martins C, Kjelstrup L, Mostad IL, et al. Impact of sustained weight loss achieved through Roux en Y gastric bypass or a lifestyle intervention on ghrelin, obestatin and ghrelin/obestatin ratio in morbidly obese patients. Obes Surg. 2011;21(6):751–8.

    Article  PubMed  Google Scholar 

  21. Boileau I, Assaad J-M, et al. Alcohol promotes dopamine release in the human nucleus accumbens. Synapse. 2003;49(4):226–31.

    Article  PubMed  CAS  Google Scholar 

  22. Koob GF, Roberts AJ, Schulteis G, et al. Neurocircuitry targets in ethanol reward and dependence. Alcohol Clin Exp Res. 1998;22:3–9.

    Article  PubMed  CAS  Google Scholar 

  23. Thanos PK, Taintor NB, et al. DRD2 gene transfer into the nucleus accumbens core of the alcohol preferring and nonpreferring rats attenuates alcohol drinking. Alcohol Clin Exp Res. 2004;28(5):720–8.

    Article  PubMed  CAS  Google Scholar 

  24. Narita M, Nagumo Y, et al. Direct involvement of orexinergic systems in the activation of the mesolimbic dopamine pathway and related behaviors induced by morphine. J Neurosci. 2006;26(2):398–405.

    Article  PubMed  CAS  Google Scholar 

  25. Cabeza de Vaca S, Carr KD. Food restriction enhances the central rewarding effects of abused drugs. J Neurosci. 1998;18(18):7502–10.

    PubMed  CAS  Google Scholar 

  26. Tschoep ML, Smiley DL, Heiman M. Ghrelin induces adiposity in rodents. Nature. 2000;407(6806):908–13.

    Article  Google Scholar 

  27. Barazzoni R, Zanetti M, Nagliati C, et al. Gastric bypass does not normalize obesity-related changes in ghrelin profile and leads to higher acylated ghrelin fraction. Obesity. 2012. doi:10.1038/oby.2012.149.

  28. Chambers AP, Kirchner H, Wilson-Perez HE, et al. The effects of vertical sleeve gastrectomy in rodents are ghrelin independent. Gastroenterology. 2013. doi:10.1053/j.gastro.2012.09.009.

  29. Kurose T, Ueta Y, Yamamoto Y, et al. Effects of restricted feeding on the activity of hypothalamic orexin (OX)-A containing neurons and OX2 receptor mRNA in the paraventricular nucleus of rats. Regul Pept. 2002;104(1–3):141–5.

    Google Scholar 

  30. Schneider ER, Rada P, Darby RD, et al. Orexigenic peptides and alcohol intake: differential effects of orexin, galanin and ghrelin. Alcohol Clin Exp Res. 2007;31(11):1858–65.

    Article  PubMed  CAS  Google Scholar 

  31. Jupp B, Krstew E, Dezsi G, et al. Discrete cue-conditioned alcohol seeking after protracted abstinence: pattern of neuronal activation and involvement of orexin R1 receptors. Br J Pharmacol. 2011;162(4):880–9.

    Article  PubMed  CAS  Google Scholar 

  32. Aston-Jones G, Smith RJ, Sartor GC, et al. Lateral hypothalamic orexin/hypocretin neurons: a role in reward-seeking and addiction. Brain Res. 2010;1341C:74.

    Article  Google Scholar 

  33. Voorhees CM, Cunningham CL. Involvement of the orexin/hypocretin system in ethanol conditioned place preference. Psychopharmacol. 2011;214(4):805–18.

    Article  CAS  Google Scholar 

  34. Schoblock JR, Welty N, Alusio L, et al. Selective blockade of the orexin-2 receptor attenuates ethanol self-administration, place preference and reinstatement. Psychopharmacol. 2011;215(1):191–203.

    Article  Google Scholar 

  35. Steele KE, Prokopowicz GP, et al. Alterations of central dopamine receptors before and after gastric bypass surgery. Obes Surg. 2010;20(3):369–74.

    Article  PubMed  Google Scholar 

  36. Fadel J, Deutch AY. Anatomical substrates of orexin-dopamine interactions: lateral hypothalamic projections to the ventral tegmental area. Neuroscience. 2002;111:379–87.

    Article  PubMed  CAS  Google Scholar 

  37. Volkow ND, Wang GJ, Fowler JS, et al. Prediction of reinforcing responses to psychostimulants in humans by brain dopamine D2 receptor levels. Am J Psychiatry. 1999;156(9):1440–3.

    PubMed  CAS  Google Scholar 

  38. Heinz A, Siessmeier T, Wrase J, et al. Correlation between dopamine D(2) receptors in the ventral striatum and central processing of alcohol cues and craving. Am J Psychiatry. 2004;161(10):1783–9.

    Article  PubMed  Google Scholar 

  39. Bulwa ZB, Sharlin JA, Clark PJ, et al. Increased consumption of ethanol and sugar water in mice lacking the dopamine D2 long receptor. Alcohol. 2011;45(7):631–9.

    Article  PubMed  CAS  Google Scholar 

  40. Volkow ND, Wang GJ, Maynard L, et al. Effects of alcohol detoxification on dopamine D2 receptors in alcoholics: a preliminary study. Psychiatry Res. 2002;116(3):163–72.

    Article  PubMed  CAS  Google Scholar 

  41. Volkow N, Wang GJ, Begleiter H, et al. High levels of dopamine D2 receptors in unaffected members of alcoholic families: possible protective factors. Arch Gen Psychiatry. 2006;63(9):999–1008.

    Article  PubMed  CAS  Google Scholar 

  42. Volkow ND, Wang GJ, Fowler JS, et al. Overlapping neuronal circuits in addiction and obesity: evidence of systems pathaology. Phils Trans R Soc Lond B Biol Sci. 2008;363(1507):3191–200.

    Article  Google Scholar 

  43. Hajnal A, Norgren R. Repeated access to sucrose augments dopamine turnover in the nucleus accumbens. Neuroreport. 2002;13:2213–6. doi:10.1097/00001756-200212030-00010.

    Article  PubMed  CAS  Google Scholar 

  44. Park TH, Carr KD. Neuroanatomical pattern of fos-like immunoreactivity induced by a palatable meal and meal-paired environment in saline- and naltrexone-treated rats. Brain Res. 1998;805(1–2):169–80.

    Article  PubMed  CAS  Google Scholar 

  45. Geiger BM, Haburcak M, Avena NM, et al. Deficits of mesolimbic dopamine transmission in rat dietary obesity. Neuroscience. 2009;159(4):1193–9.

    Article  PubMed  CAS  Google Scholar 

  46. Rada P, Bocarsly ME, Barson JR, et al. Reduced accumbens dopamine in Sprague–Dawley rats prone to overeating a fat-rich diet. Physiol Behav. 2009;101(3):394–400.

    Article  Google Scholar 

  47. Bello EP, Mateo Y, Gelman DM, et al. Cocaine supersensitivity and enhanced motivation for reward in mice lacking dopamine D2 autoreceptors. Nat Neurosci. 2011;14(8):1033–8.

    Article  PubMed  CAS  Google Scholar 

  48. Wiederman MW, Pryor T. Substance use among women with eating disorders. Int J Eat Disord. 1996;20:163–8. doi:10.1002/(SICI)1098-108X(199609)20:2_163::AID-EAT6_3.0.CO;2-E.

    Article  PubMed  CAS  Google Scholar 

  49. Puhl M, Cason A, Wojnicki F, et al. A history of bingeing on fat enhances cocaine seeking and taking. Behav Neurosci. 2011;125(6):930–42.

    Article  PubMed  CAS  Google Scholar 

  50. Bocchieri LE, Meana M, Fisher BL. A review of psychosocial outcomes of surgery for morbid obesity. J Psychosom Res. 2002;52(3):155–65.

    Article  PubMed  Google Scholar 

  51. Herpertz S, Kielmann R, Wolf A, et al. Does obesity surgery improve psychosocial functioning? A systematic review. Int J Obesity. 2003;27(11):1300–14.

    Article  CAS  Google Scholar 

  52. van Hout GC, Boekestein P, Fortuin FA, et al. Psychosocial functioning following bariatric surgery. Obes Surg. 2006;16(6):787–94.

    Article  PubMed  Google Scholar 

  53. Sarwer D, Fabricatore A, Jones-Corneille L, et al. Psychological issues following bariatric surgery. Primary Psychiatry. 2008;8:50–5.

    Google Scholar 

  54. Abbey A, Smith M. Psychosocial factors that influence American adults alcohol consumption. Drug Alcohol Abuse Rev. 1992;3:1–31.

    Google Scholar 

  55. Koob GF, Sanna P, Bloom F. Neuroscience of addiction. Neuron. 1998;21:467–76.

    Article  PubMed  CAS  Google Scholar 

  56. Lawrence AJ. Regulation of alcohol-seeking by orexin (hypocretin) neurons. Brain Res. 2010;1314:124–9.

    Article  PubMed  CAS  Google Scholar 

  57. Hodge CW, Samson HH, Chappelle AM. Alcohol self-administration: further examination of the role of dopamine receptors in the nucleus accumbens. Alcohol Clin Exp Res. 1997;21:1083–91.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by a private research grant from Ethicon Endo-Surgery Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon F. Davis.

Additional information

Jon F. Davis and Andrea L. Tracy contributed equally to the preparation of the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, J.F., Tracy, A.L., Schurdak, J.D. et al. Roux en Y Gastric Bypass Increases Ethanol Intake in the Rat. OBES SURG 23, 920–930 (2013). https://doi.org/10.1007/s11695-013-0884-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-013-0884-4

Keywords

Navigation