Skip to main content

Advertisement

Log in

Effect of Stress Relieving Heat Treatment on the Microstructure and High-Temperature Compressive Deformation Behavior of Ti-6Al-4V Alloy Manufactured by Selective Laser Melting

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This study aims to investigate the effect of stress relieving heat treatment on the microstructure and high-temperature compressive deformation behavior of the Ti-6Al-4V alloy, manufactured by selective laser melting. Initial microstructural observation confirmed elongated prior β grains in the building direction of both specimens (as-fabricated and heat-treated specimens). Along with such, the as-fabricated specimen only featured α′-martensite phase, while the heat-treated specimen featured α′-martensite and some α and β phases. Compression tests carried out at room temperature gave yield strengths of 1365 and 1138 MPa for the as-fabricated and heat-treated specimens, respectively. Such values are similar or greater than those of commercial wrought materials. The compressive fracture strain significantly increased after heat treatment. There was a general tendency of reducing yield strength as compressive temperatures increased. At temperatures greater than 700 °C, the as-fabricated and heat-treated specimens achieved similar strength. Microstructural observation after deformation confirmed that the initial microstructure was retained up to temperatures of 500 °C. At 700 °C or greater, both specimens showed drastic microstructural evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Vaezi, H. Seitz, and S. Yang: Int. J. Adv. Manuf. Technol., 2013, vol. 67, pp. 1721–54.

    Article  Google Scholar 

  2. L. Facchini, E. Magalini, and P. Robotti: Rapid Prototyp. J., 2009, vol. 15, pp. 171–78.

    Article  Google Scholar 

  3. C. Qiu, N.J.E. Adkins, and M.M. Attallah: Mater. Sci. Eng. A, 2013, vol. 578, pp. 230–39.

    Article  CAS  Google Scholar 

  4. E.J. Bae, J.H. Kim, W.C. Kim, and H.Y. Kim: J. Adv. Prosthodont., 2014, vol. 6, pp. 266–71.

    Article  Google Scholar 

  5. B. Nie, H. Huang, S. Bai, and J. Liu: Appl. Phys. A, 2015, vol. 118, pp. 37–41.

    Article  CAS  Google Scholar 

  6. S. Bremen, W. Meiners, and A. Diatlov: Laser Techn. J., 2012, vol. 9, pp. 33–38.

    Article  Google Scholar 

  7. F. Abe, K. Osakada, M. Shiomi, K. Uematsu, and M. Matsumoto: J. Mater. Process. Technol., 2001, vol. 111, pp. 210–13.

    Article  CAS  Google Scholar 

  8. Z. Lijing, L. Yingying, S. Shaobo, and Z. Hu: Chin. J. Aeronaut., 2015, vol. 28, pp. 564–69.

    Article  Google Scholar 

  9. D. Gu, Y.C. Hagedorn, W. Meiners, G. Meng, R.J.S. Batista, K. Wissenbach, and R. Poprawe: Acta Mater., 2012, vol. 60, pp. 3849–60.

    Article  CAS  Google Scholar 

  10. M. Simonelli, Y.Y. Tse, and C. Tuck: Annual International Solid Freeform Fabrication Symposium, University of Texas, Austin, TX, 2012.

  11. R.A. Wood: Titanium Alloy Handbook, Metals and Ceramics Information Center, Battelle, Columbus, OH, Dec 1972, publication no. MCIC-HB-02.

  12. J.P. Blanchard, A. Chen, and B. Qiu: Nucl. Instrum. Meth. B, 1993, vol. 82, pp. 63–68.

    Article  CAS  Google Scholar 

  13. M.K. Mcquillan: J. Metall. Rev., 1963, vol. 8, pp. 41–104.

    CAS  Google Scholar 

  14. M. Niinomi: Mater. Sci. Eng. A, 1998, vol. 243, pp. 231–36.

    Article  Google Scholar 

  15. I. Gurrappa: Mater. Charact., 2003, vol. 51, pp. 131–39.

    Article  CAS  Google Scholar 

  16. F.H. Froes, H. Friedrich, J. Kiese, and D. Bergoint: JOM, 2004, vol. 56, pp. 40–44.

    Article  CAS  Google Scholar 

  17. Q. Huang, X. Liu, X. Yang, R. Zhang, Z. Shen, and Q. Feng: Front. Mater. Sci., 2015, vol. 9, 373–81.

    Article  Google Scholar 

  18. B. Vrancken, L. Thijs, J.P. Kruth, and J.V. Humbeeck: J. Alloy Compd., 2012, vol. 541, 177–85.

    Article  CAS  Google Scholar 

  19. G.M.T. Haar and T.H. Becker: Materials, 2018, vol. 11(1), p. 146.

  20. H.K. Rafi, T.L. Starr, and B.E. Stucker: Int. J. Adv. Manuf. Technol., 2013, vol. 69, 1299–1309.

    Article  Google Scholar 

  21. T. Vilaro, C. Colin, and J.D. Bartout: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3190–99.

    Article  Google Scholar 

  22. S. Leuders, M. Thone, A. Riemer, T. Niendorf, T. Troster, H.A. Richard, and H.J. Maier: Int. J. Fatigue, 2013, vol. 48, pp. 300–07.

    Article  CAS  Google Scholar 

  23. Y.K. Kim, S.H. Park, J.H. Yu, B. AlMangour, and K.A. Lee: Mater. Sci. Eng. A, 2018, vol. 715, pp. 33–40.

    Article  CAS  Google Scholar 

  24. B. Baufeld, O.V.D. Biest, and R. Gault: Mater. Des., 2010, vol. 31, pp. S106–S111.

    Article  CAS  Google Scholar 

  25. S.L. Campanelli, N. Contuzzi, A.D. Ludovico, F. Caiazzo, F. Cardaropoli, and V. Sergi: Materials, 2014, vol. 7, pp. 4803–22.

    Article  Google Scholar 

  26. T. Becker, M.V. Rooyen, and D. Dimitrov: S. Afr. J. Ind. Eng., 2015, vol. 26, pp. 93–103.

    Google Scholar 

  27. M. Simonelli, Y.Y. Tse, and C. Tuck: Metall. Mater. Trans. A, 2014, vol. 45A, 2863–72.

    Article  Google Scholar 

  28. T.J. Ruggles, T.M. Rampton, A. Khosravani, and D.T. Fullwood: Ultramicroscopy, 2016, vol. 164, pp. 1–10.

    Article  CAS  Google Scholar 

  29. M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2738–46.

    Article  Google Scholar 

  30. S.H. Joo, H. Kato, M.J. Jang, J. Moon, C.W. Tsai, J.W. Yeh, and H.S. Kim: Mater. Sci. Eng. A, 2017, vol. 689, pp. 122–33.

    Article  CAS  Google Scholar 

  31. L. Thijs, F. Verhaeghe, T. Craeghs, J.V. Humbeeck, and J.P. Kruth: Acta Mater., 2010, vol. 58, pp. 3303–12.

    Article  CAS  Google Scholar 

  32. L.E. Murr, E.V. Esquivel, S.A. Quniones, S.M. Gaytan, M.I. Lopez, E.Y. Martinez, F. Medina, D.H. Hernadez, E. Martinez, J.L. Martinez, S.W. Stafford, D.K. Brown, T. Hoppe, W. Meyers, U. Lindhe, and R.B. Wicker: Mater. Charact., 2009, vol. 60, pp. 96–105.

    Article  CAS  Google Scholar 

  33. B. Vandenbroucke and J.P. Kruth: Rapid Prototyp. J., 2007, vol. 13, pp. 193–203.

    Article  Google Scholar 

  34. L. Facchini, E. Magalini, P. Robotti, A. Molinari, S. Hoges, and K. Wissenbach: Rap. Prototyp. J., 2010, vol. 16, pp. 450–59.

    Article  Google Scholar 

  35. M. Vanderhasten, L. Rabet, and B. Verlinden: Metalurgija, 2005, vol. 11, pp. 195–200.

    Google Scholar 

  36. J.A. Hines and K.S. Vecchio: Acta Mater., 1997, vol. 45, pp. 635–49.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by the Korean Institute of Materials Science, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kee-Ahn Lee.

Additional information

Manuscript submitted April 10, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, YK., Park, SH., Kim, YJ. et al. Effect of Stress Relieving Heat Treatment on the Microstructure and High-Temperature Compressive Deformation Behavior of Ti-6Al-4V Alloy Manufactured by Selective Laser Melting. Metall Mater Trans A 49, 5763–5774 (2018). https://doi.org/10.1007/s11661-018-4864-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4864-0

Navigation