Skip to main content
Log in

Scale Formation by Calcium-Precipitating Bacteria in Cooling Water System

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

Scale formation in heat exchanger tube reduces heat transfer efficiency and enhances corrosion. Scale formation in cooling water is due to many factors including pH, temperature, salt etc. In this study, microbiological aspects of scale formation and their role on corrosion are presented. The calcium precipitating bacteria (CPB) were isolated from the scales collected from heat exchanger tube in a gas turbine power station using B4 medium. The dominant CPB was isolated and identified using 16s rRNA sequencing, and the phylogenetic analysis reveals that the predominant bacteria were Serratia sp. (FJ973548), Enterobacter sp. (FJ973549, FJ973550), and Enterococcus sp. (FJ973551). The nature of crystal deposits of bacteria has been explained. The corrosion behavior of CPB on mild steel was studied by the electrochemical method (polarization and impedance), and the biogenic calcium scale formations in CPB were analyzed by XRD method. The scale formation by bacteria reduced the cathodic corrosion current, where resistance was lower in the presence of bacteria. It is claimed that the CPB is one of the causative factor for scale formation and corrosion in cooling water system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Castanier, S., LeMetayer-Levrel, G., Perthuisot, J.P.: Ca-carbonates precipitation and limestone genesis—the microbiogeologist point of view. Sedim. Geol. 126, 9–23 (1999)

    Article  CAS  Google Scholar 

  2. Erlich, H.L.: Geomicrobiology: its significance for geology. Earth Sci. Rev 45, 45–60 (1998)

    Article  ADS  Google Scholar 

  3. Kile, D.E., Eberl, D.D., Hoch, A.R.V., Reddy, M.M.: An assessment of calcite crystal growth mechanisms based on crystal size distributions. Geochim. Cosmochim. Acta 64, 2937–2950 (2000)

    Article  CAS  ADS  Google Scholar 

  4. Beveridge, T.J., Meloche, J.D., Fyfe, W.S., Murray, R.G.E.: Diagenesis of metals chemically complexed to bacteria: laboratory formation of metal phosphates, sulfides, and organic condensates in artificial sediments. Appl. Environ. Microbiol. 45, 1094–1108 (1983)

    CAS  PubMed  Google Scholar 

  5. Ghiorse, W.C.: Biology of iron- and manganese-depositing bacteria. Annu. Rev. Microbiol. 38, 515–550 (1984)

    CAS  PubMed  Google Scholar 

  6. Knoll, A.H., Swett, K.: Calcareous deposition during the late Proterozoic era: an example from Spitsbergen. Am. J. Sci. 141, 104–132 (1990)

    Google Scholar 

  7. Ruiz, C., Monteoliva-Sanches, M., Huertas, F., Ramos-Cormenzana, A.: Calcium carbonate precipitation by several species of Myxococcus. Chemosphere 17, 835–838 (1988)

    Article  CAS  Google Scholar 

  8. Rivadeneyra, M.A., Delgado, R., Del Moral, A., Ferrer, R.M., Ramos-Cormenzana, A.: Precipitation of calcium carbonate by Vibrio spp. from an inland saltern. FEMS Microbiol. Ecol 13, 197–204 (1994)

    Article  CAS  Google Scholar 

  9. Kajander, E.O., Ciftcioglu, N.: Nanobacteria : an alternative mechanism for pathogenic intra and extracellular calcification and stone formation. Proc. Natl. Acad. Sci. USA 95, 8274–8279 (1998)

    Article  CAS  ADS  PubMed  Google Scholar 

  10. Folk, R.: SEM imaging of bacteria and nanobacteria in carbonate sediments and rocks. J. Sedim. Petrol. 63, 990–999 (1993)

    Google Scholar 

  11. Liu, T., Li, X., Wang, H., Sun, X.: Formation process of mixed fouling of microbe and CaCO3 in water systems. Chem. Eng. J. 88, 249–254 (2002)

    Article  CAS  Google Scholar 

  12. Gollapudi, U.K., Knutson, C.L., Bang, S.S., Islam, M.R.: A new method for controlling leaching through permeable channels. Chemosphere 30, 695–705 (1995)

    Article  CAS  Google Scholar 

  13. Douglas, S., Beveridge, T.J.: Mineral formation by bacteria in natural microbial communities. FEMS. Microbiol. Ecol. 26, 79–88 (1998)

    Article  CAS  Google Scholar 

  14. Yates, K.K., Robbins, L.L.: Radioisotope tracer studies of inorganic carbon and Ca in microbiologically derived CaCO3. Geochim. Cosmochim. Acta 63, 129–136 (1999)

    Article  CAS  ADS  Google Scholar 

  15. Ferrer, R.M., Quevedo-Sarmiento, J., Rivadeneyra, M.A., Bejar, V., Delgado, R., Ramos-Cormenzana, A.: Calcium carbonate precipitation by two groups of moderately halophilic microorganisms at different temperatures and salt concentrations. Curr. Microbiol. 17, 221–227 (1988)

    Article  CAS  Google Scholar 

  16. Stocks-Fischer, S., Galinat, J.K., Bang, S.S.: Microbiological precipitation of CaCO3. Soil Biol. Biochem. 31, 1563–1571 (1999)

    Article  CAS  Google Scholar 

  17. Hammes, F., Verstraete, W.: Key roles of pH and calcium metabolism in microbial carbonate precipitation. Rev. Environ. Sci. Biotechnol. 1, 3–7 (2002)

    Article  CAS  Google Scholar 

  18. Baskar, S., Baskar, R., Mauclaire, L., Mckenzie, A.J.: Microbially induced calcite precipitation in culture experiments: possible origin for stalactites in Sahastradhara caves, Dehradun, India. Curr. Sci. 90, 58–64 (2006)

    CAS  Google Scholar 

  19. Chen, L., Shen, Y., Xie, A., Huang, B., Jia, R., Guo, R., Tang, W.: Bacteria-mediated synthesis of metal carbonate minerals with unusual morphologies and structures. Cryst. Growth Des. 9, 743–754 (2009)

    Article  CAS  Google Scholar 

  20. Ercole, C., Cacchio, P., Botta, A.L., Centi, V., Lepidi, A.: Bacterially induced mineralization of calcium carbonate: the role of exopolysaccharides and capsular polysaccharides. Microsc. Microanal. 13, 42–50 (2007)

    Article  CAS  ADS  PubMed  Google Scholar 

  21. Sone Eli, D., Weiner, S., Addadi, L.: Biomineralization of limpet teeth: a cryo-TEM study of the organic matrix and the onset of mineral deposition. J. Struct. Biol. 158, 428–444 (2007)

    Article  CAS  PubMed  Google Scholar 

  22. Holt, J.G., Kreig, N.R., Sneath, P.H.A., Stanely, J.T.: In: Williams, S.T. (ed.) Bergey’s Manual of Determinative Bacteriology. Williams and Wilkins, Baltimore (1994)

    Google Scholar 

  23. Marmur, J.: A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol. 3, 208 (1961)

    Article  CAS  Google Scholar 

  24. Reddy, G.S.N., Aggarwal, R.K., Matsumoto, G.I., Shivaji, S.: Arthrobacter flavus sp. nov., a psychrophilic bacterium isolated from a pond in McMurdo Dry Valley, Antarctica. Int. J. Syst. Evol. Microbiol. 50, 1553 (2000)

    CAS  PubMed  Google Scholar 

  25. Kimura, M.: A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111 (1980)

    Article  CAS  PubMed  Google Scholar 

  26. Felsentein, J.: PHYLIP (Phylogeny Inference Package) Version 3.5c. Department of Genetics, University of Washington, Seattle, USA (1993)

  27. Morita, R.Y.: Calcite precipitation by marine bacteria. Geomicrobiol. J. 2, 63–82 (1980)

    Article  CAS  Google Scholar 

  28. Boquet, E., Boronat, A., Ramos-Cormenzana, A.: Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature (London) 246, 527–529 (1973)

    Article  ADS  Google Scholar 

  29. Kramer, G., Klingler, H.C., Steiner, G.E.: Role of bacteria in the development of kidney stones. Curr. Opin. Urol. 10, 35–38 (2000)

    Article  CAS  PubMed  Google Scholar 

  30. McKay, D.S., Gibson, E.K., Thomas-Keprta, K.L., Vali, H., Romanek, C.S., Clemett, S.J., Chillier, X.D., Maechling, C.R., Zare, R.N.: Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science 273, 924–930 (1996)

    Article  CAS  ADS  PubMed  Google Scholar 

  31. Vali, H., McKee, M.D., Çiftçioglu, N., Sears, K., Plows, F., Chevet, E., Ghiabi, P., Plavsic, M., Kajander, E.O., Zare, R.N.: Nanoforms: a new type of protein-associated mineralization. Geochim. Cosmochim. Acta 65, 63–74 (2001)

    Article  CAS  ADS  Google Scholar 

  32. Fujita, Y., Ferris, E.G., Lawson, R.D., Colwell, F.S., Smith, R.W.: Calcium carbonate precipitation by ureolytic subsurface bacteria. Geomicrobiol. J. 17, 305–318 (2000)

    Article  CAS  Google Scholar 

  33. Braissant, O., Verrecchia, E.P., Aragno, M.: Is the contribution of bacteria to terrestrial carbon budget grately understimated? Nat. Sci. (Naturwissenschaften) 89, 366–370 (2002). German

    Article  CAS  ADS  Google Scholar 

  34. Knorre, H., Krumbein, W.: Bacterial calcification. In: Riding, R.R., Awramik, S.M. (eds.) Microbial Sediments, pp. 25–31. Springer-Verlag, Berlin (2000)

  35. McConnaughey, T.A., Whelan, F.F.: Calcification generates protons for nutrient an bicarbonate uptake. Earth Sci. Rev. 42, 95–117 (1997)

    Article  CAS  ADS  Google Scholar 

  36. Lian, B., Hu, Q., Chen, J., Ji, J., Teng, H.H.: Carbonate biomineralization induced by soil bacterium Bacillus megaterium. Geochim. Cosmochim. Acta 70, 5522–5535 (2006)

    Article  CAS  ADS  Google Scholar 

  37. Tourney, J., Ngwenya, B.T.: Bacterial extracellular polymeric substances (EPS) mediate CaCO3 morphology and polymorphism. Chem. Geol. 262, 138–146 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Mr. R. Ravishanker and Miss. S. Krithika of Instrumentation Division, CECRI, for their assistance in the utilization of SEM and XRD facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Maruthamuthu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maruthamuthu, S., Dhandapani, P., Ponmariappan, S. et al. Scale Formation by Calcium-Precipitating Bacteria in Cooling Water System. J Fail. Anal. and Preven. 10, 416–426 (2010). https://doi.org/10.1007/s11668-010-9377-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-010-9377-0

Keywords

Navigation