Skip to main content

Advertisement

Log in

Morphology and Mechanical, Corrosive, and Antibacterial Behaviors of Indirectly Extruded Zn-0.05wt.%Mg-(0.5, 1 wt.%)Ag Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

A Correction to this article was published on 23 October 2019

This article has been updated

Abstract

Biodegradable Zn-0.05Mg-(0.5, 1 wt.%) Ag alloy was manufactured by indirectly extruding the alloy ingot at 200 °C with an extrusion ratio of 16:1. Dynamic recrystallization took place during the extrusion process, leading to the formation of equiaxed crystals with twins in both cross-sectional and longitudinal direction. There was no detectable Ag-related phase present except the Mg2Zn11 in the alloys. Tensile strength was increased with an increase in Ag content, reaching 202 MPa when Ag content is 1 wt.%. As-extruded Zn-0.05Mg-0.5Ag showed better corrosion performance with a low corrosion current density of 2.2 A/cm2 and low corrosion rate of 0.15 mm/year. The antibacterial property improved for both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) by addition of Ag. The antibacterial rates were more than 99% when Ag content is up to 1 wt.%. The biodegradable Zn-Mg-Ag alloys with high antibacterial behavior show great potential in medical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 23 October 2019

    The article “Morphology and Mechanical, Corrosive, and Antibacterial Behaviors of Indirectly Extruded Zn-0.05 wt.%Mg-(0.5, 1 wt.%)Ag Alloys”, written by C. Xiao, D. W. Zhao, Q. Sun, Y. Su, D. P. Cui, X. Z. Zhang, X. L. Dong, H. X. Wang, F. Wang, Y. P. Ren, and G. W. Qin, was originally published electronically on the publisher’s internet portal (currently SpringerLink) on 11 September 2019 with open access. With the author(s)’ decision to step back from Open Choice, the copyright of the article changed in October 2019 to © ASM International 2019 and the article is forthwith distributed under the terms of copyright.

References

  1. P.K. Bowen, J. Drelich, and J. Goldman, Zinc Exhibits Ideal Physiological Corrosion Behavior for Bioabsorbable Stents, Adv. Mater., 2013, 25(18), p 2577–2582

    CAS  Google Scholar 

  2. G.K. Levy, J. Goldman, and E. Aghion, The Prospects of Zinc as a Structural Material for Biodegradable Implants—A Review Paper, Metals, 2017, 7(10), p 402

    Google Scholar 

  3. X. Liu, J. Sun, K. Qiu, Y. Yang, Z. Pu, L. Li, and Y. Zheng, Effects of Alloying Elements (Ca and Sr) on Microstructure, Mechanical Property and In Vitro Corrosion Behavior of Biodegradable Ternary Zn-1.5Mg Alloy, J. Alloys Compd., 2016, 664, p 444–452

    CAS  Google Scholar 

  4. S.Y. Liu, D. Kent, N. Doan, M. Dargusch, and G. Wang, Effects of Deformation Twinning on the Mechanical Properties of Biodegradable Zn-Mg Alloys, Bioact. Mater., 2019, 4(1), p 8–16

    Google Scholar 

  5. H.B. Gong, K. Wang, R. Strich, and J.G. Zhou, In vitro Biodegradation Behavior, Mechanical Properties, and Cytotoxicity of Biodegradable Zn–Mg alloy, J. Biomed. Mater. Res. B Appl. Biomater., 2015, 130(8), p 1632–1640

    Google Scholar 

  6. H.F. Li, H.T. Yang, Y.F. Zheng, F.Y. Zhou, K.J. Qiu, and X. Wang, Design and Characterizations of Novel Biodegradable Ternary Zn-Based Alloys with IIA Nutrient Alloying Elements Mg, Ca and Sr, Mater. Des., 2015, 83, p 95–102

    CAS  Google Scholar 

  7. Z.B. Tang, J.L. Niu, H. Huang, H. Zhang, J. Pei, J.M. Ou, and G.Y. Yuan, Potential Biodegradable Zn-Cu Binary Alloys Developed for Cardiovascular Implant Applications, J. Mech. Behav. Biomed. Mater., 2017, 72, p 182–191

    CAS  Google Scholar 

  8. Z.B. Tang, H. Huang, J.L. Niu, L. Zhang, H. Zhang, J. Pei, J.Y. Tan, and G.Y. Yuan, Design and Characterizations of Novel Biodegradable Zn-Cu-Mg Alloys for Potential Biodegradable Implants, Mater. Des., 2017, 117, p 84–94

    CAS  Google Scholar 

  9. J. Kubásek, D. Vojtěch, E. Jablonská, I. Pospíšilová, J. Lipov, and T. Ruml, Structure, Mechanical Characteristics and In Vitro Degradation, Cytotoxicity, Genotoxicity and Mutagenicity of Novel Biodegradable Zn–Mg Alloys, Mater. Sci. Eng. C, 2016, 58, p 24–35

    Google Scholar 

  10. X. Liu, J. Sun, F. Zhou, Y. Yang, R. Chang, K. Qiu, Z. Pu, L. Li, and Y. Zheng, Micro-Alloying with Mn in Zn-Mg Alloy for Future Biodegradable Metals Application, Mater. Des., 2016, 94, p 95–104

    CAS  Google Scholar 

  11. M.S. Dambatta, S. Izman, D. Kurniawan, and H. Hermawan, Processing of Zn-3Mg Alloy by Equal Channel Angular Pressing for Biodegradable Metal Implants, J. King Saud Univ. Sci., 2017, 29(4), p 455–461

    Google Scholar 

  12. S.N. Sun, Y.P. Ren, L.Q. Wang, B. Yang, and G.W. Qin, Room Temperature Quasi-Superplasticity Behavior of Backward Extruded Zn–15Al Alloys, Mater. Sci. Eng. A, 2016, 676, p 336–341

    CAS  Google Scholar 

  13. H.L. Jin, S. Zhao, R. Guillory, P.K. Bowen, Z.Y. Yin, A. Griebel, J. Schaffer, E.J. Earley, J. Goldman, and J.W. Drelich, Novel High-Strength, Low-Alloys Zn-Mg (< 0.1 wt.%Mg) and Their Arterial Biodegradation, Mater. Sci. Eng. C, 2018, 84, p 67–79

    CAS  Google Scholar 

  14. N. Hadrup and H.R. Lam, Oral Toxicity of Silver Ions, Silver Nanoparticles and Colloidal Silver—A Review, Regul. Toxicol. Pharmacol., 2014, 68(1), p 1–7

    CAS  Google Scholar 

  15. G. Grass, C. Rensing, and M. Solioz, Metallic Copper as an Antimicrobial Surface, Appl. Environ. Microb., 2011, 77(5), p 1541–1547

    CAS  Google Scholar 

  16. W.K. Jung, H.C. Koo, K.W. Kim, S. Shin, S.H. Kim, and Y.H. Park, Antibacterial Activity and Mechanism of Action of the Silver Ion in Staphylococcus aureus and Escherichia coli, Appl. Environ. Microb., 2008, 74(7), p 2171–2178

    CAS  Google Scholar 

  17. B.B. Zhang, Y.F. Zheng, and Y. Liu, Effect of Ag on the Corrosion Behavior of Ti–Ag Alloys in Artificial Saliva Solutions, Dent. Mater., 2009, 25(5), p 672–677

    Google Scholar 

  18. E.L. Zhang, X.Y. Wang, M. Chen, and B. Hou, Effect of the Existing Form of Cu Element on the Mechanical Properties, Bio-Corrosion and Antibacterial Properties of Ti-Cu Alloys for Biomedical Application, Mater. Sci. Eng. C, 2016, 69, p 1210–1221

    CAS  Google Scholar 

  19. L. Ren, Z. Ma, M. Li, Y. Zhang, W. Liu, Z. Liao, and K. Yang, Antibacterial Properties of Ti-6Al-4V-xCu Alloys, J. Mater. Sci. Technol., 2014, 30(7), p 699–705

    CAS  Google Scholar 

  20. A. Simchi, E. Tamjid, F. Pishbin, and A.R. Boccaccini, Recent Progress in Inorganic and Composite Coatings with Bactericidal Capability for Orthopaedic Applications, Nanomed. Nanotechnol. Lett., 2011, 7(1), p 22–39

    CAS  Google Scholar 

  21. K. Baba, R. Hatada, S. Flege, W. Ensinger, Y. Shibata, J. Nakashima, T. Sawase, and T. Morimura, Preparation and Antibacterial Properties of Ag-Containing Diamond-Like Carbon Films Prepared by a Combination of Magnetron Sputtering and Plasma Source Ion Implantation, Vacuum, 2013, 89, p 179–184

    CAS  Google Scholar 

  22. W. Shao and Q. Zhao, Influence of Reducers on Nanostructure and Surface Energy of Silver Coatings and Bacterial Adhesion, Surf. Coat. Technol., 2010, 204(8), p 1288–1294

    CAS  Google Scholar 

  23. M. Sikora-Jasinska, E. Mostaed, A. Mostaed, R. Beanland, D. Mantovani, and M. Vedani, Fabrication, Mechanical Properties and In Vitro Degradation Behavior of Newly Developed Zn\Ag Alloys for Degradable Implant Applications, Mater. Sci. Eng. C, 2017, 77, p 1170–1181

    CAS  Google Scholar 

  24. L.Q. Wang, Y.F. He, H. Zhao, H.B. Xie, S. Li, Y.P. Ren, and G.W. Qin, Effect of Cumulative Strain on the Microstructural and Mechanical Properties of Zn-0.02 wt.%Mg Alloy Wires During Room-Temperature Drawing Process, J. Alloys Compd., 2018, 740, p 949–957

    CAS  Google Scholar 

  25. C. Xiao, L.Q. Wang, Y.P. Ren, S.N. Sun, E.L. Zhang, C.N. Yuan, Q. Li, X.G. Sun, F.Y. Shou, J.Z. Duan, H. Wang, and G.W. Qin, Indirectly Extruded Biodegradable Zn-0.05 wt.%Mg Alloy with Improved Strength and Ductility: In Vitro and In Vivo Studies, J. Mater. Sci. Technol., 2018, 34(9), p 1327–1618

    Google Scholar 

  26. Z.L. Liu, F. Wang, D. Qiu, J.A. Taylor, and M.X. Zhang, The Effect of Solute Elements on the Grain Refinement of Cast Zn, Metall. Mater. Trans. A, 2013, 44(9), p 4025–4030

    CAS  Google Scholar 

  27. T. Ogura, T. Otani, A. Hirose, and T. Sato, Improvement of Strength and Ductility of an Al–Zn–Mg Alloy by Controlling Grainsize and Precipitate Microstructure with Mn and Ag Addition, Mater. Sci. Eng. A, 2013, 580, p 288–293

    CAS  Google Scholar 

  28. G. Ben-Hamu, D. Eliezer, A. Kaya, Y.G. Na, and K.S. Shin, Microstructure and Corrosion Behavior of Mg–Zn–Ag Alloys, Mater. Sci. Eng. A, 2006, 435–436, p 579–587

    Google Scholar 

  29. D.A. Butts and W.F. Gale, 11-Equilibrium Diagrams, Smithells Metals Reference Book, 2nd ed., W.F.G.C. Totemeier, Ed., Butterworth-Heinemann, Oxford, 2004, p 1–534

    Google Scholar 

  30. C. Wang, Z.T. Yu, Y.J. Cui, Y.F. Zhang, S. Yu, G.Q. Qu, and H.B. Gong, Processing of a Novel Zn Alloy Micro-Tube for Biodegradable Vascular Stent Application, J. Mater. Sci. Technol., 2016, 32(9), p 925–929

    Google Scholar 

  31. R. Yue, H. Huang, G.Z. Ke, H. Zhang, J. Pei, G.H. Xue, and G.Y. Yuan, Microstructure, Mechanical Properties and In Vitro Degradation Behavior of Novel Zn-Cu-Fe Alloys, Mater. Charact., 2017, 134, p 114–122

    CAS  Google Scholar 

  32. K.B. Törne, F.A. Khan, A. Örnberg, and J. Weissenrieder, Zn–Mg and Zn–Ag Degradation Mechanism Under Biologically Relevant Conditions, Surf. Innov., 2018, 6(1), p 81–92

    Google Scholar 

  33. S. Hiromoto, Corrosion of Metallic Biomaterials, Woodhead Publishing Series in Biomaterials, Metals for Biomedical Devices, M. Niimomi, Ed., Woodhead Publishing, Sawston, 2010, p 99–121

    Google Scholar 

  34. M.M. Alves, T. Prošek, C.F. Santos, and M.F. Montemor, Evolution of the In Vitro Degradation of Zn–Mg Alloys Under Simulated Physiological Conditions, RSC Adv., 2017, 7(45), p 28224–28233

    CAS  Google Scholar 

  35. B.N. Mordyuk, O.P. Karasevskaya, and G.I. Prokopenko, Structurally induced enhancement in corrosion resistance of Zr-2.5%Nb alloy in saline solution by applying ultrasonic impact peening, Mater. Sci. Eng. A, 2013, 559, p 453–461

    CAS  Google Scholar 

  36. N.I. Khripta, O.P. Karasevska, and B.N. Mordyuk, Surface Layers of Zr-18%Nb Alloy Modified by Ultrasonic Impact Treatment: Microstructure, Hardness and Corrosion, J. Mater. Eng. Perform., 2017, 26(11), p 5446–5455

    CAS  Google Scholar 

  37. H.F. Li, X.H. Xie, Y.F. Zheng, Y. Cong, F.Y. Zhou, K.J. Qiu, X. Wang, S.H. Chen, L. Huang, L. Tian, and L. Qin, Development of Biodegradable Zn-1X Binary Alloys with Nutrient Alloying Elements Mg, Ca and Sr, Sci. Rep., 2015, 5, p 10719

    CAS  Google Scholar 

  38. Y.P. Xie, Y.P. He, P.L. Irwin, T. Jin, and X.M. Shi, Antibacterial Activity and Mechanism of Action of Zinc Oxide Nanoparticles Against Campylobacter jejuni, Environ. Microbiol., 2011, 77(7), p 2325–2331

    CAS  Google Scholar 

  39. P. Petrini, C.R. Arciola, I. Pezzali, S. Bozzini, L. Montanaro, M.C. Tanzi, P. Speziale, and L. Visai, Antibacterial Activity of Zinc Modified Titanium Oxide Surface, Int. J. Artif. Organs, 2006, 29(4), p 434–442

    CAS  Google Scholar 

  40. O. Akhavan and E. Ghaderi, Enhancement of antibacterial properties of Ag nanorods by electric field, Sci. Technol. Adv. Mater., 2009, 10(1), p 015003

    Google Scholar 

  41. D. Tie, F. Feyerabend, W.D. Müller, R. Schade, K. Liefeith, K.U. Kainer, and R. Willumeit, Antibacterial Biodegradable Mg-Ag Alloys, Eur. Cells Mater., 2013, 25, p 284–298

    CAS  Google Scholar 

  42. Z.D. Liu, R. Schade, B. Luthringer, N. Hort, H. Rothe, S. Müller, K. Liefeith, R. Willumeit-Römer, and F. Feyerabend, Influence of the microstructure and silver content on degradation, cytocompatibility, and antibacterial properties of magnesium-silver alloys, in vitro, Oxid. Med. Cell. Longev., 2017, https://doi.org/10.1155/2017/8091265

    Article  Google Scholar 

  43. Y. Xie, L.C. Zhao, Z. Zhang, X. Wang, R. Wang, and C.X. Cui, Fabrication and Properties of Porous Zn-Ag Alloy Scaffolds as Biodegradable Materials, Mater. Chem. Phys., 2018, 219, p 433–443

    CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (81672139), Postdoctoral Science Foundation of China (No.: 194016), Doctoral Research Starting Foundation of Affiliated Zhongshan Hospital of Dalian University (No.: DLDXZSYY-BK201703), and Doctoral Research Starting Foundation of Dalian University (No.: 20152QL002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. W. Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original article has been corrected: This article was originally published electronically on the publisher’s internet portal (currently SpringerLink) on 11 September 2019 with open access. With the author(s)’ decision to step back from Open Choice, the copyright of the article changed in October 2019 to © ASM International 2019 and the article is forthwith distributed under the terms of copyright.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, C., Zhao, D.W., Sun, Q. et al. Morphology and Mechanical, Corrosive, and Antibacterial Behaviors of Indirectly Extruded Zn-0.05wt.%Mg-(0.5, 1 wt.%)Ag Alloys. J. of Materi Eng and Perform 28, 6864–6872 (2019). https://doi.org/10.1007/s11665-019-04297-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04297-4

Keywords

Navigation