Skip to main content
Log in

Thermal effects in thin copper foil

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The anneal response and high-temperature ductility for four commercial-grade 35-µm rolled (R: GR5) and electrodeposited (ED: GR1, GR3, and TCAM) copper foils, used for rigid and flexible printed circuits, are investigated. Using tensile and microhardness monitors, the anneal response is examined to 900°C for up to 300 min, and the high-temperature ductility is characterized to a 200°C test temperature. For comparison, the ED “control” foils, using deposition parameters identical to those for the commercial foils but without the additives usually introduced in the electrolyte, are also examined. The ED control foils thermally soften readily; the temperature range of softening decreases with the electrodeposition overvoltage (η). For the commercial-grade foils, the proprietary additives help tailor thermal softening but cause severe disruption of anneal kinetics (TCAM) and embrittlement at (TCAM) and above (GR1, GR3) 23°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.D. Merchant, J. Electron. Mater. 22, 631 (1993).

    CAS  Google Scholar 

  2. H.D. Merchant, J. Electron. Mater. 24, 919 (1995).

    CAS  Google Scholar 

  3. H.D. Merchant, Defect Structure, Morphology and Properties of Deposits (Warrendale, PA: TMS, 1995), p. 1–59.

    Google Scholar 

  4. H.D. Merchant, W.C. Liu, L.A. Giannuzzi, and J.G. Morris, to be published.

  5. Y.M. Polukarov and V.A. Kuznetsov, Russ. J. Phys. Chem. 36, 1290 (1962).

    Google Scholar 

  6. J.B. Cohen, A. Nelson, and R.J. DeAngelis, Trans. AIME 236, 133 (1966).

    CAS  Google Scholar 

  7. P. Gordon, Trans. AIME 203, 1043 (1955).

    Google Scholar 

  8. M.J. Sabochick and S. Yip, J. Phys. F 18, 1689 (1988).

    Article  ADS  CAS  Google Scholar 

  9. A. Gangulee, J. Appl. Phys. 45, 3749 (1974).

    Article  ADS  CAS  Google Scholar 

  10. R. Weil, H.J. Sumka, and G.W. Greene, J. Elecrochem. Soc. 114, 449 (1967).

    Article  CAS  Google Scholar 

  11. A. Kuper et al., Phys. Rev. 96, 1224 (1954).

    Article  ADS  CAS  Google Scholar 

  12. C.J. Meechan and R.R. Eggleston, Acta Metall. 2, 680 (1954).

    Article  CAS  Google Scholar 

  13. A. Gangulee, J. Appl. Phys. 43, 867 (1972).

    Article  ADS  CAS  Google Scholar 

  14. B.F. Decker and D. Harker, Trans. AIME 188, 887 (1950).

    CAS  Google Scholar 

  15. A. Vertes, I. Czako-Nagy, M. Lakatos-Varsanyi, L. Csordas, and H. Leidheiser, Jr. J. Electrochem. Soc. 131, 1526 (1984).

    Article  CAS  Google Scholar 

  16. T.Y. Wu and C.G. Woychik, Manufacturing Processes and Materials Challenges in Microelectronic Packaging (New York: ASME, 1991), p. 11–17.

    Google Scholar 

  17. D.H. Lassila, Shock Wave and High Strain Rate Phenomena in Materials (New York: Marcel Dekker, 1992), p. 543–550.

    Google Scholar 

  18. K. Lin and K.G. Sheppard, Plating Surf. Finishing 70, 40 (1983).

    Google Scholar 

  19. M.A. Korhonen, D.D. Brown, C.Y. Li, and J.E. Steinwall, MRS Symp. 323, 103 (1994).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merchant, H.D. Thermal effects in thin copper foil. J. Electron. Mater. 33, 83–88 (2004). https://doi.org/10.1007/s11664-004-0298-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-004-0298-0

Key words

Navigation