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Overview: Computer Vision and Machine Learning
for Microstructural Characterization and Analysis
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Microstructural characterization and analysis is the foundation of microstructural science,
connecting materials structure to composition, process history, and properties. Microstructural
quantification traditionally involves a human deciding what to measure and then devising a
method for doing so. However, recent advances in computer vision (CV) and machine learning
(ML) offer new approaches for extracting information from microstructural images. This
overview surveys CV methods for numerically encoding the visual information contained in a
microstructural image using either feature-based representations or convolutional neural
network (CNN) layers, which then provides input to supervised or unsupervised ML algorithms
that find associations and trends in the high-dimensional image representation. CV/ML systems
for microstructural characterization and analysis span the taxonomy of image analysis tasks,
including image classification, semantic segmentation, object detection, and instance segmen-
tation. These tools enable new approaches to microstructural analysis, including the
development of new, rich visual metrics and the discovery of processing-microstructure-prop-
erty relationships.
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I. INTRODUCTION: THE QUANTIFICATION
OF MICROSTRUCTURE

IN 1863, the geologist Henry Clifton Sorby examined
acid-etched and polished steel under a microscope and
observed a complex collection of substructures that we
now call microstructure.[1] Over the next two decades,
Sorby related these visual entities to the chemistry,
history, and behavior of various steel alloys, making the
first connections between materials structure, composi-
tion, processing, and properties.[2] Sorby’s observations
were necessarily qualitative; for example, he wrote,
‘‘There is also often great variation in the size of the
crystals [grains] of iron…and one cannot but suspect
that such great irregularities might be the cause of the
fracture…’’[2] However, by the early 1900s, methods for

measuring microstructural features had been developed,
and in 1916 the first ASTM metallographic standard E 2
to 17T included planimetric grain size measurement.[3]

Throughout the 20th century, metallurgists and mate-
rials scientists continued to create and refine an
ever-growing catalog of microstructural metrics.[6] The
field of quantitative stereology linked two-dimensional
(2D) cross-sectional structures to their true three-di-
mensional (3D) counterparts,[7] techniques such as
electron backscatter diffraction (EBSD) microscopy
were especially amenable to digital analysis, and 3D
microstructural representations became feasible, if not
routine, with the advent of 3D X-ray diffraction
microscopy (3DXRD).[8,9] Despite the sustained pro-
gress in microstructural science, however, an overarch-
ing microstructural metric remained elusive. Instead,
each individual metric was developed and applied on a
case-by-case basis. The reason for this is simple: The
visual phase space of microstructural images is immense,
as illustrated in Figure 1. This leads to the two funda-
mental problems of quantitative microstructural science:

1. What to measure: For any given microstructure, it
is not always self-evident which metric is most
strongly related to the process or property of
interest. Consider the Hall–Petch relationship
ry = kd1/2, which directly links average grain
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diameter d with yield strength ry via a proportion-
ality constant k.[10,11] In an equiaxed, single-phase
polycrystal such as Figure 1(a), it is a simple matter
to measure d. But if the grains are elongated as in
Figure 1(b), is d still the relevant metric, or is the
grain aspect ratio more important?

As microstructures become more complex, so does
metric selection. Which is the most influential scale in
Figure 1(c): dendrite arm spacing, dendrite colony size,
or porosity distribution? Of course, there is the very real
possibility that multiple metrics may arise from a given
process history or contribute to a given property.
Ultimately, deciding what microstructural feature(s) to
measure requires human judgment informed by knowl-
edge and experience.

2. How to measure it: While some microstructural
metrics are relatively straightforward to measure,
others are not. Consider the steel microstructure in
Figure 1(d). A feature that affects this alloy’s
mechanical properties is the size of the carbon
denuded zone (the dark area bordering the network
carbides). Although it is simple in principle to
measure its average dimension, it requires locating
the boundaries of the denuded zone via segmenta-
tion. (Segmentation is defined as determining fea-
ture membership for each pixel in an image).
Because the denuded zone boundary is fuzzy,
segmentation is problematic and usually is left to

the subjective judgment of a human expert. The
outcome can be uncertain or even irreproducible
results.

Segmentation issues may affect even apparently
uncomplicated measurements. For example, in poly-
crystalline microstructures like Figure 1(a), some grain
boundaries may not etch deeply enough to create a dark
line in an optical image. While the human eye is able to
locate these ‘‘missing boundaries’’ based on visual clues,
automating this process has remained stubbornly
intractable.[12,13] Thus, even the simple metric of grain
size can harbor complex measurement challenges.
Even now, 150 years after Sorby noted the iridescent

sheen of ‘‘the pearly constituent’’ (pearlite), microstruc-
tural analysis often relies on qualitative, rather than
quantitative, descriptions. Terms like equiaxed, aligned,
rough, dispersed, ordered, columnar, etc. are often used
without quantification.
Computer vision (CV) is the computer science field

that focuses on quantifying the visual information
content of digital images.[14] A digital image is a numeric
representation where each pixel has an integer gray
value or a short vector color value (i.e., RGB) associated
with it; the individual pixels provide little information
about the content of the image. The goal of CV is to
aggregate pixels to represent an image as a high-dimen-
sional tensor of visual information. While CV may be
familiar from facial recognition and self-driving cars, it
is also used in applications that are strikingly similar to
some microstructural quantification tasks, such as
determining how many people appear in a picture of a
crowd[15] or what proportion of a satellite photograph is
comprised of farmland.[16]

In order to extract abstract information from the
image representation produced by a CV scheme, we can
use methods for finding correlations in high-dimensional
data space, many of which fall under the general
classification of machine learning (ML).[17] ML
approaches may be supervised or unsupervised. Super-
vised ML involves training a system based on
human-determined ground-truths. For example, given
a set of photographs with metadata noting the presence
or absence of a cat, a supervised ML system can learn to
identify images of cats. Unsupervised learning algo-
rithms find relationships between image representations
without ground-truth data or human intervention,
typically by generating clusters of related images. These
approaches are complementary, and each is applicable
to different problems.
A number of recent studies have applied CV and ML

approaches to develop a more general approach to
quantitative microstructural analysis.[18–32] This is a
promising direction for creating tools that capture rich
and complete microstructural information (what to
measure) in a quantitative, objective, and general
manner (how to measure it). In this paper, we present
applications of CV and ML for a variety of microstruc-
tural image analysis tasks.[33–38] We show that the CV/
ML approach can assist, improve, or even replace
traditional, ad hoc microstructural characterization
methods.

Fig. 1—Microstructural diversity. (a) Equiaxed grains in an Al alloy
seen in polarized light. (b) Elongated grains in extruded Al,
polarized light micrograph. (c) Dendritic colonies in cast bronze,
true color light micrograph. [Figures (a) through (c) reprinted from
[4] under the terms of Creative Commons CC BY-NC-SA 2.0 UK
license.] (d) Carbide structure in ultrahigh carbon steel, SEM
image.[5]
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II. METHODS

Accurate microstructural measurements are funda-
mental to making structure-processing-property connec-
tions. However, there are many microstructural analysis
tasks that require human judgment and so have an
element of subjectivity that makes them difficult to
automate and susceptible to bias. Because artificial
intelligence methods, including CV and ML, can learn
to replicate human visual judgments, these tools are
good candidates to perform these tasks in an objective,
autonomous, and efficient manner.

The fields of CV and ML are rapidly evolving. There
is no reason to believe that the particular methods
presented here are optimal or even will remain compet-
itive as new methods are developed. However, we expect
that the concepts and approaches of CV and ML will
continue to be valuable tools for microstructural
science. For that reason, this section will present the
foundational bases of CV and ML, which are common
across methods. Details of the specific computational
codes used in the examples are available in the supple-
mentary material, Table SI.

A. Computer Vision: Create a Numerical Representation

Computer vision encompasses an array of methods
for creating a numerical representation of a visual
image, termed the feature vector; most of these methods
are optimized for specific tasks (facial recognition,
object identification, texture analysis, etc.).[14,39–57]

Across application domains, however, there are two
basic approaches to CV: feature-based representations
and representations based on convolutional neural
networks (CNNs). Feature-based methods create an
image representation that is in essence a statistical
representation of the visual features in the
image.[34,35,37,38,57,58] Filters that activate when they
encounter a feature[46,49] (typically an edge, corner, or
blob) are applied to the original image. Each feature is
then numerically encoded with a descriptor,[43,49] and
the image representation is some aggregation of the
feature descriptors.[59–62] CNNs also use filter activa-
tions as visual features.[63,64] The primary difference
between feature-based and CNN image representations
is that while the filters for feature-based methods are
selected by human experts, the CNN filters are learned
during the training and optimization of the CNN.
Moreover, in typical CNN tasks, the filter activations
are not abstracted into an image representation; instead,
they are used directly as the feature map for the
image.[65] The result is that, since the advent of the
AlexNet CNN in 2012,[66] CNNs have outperformed
feature-based methods (and often human experts[67]) for
essentially all CV tasks.[68] Thus, we will restrict our
discussion to CNN-based feature vectors.

The fundamental objective of CV is to represent the
visual content of an image in numerical form, and there
are numerous methods to accomplish this via CNNs. We
will focus on two methods that are particularly suit-
able for microstructural images: CNN layers and
hypercolumn pixels.

Convolutional neural networks take an image (or
image-like data) as input, apply a variety of signal
processing operations to it in order to encode it as a
vector, and then utilize an artificial neural network[68–70]

or other ML method to draw a conclusion about the
visual content of the image. The first part of the CNN
pipeline—encoding the image as a feature vector—is
termed the feature learning stage, and the second
part—drawing a conclusion—is the classification stage.
In the feature learning stage, shown in Figure 2, the

CNN rasters (convolves) sets of filter patches pixel-by-
pixel and records the filter activation values. It does this
hierarchically, first to the image (generating the first
convolution layer) and then to the subsequent layers
(generating the second through nth convolution layers).
After several convolutions, activations are rectified
(typically via a rectified linear unit, ReLU, filter that
converts negative values to zero). Pooling (downsam-
pling) then combines multiple pixels in one layer into a
single pixel in the next layer, and another set of
convolutions are performed. After a number of convo-
lution and pooling iterations, the final layer (the fully
connected layer) is flattened (written as a vector),
forming the representation used for decision-making in
the classification stage.[65,70,71] It is significant to note
that the convolution process results in CNN features
that are translation invariant but are not rotation or
scale invariant. This means that, for example, a feature
may require multiple representations to capture its
various geometric orientations within a microstructure.
Designing and training a CNN requires deep expertise

and a large data set (typically millions of images),
making it impractical for most microstructural data sets.
However, CNNs that have been optimized and trained
on a large set of natural images have been successfully
used with other kinds of images, including microstruc-
tures. This transferability of results is likely due to the
fact that images of very different things share common
visual features, including edges, blobs, and visual
textures. Thus, transfer learning[59] enables us to use
pre-trained CNNs (such as the VGG16 network[65]

trained on the ImageNet data set[72]) for microstructural
representation. However, since we are not interested in
classifying microstructural images into the ImageNet
categories (broccoli, bucket, bassoon, etc.), we truncate
the network before the classification stage. Instead, we
use the CNN layers themselves as the image represen-
tations for ML tasks, as shown in Figure 2, often using
a dimensionality-reducing encoding such as principal
component analysis (PCA)[73] or vector of locally
aggregated descriptors (VLAD)[62] to decrease the length
of the feature vector for efficient computing.[34]

Which layer of a CNN representation is the best choice
for a feature vector depends on the characteristics of the
micrographs.[74] Because pooling operations cause pixels
in deep layers to represent large areas of the original
image, deep layers capture features at large length scales.
Conversely, filter activations in shallow layers represent
local environments. Thus, visually simple micrographs,
like the equiaxed polycrystal in Figure 1(a), may be better
represented by shallow layers, and complex microstruc-
tures, such as the carbide structure in Figure 1(d), may be
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better represented by deep layers, which capture multi-
scale structures more completely. However, there is not
yet a mechanism for determining the optimum layer to
represent a given type of microstructure a priori; instead,
the decision is made by trial and error.[34,74]

For a more complete image representation, we might
wish to combine the information from all of the
convolution layers; this is the basis for the hypercolumn
pixel feature vector,[40] as shown in Figure 2. We begin
with an image and its convolution layers in a pre-trained
CNN. For each of the selected pixels in the original
image, the hypercolumn is built by stacking the activa-
tions of the convolution layers at the pixel’s real-space
position; the result is an image representation where
each hypercolumn stores information about the pixel’s
feature membership at multiple length scales. Repre-
senting an image by the hypercolumns of every pixel is
memory intensive, so typically we select a sparse subset
of pixels. Hypercolumn features are primarily used for
image segmentation tasks, which we discuss below.[75]

Finally, it is worth noting that CNNs can operate in
reverse (i.e., with transposed convolutions), generating
images from feature vectors. This is the basis for
variational autoencoders (VAEs)[76] and generative
adversarial networks (GANs).[77] These methods may
be used to generate realistic synthetic images[78–80] and to
enhance image resolution,[81] among other applications.

B. Machine Learning: Extract Quantitative Visual
Information

The goal of ML is to extract quantitative visual
information from the high-dimensional feature vector.
This information might comprise a classification (e.g.,

ferritic, austenitic, martensitic, etc.), an association with
a metadata value (e.g., yield strength), a measurement
(e.g., grain size), presence of a particular feature (e.g.,
surface defect), or any other value that might be
contained in the feature vector. ML methods are either
supervised (trained using known correct answers, ter-
med ground truth) or unsupervised (finding patterns
without knowledge of a ground truth), and there are
important roles for each approach.
There is a wide array of supervised ML meth-

ods,[68,69,82] and the choice of method depends on the
application. Supervised ML systems that are widely used
for visual image feature vector data include support
vectors machines (SVM),[83,84] random forest (RF)[85]

classifiers, and deep learning methods such as artificial
neural networks (ANNs).[65,68–71] SVMs operate by
learning the set of hyperplanes that best separates
feature vectors into groups according to their ground
truth type or class. Once the separating planes are
known, additional vectors can be associated with the
appropriate group, i.e., classified. Advantages of SVM
are flexibility, generality, and performance. However,
the success of an SVM model depends on whether the
high-dimensional data structure is amenable to planar
separation.
RF classifiers begin by constructing a set of decision

trees to predict the class of an image; within each tree,
decisions are based on values of feature vector elements.
To classify the image, the trees each offer a prediction,
and majority rules. In the training phase of an RF
classifier, the feature vector elements that populate the
trees and their decision values are optimized to give the
best match with the known ground truth. Once the trees
are optimized, they can be applied to classify additional

Fig. 2—The feature learning stage of a CNN. The input image i (left) is processed through layers c1,1 through cM,N. Pooling decreases image
resolution between groups (or blocks) of layers. A feature vector for the image as a whole, C(i), may be constructed by flattening any of the
layers (here, the c2,5 convolution layer shown in blue). Alternatively, a feature vector for each pixel p may be assembled from filter activations in
all the layers, giving the hypercolumn pixel vector, H(p) (Color figure online).
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vectors. An advantage of RFs is interpretability, since
the basis for decision is easily verified.[86] However, RFs
are not always easy to apply to complex image
representations.

ANNs process the feature vector through the hidden
layers of a neural network[82] in order to make a
prediction regarding the image. The structure and
connectivity of the ANN can take many forms, and its
architecture is selected to maximize performance, often
by trial and error. During the learning process, the
weights of the connections between neurons in the input,
hidden, and output layers are optimized to give the best
match with the known ground truth. Once the weights
have been determined, the ANN can make predictions
about previously unseen vectors. ANNs as a class are
immensely flexible and scale to handle both large
amounts of data and very high-dimensional data.
However, they are black box models, where the basis
for decision can be difficult to parse.

Unsupervised ML algorithms find relationships
between image representations without ground-truth
data or human intervention, typically by generating
clusters of related images. k-means is one example of an
unsupervised clustering method.[87] For a set of N-di-
mensional feature vectors, k-means groups them into a
user-specified number of N-dimensional clusters that
minimize a cost function that is some measure of
‘‘cluster goodness,’’ such as cluster compactness. Find-
ing a globally optimal clustering is an np hard compu-
tational problem (i.e., requires exponential computing
time), so k-means uses various computing strategies to
find good solutions. An implication of this is that for a
given set of vectors, k-means results may vary depending
on computational parameters. An advantage of k-means
clustering is that because it identifies a set of cluster
centroids, additional vectors can be associated with
clusters straightforwardly. Thus, it can be used as a basis
for classification. A disadvantage is that, as a full
N-dimensional representation, it may not be easy to
visualize the results in 2D or 3D.

There are a number of tools to visualize high-dimen-
sional image representations in two or three dimensions
in order to look for clusters based on image similar-
ity.[88] In the examples to follow, we use to t-distributed
stochastic neighbor embedding (t-SNE),[89,90] which
weights image similarity on a nonlinear scale that
diminishes quickly as image similarity decreases; thus
t-SNE highly favors grouping similar images but does
not capture relationships between dissimilar images. An
advantage of t-SNE is that it often is able to discover
and visualize low-dimensional clusters. A disadvantage
is that since t-SNE is constructed based on pairwise
comparisons of feature vectors, it is not possible to add
additional data to a t-SNE map without recomputing it
entirely, so t-SNE cannot be used for classification.

The choice of ML modality and model depends on the
nature of the input data and the desired outcome. Often,
multiple approaches are attempted and evaluated for
performance and/or other advantages and disadvan-
tages. In this process, it is helpful to include a domain
expert in ML algorithms, since the best-in-class solu-
tions are ever-evolving.

C. Data: The Basis for Data Science

Perhaps the greatest challenge to the creation of CV/
ML approach for microstructural science is the need for
microstructural image data suitable for training and
utilizing such systems. Data size is usually assumed to be
the limiting factor, and in some cases it is. However, as
discussed below, we have achieved excellent results in
some complex image analysis tasks with very small
numbers of original micrographs (sometimes fewer than
10). We believe that this has to do with the data-richness
of microstructural images compared to the natural
images used in typical CV studies. For instance, where
a natural image might contain a cat, a micrograph might
contain 100 precipitates. In fact, microscopists strive to
capture microstructural images that are statistically
representative of the material they portray. Further-
more, the spatial relationships and length scales implicit
in a microstructural image are physically-based and
meaningful. Finally, the entire image typically consti-
tutes the microstructure; there is no ‘‘meaningless’’
background to subtract or ignore. Thus, microstructural
images tend to be rich in relevant information.
Similarly, concerns about image quality are often

unfounded. ML methods learn to extract the informa-
tion contained in the data as it is presented to them;
there are no judgments about the quality of focus,
resolution, field of view, magnification, etc. In fact,
exposing the ML system to the full scope of the data
space results in a more robust outcome. This is not a
recommendation to ignore good microscopy practices,
but rather a suggestion not to assume that images must
be vetted or weeded out based on human standards of
quality.
Data collection practices that do increase the perfor-

mance of CV/ML systems include image redundancy,
standardization, and augmentation. Taking redundant
images of a sample with non-overlapping fields of view
increases the amount of visual data for a relatively low
additional cost, compared to taking one ‘‘representa-
tive’’ image. This allows the ML system to learn the full
data space, while avoiding overfitting and human bias.
Standardizing imaging conditions (such as instrument,
settings, magnification, orientation, etc.) and/or per-
forming judicious image preprocessing helps prevent the
CV/ML system from learning the wrong thing. That
said, there are data sets in which imaging differences are
inevitable; in those cases, verifying that the system is
learning the relevant information is paramount.[37] Data
augmentation involves manipulating existing images,
usually via subsampling, translation, rotation, or affine
transformation, to create additional image patches for
training and testing.[91,92] For example, for micrographs
that do not possess a standard orientation, augmenting
the original data with rotated versions can more fully
sample the visual data space represented by the data set,
potentially improving ML outcomes. It is important to
recognize that all of the physical data is contained in the
original images; additional images generated by data
augmentation methods may facilitate the training of the
models, but they do not create new information.
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The most valuable microstructural data sets include
metadata that enriches their information content.
Metadata may include multiple imaging modalities
(e.g., EBSD and backscatter data for the same field of
view), as well as information on material system,
composition, imaging information, processing history,
property measurements, and any other data available
related to the image. Capitalizing on multimodal
information and metadata is an emerging area of
computer vision. Now, more than ever, aggregating
and cross-referencing data from multiple sources is the
key to discovery.

III. RESULTS: A TAXONOMY
OF MICROSTRUCTURAL ANALYSIS

From a given image, a microstructural scientist may
extract different kinds of information from various
visual signals. This information can be arranged in a
hierarchy, or taxonomy, of microstructural analysis
tasks, which includes:

� Image classification—identifying the content of an
image

� Semantic segmentation—associating each pixel in an
image with a constituent of the image

� Object detection—locating individual objects in an
image

� Instance segmentation—assigning pixels to individ-
ual objects

Figure 3 shows this microstructural taxonomy
applied to a scanning electron microscopy (SEM)
micrograph where sample preparation yielded an image
of dense, overlapping metal powder particles. Image
classification identifies the image as belonging to the
‘powder’ class. Semantic segmentation associates pixels
with either powder particles or background and so
cannot distinguish individual particles when particles
overlap. Object detection finds each individual powder
particle, and instance segmentation assigns pixels to
particles. In the following sections, we will demonstrate
and discuss the CV and ML applications for tasks in
each component of the microstructural analysis
taxonomy.

A. Image Classification and the Feature Vector

Image classification may not seem important, since we
usually know what our microstructures are. However,
classification of images underlies a host of critical
archiving and analysis tasks. A CV approach to image
classification begins with defining a feature vector, as
discussed above.

Since the feature vector numerically encodes the
visual information contained in an image, the visual
similarity between two images should be related to the
numerical similarity between their feature vectors. Thus,
a quantitative measure of overall image similarity can be
defined as the distance between feature vectors; there are
multiple distance metrics, but an easily computed and
interpreted one is the Euclidean distance (L2 norm). The

visual similarity metric then forms the basis for visual
search, visual clustering, and classification. (However,
note that because CNN representations are not rotation
or scale invariant, the distance metric between two
particular features may not be unique.) For example,
feature vectors were computed using a CNN layer
representation for a database of 961 microstructures of
ultrahigh carbon steels.[5] Figure 4(a) shows the three
images with feature vectors closest to that of a given
target image; clearly, feature vector similarity is reflected
in visual similarity. Notably, while the first two matches
contain microconstituents of similar size, fraction,
contrast, and structure to the target image, the third is
the target image at a lower magnification, demonstrat-
ing that the visual search encompasses multiple aspects
of visual similarity. Figure 4(b) shows a t-SNE image
cluster map where each point represents an image, and
the distance between points scales with the distance
between feature vectors; point color corresponds to the
primary microstructural constituent in each micrograph.
Clearly, similar images cluster, which illustrates the
visual structure of the data set. Thus, the feature vector
enables the primary database functions of search and
sort to be performed based on visual, rather than
language-based, information.
The fact that the visual clusters in Figure 4(b)

correspond to microstructural constituents implies that
the feature vector can be utilized to detect the presence
of specific microstructural features. In fact, a linear
support vector machine (SVM) was trained to classify
the primary microconstituent in each image in the
UHCS database (supervised machine learning), achiev-
ing 99 ± 1 pct accuracy (defined as fraction of correct
classifications).[5] Other studies have used unsupervised
and supervised ML to detect and classify defects,[93–95]

microstructural constituents,[96] atomic structures,[97]

and damage.[98] Thus, image classification contributes
to a wide variety of image processing tasks including
image analysis, keyword identification, and quality
control.
While the feature vector is often used for qualitative

tasks, it is worth remembering that it contains informa-
tion about pixel membership in the various microstruc-
tural features and as such can potentially be used to
quantify structural metrics directly, without image
segmentation. To do so, we need a data set sufficiently
large to train an ML system and with unambiguous
ground-truth values of the microstructural metric to be
measured. For example, to address the problem of
missing boundaries in grain size measurement,[12,13] we
generated 15,213 synthetic optical microstructures of
pure isotropic polycrystals with known grain sizes, using
the SPPARKS kinetic Monte Carlo grain growth
simulation code.[99] (While synthetic images do not
capture the full richness of actual micrographs, they do
permit the development of large data sets. This is also a
good opportunity for automated image collection sys-
tems.) These were used to train a CNN system[65,100]

with a fully connected regression layer[101] to learn grain
size, both for perfect structures and for polycrystals
where some of the boundaries were arbitrarily erased.
As shown in Figure 5(a), for perfect polycrystals the
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system predicts grain size with a standard error of 2.3 pct;
we also found that the standard error increases linearly as
the fraction of missing boundaries increases, and reaches
3.9 pct for a missing boundary fraction of 0.4. These
errors are well within an expected measurement fidelity
for grain size. For instance, the ASTM standard claims a

precision of ± 0.5 grain size units for linear intercept
methods,which thismodelmeets for allmissing boundary
fractions (assuming circular grains and converting to a
linear grain size metric).[102] The ability to measure
without segmentation creates opportunities for fault-tol-
erant, high-throughput microstructural evaluation.

Fig. 3—A taxonomy of microstructural analysis applied to an SEM image of metal powder particles. (a) Image classification identifies the image
as belonging to the ‘powder’ class. (b) Semantic segmentation associates pixels with one of two constituents: powder particles (yellow) or
background (purple). (c) Object detection finds each individual powder particle (boxes). (d) Instance segmentation assigns pixels to particular
particles (colors). [Original image courtesy of I. Anderson, Ames Lab.] (Color figure online).

Fig. 4—Applications of the feature vector for image similarity. (a) Visual search for images similar to the target image in a database of about
900 microstructures of ultrahigh carbon steel.[5] The closest matching images share a number of visual features in common with the target. (b) In
this t-SNE plot, micrographs (points) cluster according to their visual similarity, which also corresponds to their primary microconstituent:
spheroidite (blue), network carbide (red), or pearlite (green) (Color figure online).
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Finally, we note that the feature vector encodes the
full range of visual information, some of which is not
readily perceptible by human vision. For instance,
chemical composition is not usually measured visually,
but rather with specialized tools such as energy disper-
sive spectroscopy (EDS). However, chemical informa-
tion is contained in the grayscale values of backscattered
SEM images, albeit subtly. During steelmaking, EDS is
used to determine the chemical composition of uninten-
tional inclusions (slag, etc.), and SEM images of these
inclusions are collected at the same time.[103] In order to
determine whether SEM data alone contains sufficient
information to determine inclusion composition, we
utilized a pre-trained CNN[65,72] and retrained the
classifier using a data set of 2543 SEM inclusion images,
balanced among five inclusion types. When tested on
509 previously unseen inclusion images, the system
achieved 76 pct overall classification accuracy, consid-
erably better than random chance accuracy of 20 pct, as
shown in Figure 5(b). Furthermore, the confusion
matrix confirms that the predominant misclassifications
are among the sulfide inclusion types, which include
significant compositional overlap. We note that these
inclusions are virtually impossible to classify by eye
(with the exception of the pores, which tend to be less
circular than the other types). To perform this task, the
CNN is presumably sensing inclusion shape, size,
contrast, and color distribution with a fidelity that
exceeds human perception, emphasizing the ability of
CV and ML to augment and extend our ability to
extract useful information from image data.

B. Semantic Segmentation

Structural metrics, such as feature size, volume frac-
tion, aspect ratio, etc., are the traditional quantities
extracted from microstructural images using direct mea-
surement tools. Typically, these measurements require a

segmented image, where each pixel in the image is
assigned to a microstructural constituent. Conventional
automatic image segmentation algorithms, such as those
incorporated in ImageJ,[104] generally operate by finding
blobs of constant contrast or edges where contrast
changes. While these approaches can work well on
suitable microstructures, complex or non-ideal images
often require considerable human intervention or even
manual segmentation, resulting in a slow, material-speci-
fic, and subjective workflow.
Image segmentation is a foundational CV task, with

important applications in robotics and medical imaging
among others.[105] Thus, there is considerable research
activity in developing segmentation methods. Because
micrographs share features (e.g., edges, blobs, and visual
textures) in common with natural images, we can adopt
these methods to microstructural images via transfer
learning. For example, we can use the PixelNet CNN[40]

trained on the ImageNet database of natural images[72]

to compute a hypercolumn feature vector[40] for each
pixel in each micrograph. We then train PixelNet’s pixel
classification layers to classify pixels according to their
microstructural constituent. Two examples are shown in
Figure 6. In Figure 6(a) the system was trained using 20
hand-annotated images from the UHCS micrograph
database,[106] and the results for one of the four
previously unseen test image are shown. In Figure 6(b)
the system was trained on 30 hand-annotated images
from a set of tomographic slices of an Al-Zn solidifica-
tion dendrite,[107] again the results for one of the 10
previously unseen image are given.
In both cases, segmentation accuracy is excellent:

93 pct for the steel microstructures and 99.6 pct for the
Al-Zn. (Measures of precision and recall, which weight
false positives and false negatives differently, do not
indicate significant systematic errors, such as over- or
under-prediction.) These segmentation maps are argu-
ably equal in quality to the human annotations, and

Fig. 5—Advanced applications of the microstructural feature vector. (a) Determining grain size from simulated polycrystalline micrographs
without segmentation or direct measurement using deep regression. Blue points indicate previously unseen test images, and the red line
corresponds to perfect accuracy (predicted = actual). Inset shows an example polycrystal. (b) Determining steel inclusion composition from
SEM image patches via a CNN classifier. The confusion matrix gives the fraction of inclusions of each type that are classified with each
predicted label; perfect accuracy would result in 1’s down the diagonal. Sample image patches for each inclusion type are shown on the right
(Color figure online).
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certainly adequate for quantitative analysis of the
UHCS images (as demonstrated by DeCost et al.[106])
or tomographic reconstruction of the Al-Zn den-
drite.[107] A significant benefit of this approach is that
once the system is trained, subsequent image segmenta-
tions are calculated very quickly (near real time), and
are autonomous, objective, and repeatable, enabling the
high throughput necessary for applications such as 3D
reconstruction or quality control.

An additional benefit of CNN-based image segmen-
tation is the ability to capture human-like judgments
about image features. For instance, in Figure 6(a), the
spheroidite matrix constituent, comprised of spheroidite
particles in a ferrite matrix, is segmented as a single
constituent (orange). Conventional segmentation sys-
tems would be challenged to ignore the particles, which
show up as distinct bright spots. Likewise, in
Figure 6(b), the system learns to ignore sample prepa-
ration artifacts such as the sample edge, pores, and the
circular beam spot at the center of the image. Again,
these features are difficult to remove from conventional
segmentation results. It is this capacity for learning what
to look for and what to ignore that distinguishes the
CV/ML approach to semantic segmentation.

Although the CV/ML system simulates some aspects
of human visual judgment, it does not replicate human
reasoning. Therefore, it is important to understand the
strengths and limitations of CNN-based image segmen-
tation in order to design the most effective tools. A small
database of 17 SEM images (15 for training and 2 for
testing) of nickel-based superalloy microstructures

deformed in creep[108] provides an illustrative case study.
These micrographs contain two prominent constituents:
the oriented c’ cuboidal precipitates and dislocation
lines [Figure 7(a)]. Both constituents are demarcated by
narrow, linear features. Conventional image analysis
[Figure 7(b)] is able to find these linear features,
although it tends to overpredict them, creating many
short, detached line segment artifacts that are not
evident in the original image. A CNN-based image
segmentation system (in this case, UNet[109]) can be
trained to replicate the conventional analysis, and it has
the advantage of being more resistant to line segment
artifacts, as shown in Figure 7(c). However, the goal is
to identify the dislocation segments only, ignoring the c -
c’ phase boundaries.
We initially attempted to modify the feature annota-

tion training images in two ways: In one set, we
manually eliminated the the c–c¢ phase boundaries,
leaving only the dislocation annotations. However, the
retrained system continued to capture many of the the
c–c¢ boundaries. It was apparently unable to learn which
of the linear features to ignore, at least for this small
dataset. In a second set, we manually annotated c–c¢
phase boundaries as a separate constituent from dislo-
cations. In this case, the system classified all near-hor-
izontal and near-vertical linear features as c–c¢
boundaries, which resulted in an under-prediction of
dislocations. In both cases, the system was challenged to
differentiate two microstructural constituents that are
represented in the feature annotations as lines of
single-pixel width.

Fig. 6—Semantic segmentation of microstructural images using a pre-trained CNN. (a) Semantic segmentation of microstructural constituents in
SEM micrograph of ultrahigh carbon steel. Constituents include network carbide (light blue), ferritic denuded zone (dark blue), Widmanstatten
carbide (green), and spheroidite matrix (gold). Note that the CNN segmentation captures ‘‘holes’’ in the network carbide that were
unintentionally omitted by the human annotator. (b) Segmentation of a tomographic section of an Al-Zn alloy. The solidification dendrite is
shown in white on a black background. Note that the CNN segmentation ignores prominent but irrelevant visual artifacts, including the sample
edge, polishing defects, and the beam spot (Color figure online).

METALLURGICAL AND MATERIALS TRANSACTIONS A VOLUME 51A, DECEMBER 2020—5993



High contrast gradients (lines or edges) are one kind
of feature that the filter patches typically included in
CNN architectures are able to sense. Other filter patches
are optimized for uniform contrast areas (blobs), and
still others for larger-scale visual textures (e.g., the
lamellar structure of pearlite). Examining the superalloy
micrographs, it becomes apparent that one way humans
distinguish the dislocation lines from the c–c¢ boundaries
is that the dislocations appear in regions of different
visual texture. In fact, it is easy for a human to
differentiate the deformed and undeformed regions of
these micrographs. Using that insight, we manually
annotated each image to segment these regions, as
shown in Figure 7(d), and trained a separate
CNN-based segmentation system to predict these dislo-
cation region masks (Figure 7(e)). By superposing the
edge-based linear feature segmentation (red arrows in
Figure 7) with the texture-based dislocation mask seg-
mentation (blue arrows in Figure 7), we reconstitute an
image segmentation that captures the dislocation lines
and omits the c–c¢ boundaries. While the lack of an
unambiguous ground truth makes it hard to evaluate the
accuracy of these results, the quality of these segmen-
tations was deemed sufficient to achieve the goal of
comparing deformation states. As an added benefit,
these segmentations are objective, repeatable, and
self-consistent among images, so that the relative differ-
ences between images are quantitatively meaningful.
Overall, achieving a useful segmentation on this chal-
lenging data set requires domain expertise in both
microstructural images (materials science) and
CNN-based segmentation systems (computational
science). The payoff is the ability to expand the reach
of traditional quantitative microstructure

characterization to more complex microstructural fea-
tures that have until now been difficult to treat in an
automated fashion.

C. Object Detection

Object detection entails locating each unique object of
its kind in an image, i.e., finding each individual
precipitate in a micrograph. When objects are spatially
separated, object detection can be performed on a
semantic segmentation using a conventional image
analysis approach, such as a watershed algorithm[38,110]

or connected-component labeling.[111,112] However,
when objects overlap or occlude one another, as in the
metal powder particles in Figure 8(a), automatic object
detection becomes considerably more complex. Fortu-
nately, object detection is another application of great
interest in important CV applications such as self-driv-
ing vehicles, which must detect and account for each
individual vehicle/pedestrian/tree in the field of view.[113]

Specialized CNNs, notably Faster R-CNN,[114] have
been developed for object detection and the related task of
instance segmentation. As in the case of semantic segmen-
tation, discussed above, transfer learning allows these
systems tobe trained onnatural images (such as theCOCO
detection data set[115]) and applied successfully to
microstructural images. For example, in order to assess
the prevalence of small satellite particles in a gas-atomized
metal powder, the first task is to identify the discrete
powder particles in a set of SEM images[116] (Figure 8(a)).
Tedious manual annotation yielded 5 images, each with
several hundred powder particles outlined (Figure 8(b));
three images were used to train a CNN instance segmen-
tation system, and two were reserved to test the results in a

Fig. 7—Multipart segmentation of dislocation structures in SEM micrographs of nickel-based superalloys imaged with electron channeling
contrast imaging. (a) An original image showing the c–c¢ precipitates and dislocation traces. (b) ImageJ analysis annotates linear features. (c)
CNN-based image segmentation finds linear features. (d) A human expert annotates the deformed and undeformed regions of the micrograph.
(e) A second CNN-based image segmentation finds the dislocation mask. (f) Combining the feature segmentation (red arrows) and mask
segmentation (blue arrows) yields a segmentation of the dislocation structure (Color figure online).
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cross-validation scheme. As shown in Figure 8(c), the
systemwas successful at locating anddelineating bounding
boxes around individual particles, achieving an average
detection recall (correct particle identifications divided by
all actual particles) of 80 pct and a detection precision
(correct particle identifications dividedby the total number
of particles identified) of about 94 pct. Loss of recall occurs
when particles are missed, and unsurprisingly the system
misses some small, irregularly shaped, and largely
occluded particles. Although they comprise about 20 pct
of the particles, they represent a very small fraction of the
total particle volume. Loss of precision occurs when a
particle is identified where none is present. However, the
system is not finding particles where the image contains
empty space. Instead, it is predicting that there aremultiple
particles where a single, agglomerated particle is identified
in the manual annotation. In many of these cases, it is
arguable whether the computer or human is correct. For
this object detection task, the results of the CNN-based
system are of good quality for subsequent analysis, and the
errors that do occur are sensible and to some extent
unavoidable.

Object detection is essential for calculating metrics
based on counting objects, such as a number density or a
population. However, in image analysis, it is more
commonly a stepping stone to instance segmentation, as
discussed in the next section.

D. Instance Segmentation

Once an object has been identified and bounded,
instance segmentation is simply a matter of segmenting
the pixels that belong to the object, as described above.

In fact, object detection and instance segmentation are
often combined in CNN implementations such as Mask
R-CNN.[117] Figure 8(d) shows the instance segmenta-
tion, with each particle segmented (colored) as a
separate object of particle type. The particle segmenta-
tions achieve a cross-validation average precision of
97.5 pct and recall of 95.4 pct; these high values indicate
minimal over- or under-prediction and in fact are
comparable to human performance, since there is some
subjectivity in locating particle edges. While this appli-
cation of instance segmentation found every object in
the image, the same approach can differentiate and
segment objects of particular types. Figure 8(e) shows
instance segmentation of satellite particles, defined as
small particles adhered to the surface of much larger
particles. There is considerably more subjectivity in
identifying satellites, which results in more disagreement
between human and computer, thus lower detection
precision (69.2 pct) and recall (54.5 pct). However, this
performance is still adequate to estimate satellite metrics
such as satellite content as a function of particle size,
and the autonomous nature of the CNN-based system
allows much more throughput than would be feasible
using manual segmentation.

IV. NEXT STEPS: METRICS, APPLICATIONS,
AND INTERPRETATION

A. Novel and Advanced Microstructural Metrics

Beyond facilitating traditional microstructural mea-
surements, CV image representations offer entirely new
ways to characterize microstructures. For example, for a

Fig. 8—Object identification and instance segmentation for SEM micrographs of gas-atomized metal powders. (a) The original image contains
dense and overlapping particles. (b) Manual annotation identifies and delineates individual particles in each image. (c) A CNN-based object
identification system identifies particles and draws a bounding box around each one. (d) The same system segments (colors) each particle
instance separately. (e) Following a similar workflow, satellite particles are identified and segmented. By overlaying on the particle segmentation,
satellites can be associated with host particles (Color figure online).
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set of SEM micrographs of an Inconel-718 gas-atomized
metal powder[38] we use connected-component label-
ing[111,112] to perform instance segmentation of each
individual powder particle and then encode each particle
patch via a CNN layer feature vector. After reducing the
representation dimension via PCA,[73] we apply k-means
unsupervised ML[87] to identify 8 visual clusters of
particles. Figure 9(a) shows examples of particles
belonging to each of the clusters. It is clear that this
method is able to sort powder particles into visually
similar groups. When the individual particle images are
plotted in a t-SNE map (Figure 9(b)), particles cluster
according to visual characteristics such as surface
roughness, shape, and size. The statistics of the k-means
clustering (i.e., particles per cluster) and the structure of
the t-SNE plot (i.e., particle density map) act as
fingerprints of the powder material, containing infor-
mation about not only particle size, but also shape,
roughness, agglomeration, etc. These representations
can be applied to develop new, quantitative metrics to
characterize powder materials that capture considerably
more information than traditional powder size distribu-
tions.[118] We note that it is not feasible for humans to
sort thousands of image patches, nor would we expect
an objective and repeatable result. These new metrics are
only accessible using a CV/ML approach, which lever-
ages the ability of computers to perform repetitive tasks
with the human-like visual judgment imparted by CV/
ML methods.

When image characterization is performed as a
supervised task, it requires training and validation/test
data that has been annotated with the ground truth
(e.g., grain size, inclusion composition, microcon-
stituent, etc.). Because annotation is often tedious and
sometimes impossible, unsupervised image analysis is a
goal in microstructural science and in CV more gener-
ally. The k-means clustering analysis described above
suggests one route to an image metric (particle cluster
statistics) using unsupervised ML. In this case, rather
than designing an unsupervised ML method to measure
a particular metric, we use the result of a standard,
unsupervised ML method as the metric. Likewise, one
can envision new microstructural metrics that arise
directly from aspects of the CV/ML system, such as the
feature vector or CNN filter activations.[119]

Finally, both microstructural science and CV share
the goal of inferring 3D structure from 2D images.[120]

Natural images are usually 2D projections of 3D scenes,
so inferring the third dimension is at least in part an
optics problem. In contrast, micrographs are typically
direct representations of 2D cross sections, so inferring
the third dimension is the purview of quantitative
stereology.[121] Because of this, the types of data and
the CV approaches most promising for inferring 3D
structure from 2D images remain open questions in CV/
ML methods for microstructural science.

Fig. 9—The visual density map for a metal powder. (a) Individual particles are clustered visually; here an 8-cluster k-means analysis showing
four example particles per cluster. (b) A t-SNE visual similarity map for about 1100 Inconel-718 particles. Insets show how visually similar
particles cluster (red = rough, agglomerated, purple = elongated). Box color corresponds to k-means cluster number. The k-means cluster
statistics and image density map are quantitative fingerprints of the powder material (Color figure online).
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B. CV/ML for Processing–Structure–Property Links

A primary objective of microstructural analysis is to
discover processing-microstructure-property (PSP) rela-
tionships for systems of scientific and technological
interest. While the application of CV/ML systems to
PSP problems is beyond the scope of this overview, we
will note that it is an active area of research. For
instance, to make the processing/structure connection,
CV/ML studies have examined micrograph databases to
correlate microstructure with annealing history.[34,122]

Likewise, CV/ML systems have been applied to relate
microstructure with outcome properties including stress
hot spot[123,124] and damage formation,[98] fatigue failure
initiation,[125] fracture energy,[93] ionic conductivity,[100]

and fatigue strength.[122] Using the ability of CNNs to
generate structures, several recent studies have also
made strides toward the inverse problem of designing
microstructures with target properties.[122,126] Limiting
factors in making robust PSP connects is the scarcity of
large data sets that link specific microstructural images
to processing history and/or property outcomes and the
need to capture the property-limiting features, which are
often three dimensional, in 2D micrographs.

C. Interpretability: Opening the Black Box

Scientists and engineers can be hesitant to rely on
‘‘black box’’ algorithms, where the basis for a decision
or prediction is unknown.[127] While this may not be a
significant consideration for characterization tools such
as semantic segmentation where performance can be
assessed straightforwardly (and where the human ver-
sion is not particularly interpretable either), it is critical
for analysis tasks where understanding the basis for
arriving at the conclusion is essential, such as making
PSP connections. How black box CV systems make
decisions is a significant, open question in computer
science with many partial solutions, but none that are
generally applicable across data sets and methods.
Approaches include associating feature vector charac-
teristics with microstructural length,[74] examining filter
activations and characteristic textures,[74] and locating
the image region most salient to decision-making.[128] In
order to extract abstract scientific information from
concrete visual information, the critical step is to
identify the visual signatures of underlying physical
processes. Discovering that signature in the feature
vector how it is processed in the CV/ML pipeline is a
grand challenge in AI-supported microstructural char-
acterization and analysis.

V. CONCLUSIONS

The quantitative representation of microstructure is
the foundational tool of microstructural science, con-
necting the materials structure to its composition,
process history, and properties. Microstructural quan-
tification traditionally involves a human deciding a
priori what to measure and then devising a purpose-built

method for doing so. However, recent advances in data
science, including computer vision (CV) and machine
learning (ML) offer new approaches to extracting
information from microstructural images.
The key function of CV is to numerically encode the

visual information contained in a microstructural image
into a feature vector. The feature vector then provides
input to ML algorithms that find associations and trends
in the high-dimensional image representation. CV/ML
systems for microstructural characterization and analysis
span the taxonomy of image analysis tasks, including
image classification, semantic segmentation, object detec-
tion, and instance segmentation. Applications include:

� Visual search, sort, and classification of micrographs
via feature vector similarity.

� Extracting information not readily visible to
humans, such as chemical composition in SEM
micrographs, by using latent information in the
feature vector.

� Performing semantic segmentation ofmicrostructural
constituents with a high accuracy and human-like
judgment about what to look for and what to ignore.

� Combining segmentations based on different feature
types to segment complex structures.

� Finding and bounding all instances of individual
objects, even when they impinge and overlap.

� Segmenting individual objects to enable new capa-
bilities in microstructural image analysis.

A common characteristic among all of these applica-
tions is that they capitalize on the ability of computa-
tional systems to produce accurate, autonomous,
objective, repeatable results in an indefatigable and
permanently available manner. These tools enable new
approaches to microstructural analysis, including the
development of new, rich visual metrics and the discov-
ery of processing-microstructure-property relationships.
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