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Abstract
Electric vehicle (EV) users who aim to become flexibility providers face a tradeoff between staying in control of charging and 
minimizing their electricity costs. The common practice is to charge immediately after plugging in and use more electricity 
than necessary. Changing this can increase the EV’s flexibility potential and reduce electricity costs. Our extended electricity 
cost optimization model systematically examines how different changes to this practice influence electricity costs. Based 
on the Prospect Theory and substantiated by empirical data, it captures EV users’ tradeoff between relinquishing control 
and reducing charging costs. Lowering the need to control charging results in disproportionally large savings in electricity 
costs. This finding incentivizes EV-users to relinquish even more control of charging. We analyzed changes to two charging 
settings that express the need for control. We found that changing only one setting offsets the other and reduces its positive 
effect on cost savings. Behavioral aspects, such as rebound effects and inertia that are widely documented in the literature, 
support this finding and underline the fit of our model extension to capture different charging behaviors. Our findings suggest 
that service providers should convince EV-users to relinquish control of both settings.

Keywords  Smart charging · Electric vehicle · Prospect Theory · Discomfort cost · Direct load control · Prosumer

Introduction

Electric vehicle (EV) users can become flexibility provid-
ers if they adapt their charging behavior to electricity mar-
ket price signals. Charging can be shifted across the time 
parked, providing the vehicle is charged sufficiently by the 
time of departure. Instead of EV-users shifting charging 
manually, providers of smart charging services can facilitate 
this activity with an optimized charging pattern.

Smart charging services based on price signals follow 
a charging pattern that differs from most EV-users. EV-
users charge earlier and use more electricity than necessary 
because of uncertainty (e.g., unpredictable trips), competing 
interests (e.g., the comfort of not having to plan ahead), and 
other biases (e.g., range anxiety) (Libertson 2022).

Two parameters of smart charging services allow EV-
users to control charging according to their needs. The 
targeted state of charge (SOC) determines the requested 
amount of electricity during the charging session. The level 
of direct load control (DLC) defines the degree of freedom 
with which the service provider determines the timing of 
the charging (Gschwendtner et al. 2021; Lehmann et al. 
2022). While the target-SOC can be adapted on a daily basis 
depending on the scheduled trips, the decision about the 
level of DLC is more fundamental. It is usually made when 
selecting a smart charging service and is expressed as the 
right to overrule an optimized charging schedule or imme-
diately charge up to a minimum-SOC (Gschwendtner et al. 
2021; Schmalfuß et al. 2015).

Both parameter choices, target-SOC and DLC-level, 
are based on the EV-users’ tradeoff between minimizing 
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the charging costs and retaining control. How the control 
parameters correspond to charging cost savings depends 
on the interplay between charging and price signals. For 
instance, a request for immediate charging would comply 
with an optimized charging pattern during periods with high 
renewable supply.

Successful smart charging services must consider the 
EV-users’ need for control while ensuring certain degrees 
of freedom for optimizing charging. It is the service 
provider’s challenge to balance these two aspects and gain 
the EV-user’s trust so they relinquish more control (Sloot 
et al. 2022). This balancing act gives rise to the following 
research question: “How to balance the need of EV-users 
to control charging with minimizing their charging costs?”.

To answer this question, we tested different control 
parameters, which reflect the heterogeneous needs for 
control of EV-users, and analyzed the resulting impact 
on the charging costs. This was done in three steps: (I) 
implementing both parameters in the electricity cost 
optimization to represent the EV-users’ needs for control, 
(II) analyzing the correlation between different control 
needs and charging costs if both control parameters are 
adapted consistently (i.e., ranging from a low target-SOC 
and high DLC to a high target-SOC and low DLC), and (III) 
analyzing the correlation if only one parameter is adapted. 
The accepted levels of DLC are based on a vignette survey 
on smart charging services in Germany (n = 1116) (Pelka 
et  al. 2024b). The target-SOCs were taken from a field 
experiment with German prosumers (n = 39) (Gabriel et al. 
2022). For step III, this field experiment also provided data 
about the reduction in the target-SOCs over time due to the 
service provider’s influence. Since no data were available for 
the change of the other parameters, we combined reversed 
levels of DLC with the given target-SOCs in a hypothetical 
scenario.

Answering the above research question bridges the gap 
between empirical research on acceptable control parameters 
and energy system models calculating the flexibility 
potential of cost-optimal charging. We extend the electricity 
cost optimization of an existing agent-based model (ABM) 
by adding discomfort costs for relinquishing control over 
charging. For the latter, we apply the Prospect Theory (PT) 
of Kahneman and Tversky (1979) to capture EV users’ urge 
to charge immediately and for longer than is needed.

The following literature section (Sect.  2) provides 
an overview of the control parameters of EV-users and 
their biases, as well as how charging is implemented in 
ABM (with and without PT). Section 3 describes how we 
applied PT to the electricity cost optimization problem in 
the existing ABM and the underlying data for the model 
extension. The results section (Sect. 4) presents the changes 
in the households’ charging cost depending on different 
combinations of the two control parameters. A sensitivity 

analysis of the other parameters to test the robustness of 
the results can be found in Appendix E. The results are 
discussed and conclusions are drawn in Sects. 5 and 6.

Modeling charging behavior

This section describes the literature on charging behavior, 
including biases and the existing implementations of such 
behavior in energy system models.

Charging behavior and biases

The literature on EV charging behavior has expanded 
rapidly over the last few years. The adoption of EVs by 
new user groups indicates how, where, and when people 
charge them and may evolve further. After an initial focus 
on technical charging aspects, empirical insights into 
behavioral aspects are now also available (Sovacool et al. 
2018; Krueger and Cruden 2020). The lack of alternative 
charging points, such as public charging stations, has 
resulted in EV-users primarily charging at home. The 
reported stress due to the lack of charging alternatives 
has resulted in the widespread practice of always fully 
charging the battery (Delmonte et  al. 2020; Libertson 
2022).

Most users charge their EVs when arriving home in the 
evening (Morrissey et al. 2016). Charging shifts are most 
acceptable at night (Lehmann et al. 2022). While some 
research has explored the acceptance of self-executed 
shifts based on variable tariffs (Delmonte et al. 2020), 
most studies have examined smart charging services 
controlled by third parties (García-Villalobos et al. 2014). 
Constraints set for controlled charging mainly involve 
technical dimensions of the battery (volume, capacity), 
the conditions when the EV is plugged in (connection 
duration, start-SOC), and the requirements for departure 
(departure time, target-SOC) (Schmalfuß et al. 2015).

Control by third parties requires measures to guarantee 
that EV-users retain control of their charging and ensure 
that their mobility needs are covered. A minimum-
SOC that needs to be reached after plugging in the EV 
is often stated as a key prerequisite for joining smart 
charging services (Bailey and Axsen 2015; Geske and 
Schumann 2018; Schmalfuß et  al. 2015). The largest 
class in the survey of Bailey and Axsen (2015) (33% of 
the participants) not only refuses a deviation from this 
minimum-SOC but is also willing to pay more for a higher 
SOC. Willingness to pay for additional driving range (35 
to 75 USD per mile) and faster charging (425 to 3250 USD 
per hour) was also detected by Hidrue et al. (2011). The 
participants of the field experiment by Schmalfuß et al. 
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(2015) accepted a minimum-SOC of 30 and 45% of the 
battery volume. Other empirical research has highlighted 
an overriding option for the charging shifts (Yilmaz et al. 
2021) or an immediate charge button as key features for a 
smart charging service (Gschwendtner et al. 2021).

Common charging practice 1: charging immediately after 
plugging in to achieve a certain SOC

These features are in partial conflict with the provision of 
flexibility. This concerns the general participation in smart 
charging services and choosing more ambitious control 
parameters if they participate (e.g., a lower minimum or 
departure SOC) (Axsen et al. 2017; Sovacool et al. 2018). 
Even though EV-users were significantly motivated to 
contribute to grid stability and renewable integration, 
the survey evaluation of Will and Schuller (2016) ranked 
safeguarding flexible mobility needs as equally important. 
Having to plan ahead, and plug in their EVs more frequently, 
as well as being more dependent and less flexible when 
driving, creates discomfort (Gschwendtner et  al. 2021; 
Schmalfuß et al. 2015). Despite larger battery volumes, 
range anxiety and unexpected trips remain the main concerns 
(Noel et al. 2019; Gschwendtner et al. 2021). EV-users argue 
that they can decide to share control but not the flexibility 
they provide since this depends on external factors, such as 
their working patterns, financial resources, and access to 
charging stations (Libertson 2022).

Common charging practice 2: charging more than 
needed and maintaining a certain SOC due to uncertainty 
or comfort

Prospect Theory and its implementations 
of charging behavior

Charging immediately and more than needed creates a 
feeling of comfort. Charging less restricts mobility needs 
and creates discomfort. PT provides a basis for modeling 
this non-linear relation between charging and the perceived 
(dis-)comfort. Following a brief introduction to PT, this 
section describes how charging behavior and other cases of 
residential load shifting are modeled with and without PT.

PT and its sloped value function by Kahneman and 
Tversky (1979) express a diminishing marginal value as 
subject to deviations from a neutral reference point on 
which the function is centered. Two parameters shape the 
marginal value. First, the coefficient lambda � expresses 
the asymmetric value assignment of negative (losses) and 
positive deviations (gains) from the reference point. A loss 
aversion implies that the discomfort created by a negative 
deviation is stronger (2 to 2.5 times in the literature) than 
the comfort of a positive deviation. Referring to common 
charging practice 1, EV-users with stronger loss aversion 
charge more electricity immediately than those with lower 
loss aversion.

Second, the risk attitude exponent alpha � determines the 
slope of the curve. Alpha values close to 0 express a strong 
change in the perceived value, corresponding to strongly 
provoked feelings. Referring to common charging practice 
2, these more erratic EV-users require higher electricity 
prices to accept discharging and offset their strong feelings 
of discomfort. Alpha values close to 1 represent more even-
tempered users and express a more linear relation between 
the perceived value and the reference point change. This 
is associated with so-called rational behavior and is more 
frequently applied in the literature (Klein and Deissenroth 
2017; Kahneman and Tversky 1979, 2019a, b).

In the literature on households’ load-shifting decisions, 
a popular, simplified approach to considering such values 
is to include a fixed discomfort cost parameter in the 
optimization function. This reflects the effort of enforcing 
load-shifting measures of flexible appliances (Reis et al. 
2019; Gonçalves et al. 2019) or deviations from a desirable 
state (e.g., lower thermal comfort due to shifted heat pumps) 
(Tiwari and Pindoriya 2021; Nguyen and Le 2014; Javadi 
et al. 2021). Yan et al. (2021), Esmaili et al. (2018), and 
Mao et al. (2018) determine this desirable state concerning 
EV users’ SOC. If the SOC is too low for the upcoming 
trips, the discomfort costs incite sufficient and foresighted 
charging. The discomfort costs are implemented in a binary 
way, i.e., they occur only in the case of uncovered trips. 
We propose to implement a diminishing marginal value 
of charged electricity since the uncertainty of unexpected 
trips does not provide an exact threshold for needed and not 
needed charged electricity.

In residential energy research, PT is often applied to 
reflect uncertainty in the availability of resources, such 
as limited charging infrastructure, weather-dependent 
renewable supply, and price risks in the energy market. The 
strategies implemented to handle such uncertainties involve 
purchasing hedging products of service providers (Bruninx 
2021; Yao et al. 2020), using resources earlier under less 
financially attractive conditions (Liu et al. 2014; Hu et al. 
2019; Wang and Saad 2015; Mediwaththe and Smith 2018) 
or placing more conservative pricing bids (Shuai 2022; 
Barabadi and Yaghmaee 2019). Charging applications of 
PT represent risk preferences towards fluctuating prices, 
range anxiety, and limited charging infrastructure. Despite 
its fit, PT has not been used so far to examine the common 
practices of charging immediately and maintaining a certain 
SOC level.

We investigate this research gap based on a mixture of 
recently collected empirical data on charging behavior 
and well-established PT parameters. For instance, Klein 
and Deissenroth (2017) found that German household PV 
investments are driven by total revenue and relative change 
due to regulatory uncertainty.
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Materials and methods

This section describes the experimental design, its methods 
and materials. The latter comprises the existing ABM model 
with its electricity cost-minimization (Sect.  3.2.1) and our 
discomfort cost extension based on PT (Sect. 3.2.2), as well 
as the underlying data (Sect. 3.3).

Experiment design and scenarios

We examine the research question “How to balance the 
need of EV-users to control charging with minimizing 
their charging costs?” in three steps: (I) implementing both 
parameters in the electricity cost optimization to represent 
the EV-users’ control needs, (II) analyzing the correlation 
between different control needs and charging costs if both 
control parameters are adapted consistently, and (III) 
analyzing the correlation if only one parameter is adapted.

To validate whether the resulting charging pattern of the 
discomfort cost extension imitates the common charging 
practices identified in the literature (Sect. 2.1, Step I), we 
compared one scenario without (reference scenario, see 
Table 1) and one with the discomfort cost extension (need 
for control scenario). In Step II, we compare the differences 
between the household groups in the need for control 
scenario to examine the impact of varying needs to retain 
control on the charging costs.

For Step III, we adapt one control parameter of the need 
for control scenario to examine its impact on the charging 
costs. One control parameter, the target-SOC, was adapted 
based on empirical app data from a field experiment 
(lowered target-SOC scenario) (Pelka et al. 2024a). Since 
the data for the other control parameter, DLC-level, do 
not involve changes over time, we analyzed its impact in 
an explorative manner by reversely exchanging its values 
among the groups (reverse scenario). For instance, a high 
DLC-level is (counterintuitively) assigned to households 
with high control needs.

In each step, the main outcome variable, charging costs 
per household, is compared between two scenarios or 
between household groups that differ with regard to their 
need to control charging. As another outcome variable, we 
analyze the charging pattern of their EVs to explain cost 
differences. The outcome variables are calculated using the 
ABM described in Sect. 3.2. In the ABM, the electricity 
cost-minimization function is extended by the discomfort 
cost of having a low SOC. In real life, households control 
this discomfort level by setting a target-SOC and DLC-
level in their smart charging app. We capture their different 
needs to retain control by integrating both settings as control 
parameters in the discomfort cost extension.

Model

The modeling is based on an ABM developed by Kühnbach 
et  al. (2022). It consists of a cost-minimization for 
prosuming agents that are embedded in a simulated German 
electricity market. To answer our research question, the cost-
minimization was extended by the discomfort cost of having 
a low SOC based on the assumption that EV-users are only 
willing to pay for the electricity charged if the discomfort of 
having a low SOC is higher than the electricity costs. The 
discomfort costs diminish with a higher SOC. Thereby, the 
two common charging practices from Sect. 2.1, charging 
immediately and more than needed, are captured in the 
model. We apply PT to express the diminishing marginal 
discomfort costs.

Before describing the discomfort cost extension, we 
outline the relevant parts of the existing cost-minimization 
model—in particular, the cost-minimization function and the 
constraints for charging the EV. Further information on the 
model can be found in Kühnbach et al. (2022). An overview 
of the variables and parameters is given in Table 4.

Table 1   Scenario overview

Scenario name Elements of the cost-
minimization function

Control parameters differentiated for the groups

Electricity cost Discomfort cost Target-SOC DLC-level

1) Reference (electricity cost only) Applied Not applied – –
2) Need for control (electricity and discomfort costs) Applied Applied Initial target-SOC DLC-level
3.a) Lowered target-SOC, moderate (based on need for 

control)
Applied Applied Lowered target-SOC, moderate DLC-level

3.b) Lowered target-SOC, moderate (based on need for 
control)

Applied Applied Lowered target-SOC, extreme DLC-level

4) Reverse (based on need for need for control) Applied Applied Initial target-SOC DLC-level reverse
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Existing electricity cost‑minimization function

For each prosumer k , a mixed-integer linear optimization 
(MILP) is set up to optimize their electricity consump-
tion given the price signal from the electricity market 
( pbuyingt , p

selling

t ) and their technical constraints. The objec-
tive function, as shown in Eq. (1), minimizes the electricity 
cost incurred over the optimization period of 1 day. This 
includes the cost of purchasing electricity and the revenue 
of selling electricity to the market:

The EV-battery is divided into a flexible and an inflexible 
fraction to meet the constraints of covering the user’s mobil-
ity demand and enabling demand response. The inflexible 
fraction of the EV-battery, called EV, is operated to cover 
the EV-user’s inflexible hourly charging profile Pk

EVtotal,t
 , 

which ensures a sufficient SOC on time to cover the upcom-
ing trips (see Eq. (2)):

The flexible fraction, called EV-flex, is modeled as a stor-
age unit. This can shift charging to periods of low prices of 
p
buying

t  and discharging to periods of high prices of psellingt  . 
The electricity stored in EV-flex can be used to cover the 
inflexible charging profile and household energy demand or 
sold to the market. The stored electricity in time t equals the 
SOC of the previous hour SOCk

t−1
 plus all power inflows and 

minus all power outflows (see Eq. (3)):

In addition to planned trips expressed by the inflexible 
charging profile, we implement additional unexpected ones 
at the level of 20% of the initial SOC. This amount of elec-
tricity Pk,unexpected

0
 is deducted from SOCk

t
 in the first hour 

of the day.
The storage capacity of EV-flex is constrained by Eq. (4):

The usage of both combined battery fractions is con-
strained by the maximum charging power Pk,evMax and dis-
charging power as well as the availability of the EV at the 

(1)
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 ), as depicted in Eqs. (5) 
and (6):

50% of the EV-battery capacity is used as a flexible 
fraction. The target-SOC in the following model extension 
expresses whether EV-users keep a further share of the 
flexible fraction permanently charged (e.g., for unexpected 
trips).

Discomfort cost extension of the cost‑minimization 
function

The marginal value of the charged electricity depends on 
its contribution to meeting the target-SOC. It diminishes 
with an increasing SOC. This means that charging an 
empty EV-battery creates a higher added value than charg-
ing an almost full EV-battery. The sloped value function of 
PT in Kahneman and Tversky (1979) expresses this dimin-
ishing marginal value. In our case, the value function as 
subject to the SOC is centered on the target-SOC ( SOCk

Ref
) 

of the EV-user k as the neutral reference point. If SOCk

t
 is 

lower than SOCk

Ref
 , the EV-user perceives discomfort costs 

at the level of the SOC delta, captured by the discomfort 
notion. If SOCk

t
 is higher than SOCk

Ref
 , the EV-user has an 

increased comfort level, captured by the comfort notion. 
We extend the cost-minimization function with these two 
notions in Eq. (7):

where �k is the weight assigned to the discomfort cost in 
relation to the electricity cost for EV-user k . In other words, 
how willing the EV-user is to compromise on her control 
need for the benefit of more electricity cost savings. The 
weight parameter expresses the level of accepted DLC in 
a reverse manner. A higher weight on the discomfort cost 
expresses a lower level of accepted DLC (i.e., lower will-
ingness to relinquish control). mVk

t
 describes the monetary 

value, which is assigned to the delta between SOCk

t
 and 

SOCk

Ref
 . The parameterization is presented in Sect.  3.3.
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The non-linear relation between the charged electricity 
and discomfort costs is expressed as a mixed-integer non-
linear problem (MINLP), consisting of two if-conditions 
for the comfort and discomfort notions. We decompose the 
MINLP into optimization constraints based on the BigM 
method (Cococcioni and Fiaschi 2021); see Appendix B. 
The large value of BigM combined with a slack variable �t 
expresses the two if-conditions (i.e., whether SOCk

t
 is equal 

to, larger or smaller than SOCk

Ref
 , see constraints (B.2) and 

(B.3)) and the impact of this SOC delta on the discomfort 
costs (called utilityk

t
 , see constraints (B.4)–(B.7)).

The relation between the two cost elements in the 
combined cost-minimization function determines the 
charging and discharging of the EV-battery. We illustrate 
this mechanism based on two stylized examples in Appendix 
C.

Assumptions and data

This section describes how we parameterize the extended 
cost-minimization using empirical data. Four household 
groups are distinguished by varying the two control 
parameters for our comparative analysis, the target-SOC 
and DLC-level, which capture a household’s need to retain 
control of charging (Sect. 3.3.3). The other parameters of the 
households’ technical equipment (Sect. 3.3.1) and the shape 
of the diminishing marginal value (Sect. 3.3.2) are the same 
for all four groups to ensure the comparability of the results.

We base the evaluation on a scenario of the German 
electricity market in 2030, which was developed and vali-
dated by the previous work with this model (Kühnbach et al. 
2022). We adopted the individual profiles used here for the 
inflexible household demand and the configuration of the 
prosumer’s PV and battery systems. From the original 480 
prosuming agents implemented by Kühnbach et al. (2022), 
we selected 80 with EV, PV, and stationary batteries as the 
target group of this analysis. We applied the same profiles 

for the inflexible EV and household demand across all 
groups for comparability. According to the empirical data 
on control needs in Sect. 3.3.3, the smallest group comprises 
9% of households. Therefore, we created a set of seven dif-
ferent profile combinations, which we applied several times 
for larger groups.

Parameters of the households’ technical equipment

The assumptions concerning technical charging aspects 
were taken from the study by Kühnbach et al. (2022). It is 
assumed that EVs are only charged at their home location 
(Scherrer et  al. 2019). The average charging power at 
residential locations is assumed to be 6.2 kW (Gnann and 
Speth 2021). Assuming an EV-battery of 62 kWh, as in 
Kühnbach et al. (2022), we assigned half of the maximum 
storage level to the flexible fraction of the EV-battery (31 
kWh). The installed PV capacity of each prosumer is set to 
8.1 kWp. A battery of 7.8 kWh and a charging power of 7.8 
kWh are assumed for the stationary storage.

Parameters influencing the diminishing marginal value

Parameters influencing the diminishing marginal value are 
alpha and lambda, as well as the monetary value of being 
able to drive. Alpha and lambda are set to well-established 
values (see Table 2) proposed by Kahneman and Tversky 
(1979) and confirmed by other scholars, such as Klein and 
Deissenroth (2017).

Since empirical evidence is missing for the monetary 
value, we randomly assigned electricity market prices based 
on the assumption that EV-users are willing to pay these 
prices for charging and that they reflect the monetary value 
of being able to drive. The randomization expresses the 
time-dependent value of being able to drive, ranging from 
urgent (e.g., need to go to the hospital) to flexible trips (e.g., 
grocery shopping).

Table 2   Behavioral parameters for calculating the discomfort cost

Group (sorted 
from EV-users 
with the lowest 
need for need for 
control to one 
with the highest)

Group size Parameters influencing the 
diminishing marginal value 
(identical for the groups)

Parameters expressing the need to retain control of charging 
(differentiated for the groups)

Alpha Lambda Monetary value DLC-level Initial target-
SOC

Lowered target-
SOC, moderate

Lowered 
target-SOC, 
extreme

DLC-
level 
reverse

# – – [EUR/kWh] – [kWh] [kWh] [kWh] –

G1 7 0.88 2.25 Random 
assignment 
based on 
electricity 
prices

0.211 9.3 7.7 0 0.844
G2 27 0.88 2.25 0.422 17.2 14.2 0 0.633
G3 39 0.88 2.25 0.633 26.7 22.1 1.9 0.422
G4 7 0.88 2.25 0.844 31 25.7 18.6 0.211
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Parameters expressing the need to retain control 
of charging

We varied the parameters expressing the need to retain 
control of charging among the four household groups. We 
used the empirical data collected from German EV-users 
in a field experiment (n = 111) of the Horizon 2020 project 
NUDGE (H2020 NUDGE 2023) for the target-SOC and 
data from a vignette survey (n = 1.116) of a German 
research project for the DLC-level. We applied the data 
set to the larger sample, the vignette survey, for the 
assignment of the 80 model agents into the four household 
groups.

The vignette survey asked 1116 current or prospective 
owners of flexible technologies (in particular, EVs, heat 
pumps, or stationary batteries) to rate the likelihood 
of using four services facilitating the optimization of 
their flexible technologies on a 5-point Likert scale. We 
conducted a linear regression based on the likelihood of 
using a service that forces them to relinquish control with 
the need to retain control as a regressor. The �-coefficient 
of the need to stay in control ( � = 0.221) combined with 
the 5-point Likert scale for usage likelihood (excluding 
the middle response) creates the DLC-level for the four 
groups (see Table 2).

For the assignment to the four household groups, two 
smaller groups (9% respectively) represented the extreme 
need for control and extreme indifference to control based 
on the sample that responded “very unlikely to use” or 
“very likely to use”. The two more moderate household 
groups correspond to the 19% who were unlikely to use 
it and the 35% who were likely to use it (also excluding 
the middle response). Further information on the vignette 
survey is provided in Pelka et al. (2024b).

In the Horizon 2020 project NUDGE field experiment, 
39 out of the 111 prosuming participants own a 
controllable EV and use a smart charging app that 
automatically optimizes their charging based on the target-
SOC and other parameters. Information on the charging 
optimization is displayed in the app to encourage users to 
set a lower target-SOC (Gabriel et al. 2022). Other studies 
based on this field experiment have shown that such 
information led to a significant reduction in electricity 
costs (Pelka et al. 2024a; Burkhardt et al. 2022).

However, only a small sub-group of eight participants 
frequently interacted with the app and adapted their target-
SOC. We focused on this group to extract the initial target-
SOC, its average, and extreme reduction. The quantiles 
of the minimum target-SOCs were applied as an extreme 
case. For the moderate case, we deducted the standard 
deviation of 17% of the values from the initial target-
SOCs. Appendix D explains how the target-SOCs of the 
field experiment were transformed into model parameters.

Matching the resulting parameters in Table 2 with the 
scenarios in Sect. 3.1, we combined the DLC-level and 
initial target-SOC in the need for control scenario. For 
the scenarios testing the adaptation of one parameter, we 
replaced the initial SOC with the lowered target-SOC or 
the DLC-level with its reversed version.

Changes in the households’ charging costs 
due to their charging practices

The results section is structured by the three steps taken to 
answer the research question “How to balance the need of 
EV-users to control charging with minimizing their charging 
costs?”. Section  4.1 compares the reference (assuming 
EV-users optimize based only on electricity cost) with the 
need for control scenario (also including discomfort costs). 
It shows whether including discomfort costs captures the 
common charging practices of charging immediately and 
for longer than needed (Step I). Section 4.2 compares the 
four household groups of the need for control scenario and 
analyzes how their varying need to retain control influences 
their charging cost (Step II). The two control parameters are 
set consistently to represent the group’s high or low need for 
control. Subsequently, we change one control parameter of 
the control need scenario to explore its individual impact 
(Step III). Section 4.3 shows how changes to the target-SOC 
influence charging costs, and Sect. 4.4 shows how changes to 
the DLC-level influence these costs.

For all steps, we first report the interplay between price 
signals, control needs and charging patterns. Second, we 
examine the resulting charging costs and pay particular 
attention to the weighted average prices during charging and 
discharging and the average SOC.

Capturing common charging practices 
in the charging optimization control parameter

The reference scenario demonstrates an optimized charging 
pattern based purely on electricity costs: The early morning 
hours with low prices are used to charge the EV-battery with 
electricity from the market (Fig. 1). As the price peaks for the 
first time in the day, electricity is sold to the market. During the 
daytime, self-consumption from the PV system is maximized, 
and electricity from the grid is used to fill the remaining EV 
and stationary battery capacity in expectation of a high-price 
period in the evening. In the evening, both the stationary bat-
tery and the EV-battery cover the electricity demand as far as 
possible, avoiding purchasing expensive electricity from the 
market.

In contrast, the need for control scenario shows how the 
discomfort cost extension distorts the optimized charging 
pattern and captures the common charging practice: EV-users 
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charge earlier (common charging practice 1), realize a higher 
SOC, and maintain this during the day (common charging 
practice 2) (Fig. 1).

Effects of different needs to control the charging

Comparing the household groups with different needs for 
control in the need for control scenario reveals how an 
increased need restricts their response to electricity price 
signals and the local electricity demand. Conversely, a 
lower need for control offers households financial benefits 
since this leads to disproportionally large cost savings. We 
elaborate on these findings, referring to the four household 
groups, which range from group 1 (G1) with the lowest 

control needs (i.e., low target-SOC and high DLC) to group 
4 (G4) with the highest control needs (i.e., high target-SOC 
and low DLC).

EV-users’ price responsiveness decreases with an 
increasing need to control charging. EV-users in G1 and 
G2 with lower control needs charge larger amounts of elec-
tricity during low-price periods and discharge more during 
high-price periods than G3 and G4, which have higher 
control needs (Fig. 1). The lack of price responsiveness in 
G3 and G4 is especially apparent for charging during the 
first hours of the day and for discharging during the last 
hours of the day. These groups charge during the high-
price periods of the first hours to immediately reduce the 
discomfort of having a low SOC. Because of their already 

Fig. 1   Average in- and outflows of the EV-battery over 24 h for sce-
nario control need, distinguished by sources (In_[…] = charged elec-
tricity from […], Out_[…] = discharged electricity provided to […], 
spot = electricity spot market, bat = stationary battery, EV = inflexible 

charging demand, HH = inflexible household demand), the SOC val-
ues in Wh are divided by 10 to fit the primary x-axis
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full EV-battery, they sell their self-generated electric-
ity to the market during the midday price drop instead 
of consuming it themselves (Fig. 2). During the evening 
price peak, they opt for increased comfort and decide to 
maintain the high SOC level up to the last hours of the day 
instead of selling the stored electricity.

For G1 and G2, they balance the discomfort of a low SOC 
level (such as G3 and G4) with realizing cost savings (such 
as the cost-optimal reference scenario). In particular, they 
decided to spread the charging over the first hours of the day 
and the discharging over the last hours of the day.

Restricting the usage of the EV-battery as a flexibility 
source results in a more frequent usage of the stationary 
battery to cover the inflexible demand during price peaks. 
For instance, while the stationary battery only covers 4% 

of the inflexible EV demand in the cost-optimal reference 
scenario, it covers 26–27% for G3 and G4. Figure  2 
shows the cost-optimal usage of the stationary battery in 
the reference scenario. For G3 and G4, the simultaneity 
of inflexible demand and price peaks does not allow the 
stationary battery to sell its electricity during the price 
peaks.

As illustrated in Fig. 3, the less price-responsive charg-
ing pattern of the groups with a higher need to retain con-
trol leads to increased charging costs. The average monthly 
charging cost between the groups ranges between 0.45 EUR 
for G1 and 16.03 EUR for G4. Comparing the changes in the 
control parameters to changes in the charging costs reveals 
a disproportional development. EV-users can save on aver-
age 1.5 EUR per lowered target-SOC by switching from the 

Fig. 2   Average market supply within 24 h, distinguished by sources (bat = stationary battery, EV-flex = EV-battery, PV = PV system), the SOC 
values in Wh are divided by 10 to fit the primary x-axis
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control parameters of G2 to those of G1. In contrast, they 
only save 0.3 EUR per lowered target-SOC when switching 
from G4 to G3 or G3 to G2.

We can identify how the different groups realize cost 
savings in their weighted average prices and average SOC. 
Compared to G3 and G4, G1 and G2, with lower control 
needs, are able to exploit the price spreads and realize 
additional revenues when charging and discharging the 
EV-battery. This practice results in an average SOC above 
their target-SOC. In contrast, the discomfort-driven charging 
of G3 and G4 during the morning price peak leads to high 
purchasing prices (up to 43.84 EUR/MWh) and a radical 
drop in the selling price (up to 5.63 EUR/MWh).

Overall, more relaxed control parameters result in greater 
charging cost savings. To what extent the low costs of G1 are 
due to its low target-SOC or its high DLC-level is explored 
in Sect. 4.4.

Effects of reducing the target‑SOC

The following analysis tests the impact of reducing the 
target-SOC (compared to the need for control scenario) 
while the other control parameter, the DLC-level, remains 
the same. The results indicate that the highest cost savings 
result from a lower target-SOC combined with a high DLC-
level. If a lower target-SOC is combined with a low DLC-
level, the EV-user creates additional comfort (and electricity 
costs) by charging more than targeted. We first elaborate on 
the savings in the case of an extreme target-SOC reduction 
(i.e., a complete reduction to 0 kWh for G1 and G2, a 93% 
reduction for G3 and 40% for G4), followed by a moderate 
target-SOC reduction (i.e., 17% per group).

G1’s higher DLC-level leads to higher relative cost sav-
ings than G2. With a reduction of 7.05 EUR on their average 
monthly charging costs, G1 has the second-highest abso-
lute and the highest relative savings per reduced target-SOC 
(i.e., 0.76 EUR /target-SOC). G2, which displays the largest 

target-SOC reduction (17.2 kWh), has the highest absolute 
cost savings, a reduction of 9.22 EUR, and the second-high-
est relative savings (i.e., 0.54 EUR/target-SOC). The lower 
target-SOC allows both groups to charge more during the 
later morning hours with falling prices and discharge more 
during the evening price peak. Due to its higher DLC-level, 
G1 can align the discharging with the highest prices. In con-
trast, G2 delays discharging for a few hours to minimize the 
remaining time with a lower SOC (see Fig. 4).

Remarkably, G4’s reduction of 12.4 kWh leads to an 
average monthly cost increase of 6.45 EUR (see Fig. 3). 
Since G4 charges more electricity during the first hours of 
the day (see Fig. 4) and reaches the target-SOC faster, it 
creates additional comfort by charging the EV-battery more 
than targeted. Lowering the target-SOC combined with a 
low DLC-level leads to (uncontrolled) surplus charging and 
increases costs.

The slightly increased price responsiveness due to the 
moderate target-SOC reduction leads to minor cost sav-
ings (see Fig. 3). The largest difference compared to the 
need for control scenario is for G3, whose monthly charg-
ing cost even increases by 3.82 EUR. G3’s low DLC-level 
only allows the EV-battery to discharge at the end of the 
day. Although this charging strategy successfully decreases 
discomfort costs over the last hours, it requires additionally 
charged electricity at the beginning of the following day (see 
Fig. 5). Optimization periods longer than 1 day are expected 
to reduce the particularity of discharged electricity at the end 
of the optimization period.

Effects of increasing the levels of direct load control

The previous section demonstrated that additional degrees of 
freedom for one control parameter, the target-SOC, result in 
the greatest cost savings if they align with a similar degree of 
freedom in the other parameters, the DLC-level. We used a 
hypothetical scenario that reversed the values of both param-
eters to assess how varying both control parameters impacts 

Fig. 3   Changes in charging 
costs and underlying factors for 
all scenarios compared to the 
reference scenario (electricity 
cost only)
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Fig. 4   Delta calculation between scenarios lowered target-SOC 
(extreme) and need for control for the in- and outflows of the flex-
ible EV-battery from different sources. Negative values correspond to 

higher values in need for control than in the lowered target-SOC, and 
vice versa. The SOC values in Wh are divided by 10 to fit the primary 
x-axis

Fig. 5   Delta calculation between scenarios lowered target-SOC (mod-
erate) and need for control for the in- and outflows of the flexible EV-
battery from different sources. Negative values correspond to higher 

values in need for control than in the lowered target-SOC scenario, 
and vice versa. The SOC values in Wh are divided by 10 to fit the 
primary x-axis
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the charging cost. We examine the difference in the charging 
costs if one or both parameters are switched from a restric-
tive value (target-SOC of 31 kWh and DLC of 0.844) to a 
relaxed one (target-SOC of 9.3 kWh and/or DLC of 0.211) 
(Table 3).

The switch from a restrictive to a relaxed value results in 
similar charging cost savings for both control parameters. In 
fact, if one parameter is already defined in a relaxed manner, 
the switch of the other parameters creates higher savings 
(16.80 EUR for the target-SOC-switch or 16.20 EUR for 
the DLC-switch) than in the case of an already restrictively 
defined parameter (− 0.63 EUR and 1.23 EUR).

How the two parameters affect the charging costs 
becomes apparent when looking at the weighted average 
prices and the average SOC. A relaxed DLC-level allows 
the service provider to select a more cost-optimal time to 
sell. In particular, the relaxed DLC-level of 0.211 leads 
to higher, more favorable selling prices (53.43 and 47.1 
EUR/MWh) compared to the other combinations with a 
restrictive DLC-level of 0.822 (0.45 and 5.63 EUR/MWh). 
On the other side, a low target-SOC allows the EV-battery 
to be charged less fully, especially not during high-price 
periods, and results in lower purchasing prices (37.18 
and 41.53 EUR/MWh) than the other two combinations 

with a high target-SOC (40.42 and 43.84 EUR/MWh, 
respectively).

Remarkably, combining both restrictive parameters leads 
to lower charging costs (16.03 EUR) than a combination with 
only one restrictive setting (16.80 EUR and 16.20 EUR). If 
only one control parameter is adapted, the other compensates 
for the EV-user’s need for control, leading to higher charging 
costs. The implication is that service providers should aim 
for consistently chosen control parameters.

An easy-to-reach target-SOC combined with a restrictive 
DLC-level act as a strong incentive to charge beyond this 
level for EV-users, since the restrictive DLC-level does not 
permit the service provider to enforce compliance with the 
target-SOC. This additionally charged electricity is apparent 
in the high average SOC of 28.88 kWh.

Conversely, a more relaxed DLC-level (i.e., lower weight 
of 0.211) creates fewer incentives to charge the EV-battery. 
As a result, it takes longer to cover the SOC delta. This 
inertia has a particularly strong effect when combined with 
a restrictive, high target-SOC. EV-users lack the incentive 
to meet the target-SOC and miss opportunities to optimize 
their charging costs by selling electricity.

In a sensitivity analysis in Appendix E, we illustrate the 
effect of varying other parameters from Sect. 3.3.2. Lowering 

Table 3   Comparison of the extreme values of each control parameter w.r.t. the mean monthly costs, the mean SOC, the weighted average pur-
chasing and selling price

Mean monthly charging cost [EUR] Target-SOC analysis Mean SOC [kWh] Target-SOC analysis

9.3 kWh 31 kWh Diff 9.3 kWh 31 kWh Diff

DLC-level 
analysis

0.211 0.45 17.26 16.80 DLC-level 
analysis

0.211 18.66 25.31 6.66
0.844 16.65 16.03 -0.63 0.844 28.88 26.51 -2.37
Diff 16.20 -1.23 Diff 10.22 1.19

Selling price for EV [EUR/MWh] Target-SOC analysis Purchas. price for EV 
[EUR/MWh]

Target-SOC analysis

9.3 kWh 31 kWh Diff 9.3 kWh 31 kWh Diff

DLC-level 
analysis

0.211 53.43 47.11 -6.32 DLC-level 
analysis

0.211 37.18 40.42 3.24
0.844 0.45 5.63 5.19 0.844 41.53 43.84 2.31
Diff -52.98 -41.48 Diff 4.35 3.43

Reading guidance for the tables

Indicator [metric] Target-SOC analysis

Relaxed (9.3 kWh) Restrictive (31 kWh) Diff

DLC-level 
analysis

Relaxed  
(0.211)

Control need G1 Rev. G4 Diff. for relaxed DLC

Restrictive  
(0.844)

Rev. G1 Control need G4 Diff. for restrictive DLC

Diff Diff. for relaxed target-SOC Diff. for restrictive target-
SOC
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the risk attitude exponent alpha � has the strongest impact 
on charging costs. In this case, the marginal discomfort 
cost hardly decreases at the start of the optimization with 
an empty EV-battery and creates no incentive to charge 
electricity. We discuss the impact of the parameters affecting 
the diminishing marginal discomfort cost in Sect. 5.

Discussion

Our extension to the electricity cost optimization model 
of Kühnbach et al. (2022) allows us to systematically vary 
two parameters (target-SOC and DLC-level) that capture 
EV-users’ need to retain control of charging and to explore 
the impact of these variations on the cost of charging in a 
future energy system with a higher share of renewables. If 
both parameters are set to provide greater degrees of freedom 
for the optimization, there is a disproportional increase in the 
additional cost savings. The prospect of additional savings 
incites EV-users to relinquish more control over their 
charging. However, if only one parameter is set to provide 
increased degrees of freedom, the other (constant) parameter 
offsets its positive impact on cost savings. Providers of 
smart charging services should try to incentivize that both 
parameters are set to maximize cost savings.

Our extended cost optimization analysis confirms 
expected findings but also reveals surprising particularities 
of EV-users’ charging behavior. On the one hand, the 
model extension based on Prospect Theory achieves its aim 
of reproducing common charging practices documented 
in the literature. It confirms that a higher need to retain 
control results in higher charging costs. On the other hand, 
the model revealed an unexpected correlation between 
relinquished control and cost savings (in particular, if only 
one parameter is adapted). In the following, we discuss 
how the modeling results support the interpretation of 
these unexpected correlations by exposing the underlying 
mechanism of control needs and charging cost.

The comparison of the household groups with different 
needs to retain control demonstrates that changes in the 
control parameters result only in additional cost savings of 
the same magnitude if parameters are aligned. If EV-users 
decide to switch to more relaxed control parameters, the 
average cost savings are larger for those who already have 
relaxed parameters than for those with more restrictive 
ones. The group with the lowest needs for control realizes 
an almost cost-optimal level of charging costs. A scale-free 
variation of parameters over a larger range would help to 
explore the correlation between control needs and costs. 
Our finding of disproportionally large savings should be 
subjected to further research.

Changing only one parameter demonstrates behavioral 
peculiarities (rebound effects and inertia) that are known 

from other social science studies of residential energy. If 
the target-SOC is reduced, but service providers are not 
allowed to ensure compliance (= low DLC), then EV-users 
are inclined to charge beyond the target-SOC for the 
comfort of having a higher SOC. Since a lower target-SOC 
achieves cost savings by reducing the urge to purchase a 
large amount of electricity during high-price periods, the 
additional charging offsets any potential cost savings. 
Conversely, if service providers are allowed to control the 
charging (= high DLC) but are faced with a high target-
SOC, their focus on optimizing charging costs leads to a 
high SOC delta for an extensive period. The discomfort 
cost of a high SOC delta distorts the optimization. This is 
counterproductive, as the higher DLC-level is supposed to 
create cost savings by selecting a more cost-optimal time to 
sell electricity. Both findings demonstrate that the properties 
of the sloped PT value function are a good fit for capturing 
different behavioral peculiarities. How different slopes and 
their diminishing marginal discomfort costs affect these 
peculiarities is a subject for further research.

The empirically substantiated implementation of 
diminishing discomfort costs that drive EV-users’ charging 
decisions captures common charging practices. It allows 
us to explore the interaction between EV-users and the 
electricity market systematically, based on the empirical 
evidence. Nevertheless, we recommend caution with 
interpreting these findings for a future electricity market for 
two reasons. First, current EV-users’ need to retain control 
might change in the context of our reference electricity 
system in 2030. Second, the composition of the EV-user 
group is likely to change with a more widespread adoption 
of EVs. Future EV-users are less likely to own private 
charging infrastructure and to relinquish more control of 
charging (Pelka et al. 2024b). These changes need to be 
examined in the future using updated empirical data or in 
countries where smart charging services are already more 
widely established.

Updating and extending the existing empirical data basis 
would increase the robustness of the results. Future research 
should seek to substantiate the monetary value of being able 
to drive by collecting subject- and time-dependent values. 
For instance, if they are ill, EV-users in remote areas may 
be willing to pay more for a sufficient SOC to drive to the 
hospital than healthy urban EV-users.

Apart from improving the empirical data basis of the 
model input, we propose two model adaptations to capture 
charging behavior more realistically. On the one hand, 
EV-users are expected to adapt the control parameters 
depending on their mobility experiences. If EV-users 
are unable to make planned trips, high discomfort costs 
occur, and they will select their control parameters more 
restrictively as a result. We recommend implementing 
a learning algorithm based on these experiences and a 
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more targeted occurrence of unexpected trips (so far, 
only randomly implemented for different distances 
and points in time). On the other hand, EV-users are 
expected to optimize their charging over a longer time 
period. Participants of the field experiment described in 
Sect. 3.3.3 reported charging their EV every 3 days on 
average (Gabriel et al. 2022). Longer periods to optimize 
the charging process are likely to augment the differences 
between EV-users with varying control needs. As a future 
model adaptation, such longer charging periods could be 
implemented as longer, rolling optimization horizons.

For policymakers and service providers, our extended 
cost optimization reveals which changes in the control 
parameters have the biggest impact on saving charging 
costs and providing flexibility. Our recommendation to 
encourage equal relaxation of both control parameters 
might be in conflict with EV users’ charging practices. In 
the field experiment described in Sect. 3.3.3, participants 
changed their target-SOC more frequently than their DLC-
level. A possible explanation for this discrepancy is that 
the DLC-level is associated with greater uncertainties 
and other biases (e.g., concern about having to make 
unexpected trips), while the electricity needed to cover 
planned trips is easier to predict on a daily basis. Empirical 
research needs to identify EV users’ preferences and 
conditions for accepting the transfer of control over both 
charging aspects.

Conclusion

We investigated how EV-users’ need to retain control of charg-
ing affects them becoming flexibility providers for the elec-
tricity system. Our results suggest providers of smart charg-
ing services should encourage EV-users to transfer a greater 
degree of control of charging. Ideally, any relaxation of control 
should equally apply to both assessed control parameters, the 
target-SOC and the DLC-level, as they are mutually depend-
ent. We arrived at these results by modeling EV-users’ trade-
off between minimizing the discomfort of relinquishing con-
trol and minimizing the charging costs by implementing two 
cost elements in one cost-minimization function. This novel 
approach extends the current state-of-the-art in modeling 

smart charging. It allows us to consider the EV-users’ need 
for more nuanced estimations of the flexibility potential and 
to make recommendations for the design of smart charging 
services.

Our results show that the charging cost savings for EV-
users increase disproportionally if they lower their need to 
retain control of the charging. The prospect of additional 
savings incites EV-users to relinquish further control. We 
find that both control parameters, the level of DLC and 
the target-SOC of the EV-battery, are equally important 
for realizing electricity cost savings. While lowering the 
target-SOC reduces the purchasing price and the amount 
of charged electricity, higher degrees of freedom when 
choosing the (dis-)charging timing (i.e., higher DLC) have 
a significant impact on the selling price.

We, therefore, encourage service providers to convince 
EV-users to transfer a greater degree of control for both 
parameters equally. If only one parameter is changed, the 
other (constant) parameter offsets the positive impact on cost 
savings. For instance, if the target-SOC is reduced, but the 
service provider is not allowed to ensure its compliance via 
a high level of DLC, EV-users are inclined to charge beyond 
the target-SOC for the comfort of having a higher SOC. In real 
life, this inconsistent setting of control parameters is likely to 
lead to erratic, additional charging activities.

How households charge their EVs is strongly but not 
exclusively driven by electricity costs. Limited time, lack of 
perfect information (e.g., unscheduled trips), and competing 
needs (e.g., comfort of not planning ahead) strongly influence 
their decision-making. We successfully combine these cost- 
and comfort-driven aspects in our model extension and 
recommend further exploiting the synergies between empirical 
and model-based research. As a next step, empirical research 
is required to determine whether EV-users would be willing to 
transfer control over both control parameters equally in light 
of the potential charging cost savings.

Appendix 1: Variables and parameters used 
for the prosumer modeling

See Table 4.
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Appendix 2: Implementation of MINLP 
based on BigM method

This MINLP is implemented with the BigM method 
(Cococcioni and Fiaschi 2021):

(B.1)

���Ck
tot =

t=hmax
∑

t=hmin

[
(

Pk,grid→EV
t + Pk,grid→EVflex

t + Pk,grid→hh
t + Pk,grid→bat

t

)

⋅ pbuyingt

−
(

Pk,EVflex→grid
t + Pk,pv→grid

t + Pk,bat→grid
t

)

⋅ psellingt ] ⋅
(

1 − �kt
)

− �kt ⋅ mV
k
t ⋅ −� ⋅ utilitykt ⋅ vshconnkt

(B.2)SOCk
t
≥ SOCk

Ref
− bigM ∙

(

1 − �t
)

(B.3)SOCk
t
≤ SOCk

Ref
+ bigM ∙ �t

(B.4)utilityk
t
≥ (SOCk

t
− SOCk

Ref
)� − bigM ∙ (1 − �t)

(B.5)utilityk
t
≤ (SOCk

t
− SOCk

Ref
)� + bigM ∙ (1 − �t)

(B.6)utilityk
t
≥ (SOCk

Ref
− SOCk

t
)� − bigM ∙ �t

Table 4   Variables and parameters used for the prosumer modeling

Variables and parameters used for the prosumer modeling in the original minimization of energy costs from Kühnbach et al. (2022)

t ∈ T Hours per optimization interval
k Prosumer k

p
selling

t
Price for selling electricity to the market in hour t

p
buying

t
Price for buying electricity from the market in hour t

Pk
EVtotal ,t

Total EV charging load in hour t

Pk,evMax Minimum and maximum charging power of the EV
�EVf lex,in Efficiency of EV-battery when charging/discharging

SFL
k,EVf lex

min
, SFLk,EVflex

max
Minimum and maximum storage fill level of the EV storage (i.e., the share of the 

EV-battery available for demand response) Parameters declaring if an EV is connected 
at home or mobile in t

Pk,evMin,P
k,evMax Minimum and maximum charging power of the EV PV generation in hour t

P
k,grid→hh

t
Electricity flow from the market to the prosumer

P
k,grid→bat

t
Electricity flow from the market to the home storage system

P
k,bat→grid

t
Electricity flow from the home storage system to the market

P
k,pv→grid

t
Electricity from the PV unit sold to the market

P
k,pv→EV

t
Electricity generated by the prosumer’s own PV unit to charge the EV-battery

P
k,bat→EV
t

Electricity flow from the home storage system to the EV-battery energy content of the 
home storage system in kWh Power flow from spot market to the DR-ready fraction of 
the EV-battery

P
k,grid→EV

t
Power flow from spot market to the mobility fraction of the EV-battery

P
k,EVflex→EV

t
Power flow from the DR-ready fraction of the EV-battery to the mobility fraction of the 

EV-battery energy content of the (virtual) DR-fraction of the EV-battery in kWh Power 
flow from PV to the demand response fraction of the EV-battery

P
k,bat→EVflex

t
Power flow from home storage system to the demand response fraction of the EV-battery

P
k,unexpected

0
Power of unexpected trips deducted from SOCk

t
 in the first hour of the day

vshconnkt
, Binary parameter indicating whether the EV is connected [1] or disconnected from the 

grid [0]
Variables and parameters used for the prosumer modeling in the extended minimization of discomfort costs
�k Weighting parameter, which indicates how much importance prosumer k assigns to the 

discomfort cost in relation to energy cost
SOCk

Ref
Target-SOC that is indicated by prosumer k as needed state of charge to cover her 

mobility needs
mVk

t
Monetary value, which is assigned to the delta between SOCk

t
 and SOCk

Ref

� Coefficient expressing the loss aversion
� Exponent expressing the risk attitude
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In order to assess the risk of finding local optima rather 
than global ones, we implement a linear transformation 
of our MINLP with an exemplary set of parameters. After 

(B.7)utilityk
t
≤ (SOCk

Ref
− SOCk

t
)� + bigM ∙ �t

comparing both approaches, we recognize no significant 
differences and assess the risk of distortions due to local 
optima as small.

Due to risk of local optima, the results of the MINLP 
were compared with those of the linear approximation 
approach. As an example, Fig. 6 depicts the results of both 

Fig. 6   Linear approximation of MINLP

Fig. 7   Comparison of MINLP 
and linearized approach for the 
SOC of the EV-battery

Fig. 8   Comparison of MINLP 
and linearized approach for the 
utility
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approaches for the EV-battery SOC and for the prosumer 
utility. The results are based on one data from a test run: 
both approaches were run for one prosumer for 1 month, 
and the resulting SOCs and utility values were used. As 
Figs. 7 and 8 show, both approaches produce the same 
results except for minimal deviations.

Appendix 3: Stylized examples 
for the relation between both cost elements 
in the combined cost‑minimization function

We illustrate how the relation between the charging and 
discomfort cost determines the charging and discharging of 
the EV-battery by two stylized examples of SOCs for the 
four groups. In Figs. 9 and 10, the four curves represent 
the value function of each prosumer group as subject to the 
quantity of charged electricity. The red line represents the 
electricity costs. The EV-users are willing to pay for the 
charged electricity, as long as the electricity costs are below 
the discomfort costs of having a low SOC. The willingness 
to pay for the charged electricity decreases with a higher 

SOC. We illustrate this based on empty EV-batteries (Fig. 9) 
and EV-batteries that reached half of the target-SOC of the 
four groups (Fig. 10).

Appendix 4: Transforming the lowered 
target‑SOC in the field experiment 
into model parameters for the EV‑battery

The minimum of target-SOC of eight responsive participants 
ranged between 25 and 80% of their EV-battery volume. The 
average standard deviation accounted for 17%. We use the 
standard deviation as a moderate scenario with a medium 
target-SOC and the quartiles of the minimum target-SOC 
as an extreme scenario for the adjusted mobility needs due 
to smart charging services. The target-SOC in % is applied 
to the standard battery volume of the model (62 kWh). In 
addition, 50% of the EV-battery volume, which is withheld 
for its inflexible fraction, are deducted. For the scenario with 
a minimum target-SOC, this implies that no fraction of the 
flexible battery is withheld as safety buffer for group 1 and 

Fig. 9   Simplified illustration of the cost mechanism, which determines the amount of charged electricity based on the electricity price and the 
discomfort cost, when the EV-battery is empty
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2, since the first (35%) and second quartile (45%) is below 
this threshold.

Appendix 5: Sensitivity analysis of other 
behavioral parameters

We presented in Sect. 4 how changes in the target-SOC and 
the DLC-level parameter influence the electricity cost sav-
ings. In the following, we test how a change of the other 
behavioral parameters, particularly the alpha, lambda, and 
monetary value, influence the results. Since the values for 

lambda and alpha are already at the higher end of their 
range, we reduce them (alpha from 0.88 to 0.5, lambda from 
2.25 to 1.125). Furthermore, we test a higher spread of the 
monetary values (2 × its standard deviation), as well as its 
overall reduction (0.5 × its mean). We use the control need 
scenario as the basis for the sensitivity analysis.

As illustrated in Fig. 11, the greatest changes are recog-
nized for the lowered alpha. It entails that the slope of the 
discomfort cost curve increases around the target-SOC and 
shows saturation at the outer side of the curve. The initially 
empty EV-battery combined with this lower alpha leads 

Fig. 10   Simplified illustration of the cost mechanism, which determines the amount of charged electricity based on the electricity price and the 
discomfort cost, when the EV-battery reached half of the target-SOC
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to almost constant discomfort costs, independently of the 
change in SOC. These minor incentives to increase the SOC 
are overruled by the price signals. Consequently, they charge 
their EV more cost optimally (see Fig. 12).

The given implementation of PT successfully captures 
the tradeoff on the amount of charged electricity when a 
high alpha is applied. For the application of smaller alphas, 

another formulation of the SOC delta or a higher initial SOC 
needs to be defined.

The decrease of the discomfort costs in all other 
parameter variations leads to a more cost-optimal charg-
ing behavior of G1. For the other groups with a higher 
DLC-level and target-SOC, the decrease does not substan-
tially change the tradeoff between minimizing charging 

Fig. 11   Changes in electricity 
costs and underlying factors for 
the sensitivity analysis com-
pared to the scenario control 
need. Since the costs are close 
to 0 (0.36 EUR) for G1 in the 
control need scenario, relative 
changes result in extreme values 
on the secondary y-axis (e.g., 
see for 0.5 * mean of mon-
Value). For G1 in alpha = 0.5, 
the change in cost is not even 
displayed (from 0.36 EUR to 
− 8.64 EUR). The same applies 
for the 9 times higher selling 
price (from 5.63 EUR/MWh to 
54.81 EUR/MWh)

Fig. 12   Average in- and out-
flows of the EV-battery within 
24 h for a lowered alpha of 
0.5, distinguished by sources 
(In_[…] = charged electricity 
from […], Out_[…] = dis-
charged electricity provided 
to […], spot = electricity spot 
market, bat = stationary bat-
tery, EV = inflexible charging 
demand, HH = inflexible house-
hold demand)
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and discomfort costs. We expect this result since G1’s low 
target-SOC results in high marginal discomfort costs. Its 
relative decrease has a stronger effect on G1 than the other 
groups.
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