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Abstract Scattering attenuation in short wavelengths has

long been interesting to geophysicists. Ultrasonic coda

waves, observed as the tail portion of ultrasonic wavetrains

in laboratory ultrasonic measurements, are important for

such studies where ultrasonic waves interact with small-

scale random heterogeneities on a scale of micrometers,

but often ignored as noises because of the contamination of

boundary reflections from the side ends of a sample core.

Numerical simulations with accurate absorbing boundary

can provide insight into the effect of boundary reflections

on coda waves in laboratory experiments. The simulation

of wave propagation in digital and heterogeneous porous

cores really challenges numerical techniques by digital

image of poroelastic properties, numerical dispersion at

high frequency and strong heterogeneity, and accurate

absorbing boundary schemes at grazing incidence. To

overcome these difficulties, we present a staggered-grid

high-order finite-difference (FD) method of Biot’s poro-

elastic equations, with an arbitrary even-order (2L) accu-

racy to simulate ultrasonic wave propagation in digital

porous cores with strong heterogeneity. An unsplit con-

volutional perfectly matched layer (CPML) absorbing

boundary, which improves conventional PML methods at

grazing incidence with less memory and better

computational efficiency, is employed in the simulation to

investigate the influence of boundary reflections on ultra-

sonic coda waves. Numerical experiments with saturated

poroelastic media demonstrate that the 2L FD scheme with

the CPML for ultrasonic wave propagation significantly

improves stability conditions at strong heterogeneity and

absorbing performance at grazing incidence. The boundary

reflections from the artificial boundary surrounding the

digital core decay fast with the increase of CPML thick-

nesses, almost disappearing at the CPML thickness of 15

grids. Comparisons of the resulting ultrasonic coda Qsc

values between the numerical and experimental ultrasonic

S waveforms for a cylindrical rock sample demonstrate that

the boundary reflection may contribute around one-third of

the ultrasonic coda attenuation observed in laboratory

experiments.

Keywords Digital porous cores � Ultrasonic coda �
Poroelastic finite-difference modeling � Unsplit

convolutional PML absorbing boundary

1 Introduction

Coda as the result of scattering processes caused by

small-scale heterogeneities has been widely used to

measure the small-scale random heterogeneities in the

lithosphere (Aki 1969; Aki and Chouet 1975). It is

recorded as a continuous wavetrain in the tail portion of

seismograms. In the past decades, coda attenuation has

been commonly measured in the frequency range of

1–30 Hz. It is a useful seismological tool to estimate the

strength of heterogeneity in the lithosphere (Sato 1977;

Wu and Aki 1985). Wave scattering in short wavelengths

has long been interesting to geophysicists. There have
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been some attempts (e.g., Wu 1982; Fehler 1982) to

study scattering attenuation in shorter wavelengths, using

seismogram envelopes to reveal information about inho-

mogeneity on a scale of meters. The envelopes of seis-

mograms of artificial sources by physical modeling have

been used to study scattering processes for higher fre-

quencies (Matsunami 1991; Nishizawa et al. 1997; Sivaji

et al. 2002; Fukushima et al. 2003). Laboratory ultra-

sonic measurements are important for such studies where

ultrasonic waves interact with small-scale random heter-

ogeneities on a scale of micrometers. However, ultra-

sonic wave propagation in heterogeneous porous cores is

an extremely complex process where scattering effects by

individual pores and grains are generally neglected.

Laboratory measurements have shown that the attenua-

tion level predicted by the combined effect of various

mechanisms (e.g., the Biot, mesoscopic-loss, and squirt-

flow mechanisms) underestimates the measured level of

dispersion and attenuation in rocks (e.g., Dvorkin and

Nur 1995; Mavko et al. 1998; Arntsen and Carcione

2001). Carcione and Picotti (2006) discussed the signif-

icance of the mesoscopic loss at seismic frequencies and

compare it with other mechanisms, such as scattering.

Ultrasonic scattering attenuation may occur, particularly

when wavelengths are comparable to the scale of pores

and grains where the scattering effect will be significant

(Wu 1989).

Ultrasonic scattering attenuation can be measured by

ultrasonic coda waves. The ultrasonic coda as a contin-

uous waveform in the tail portion of ultrasonic wave-

trains is composed of a superposition of incoherent

scattered waves by microscale heterogeneities in porous

cores. However, in many cases, only direct waves in

laboratory ultrasonic measurements are used for velocity

and attenuation estimations. The tail portion of an

ultrasonic wavetrain is often ignored, possibly because of

the sample-size limitation of experiments, the contami-

nation of boundary reflections, the unknown heteroge-

neity in rocks, and the complexity of received waveforms

(Stacey and Gladwin 1981). Guo and Fu (2007) and Guo

et al. (2009) made an attempt to measure scattering

attenuation in the ultrasonic frequency range using

ultrasonic coda waves. Because of the contamination of

boundary reflections from the side ends of a sample core,

however, it is difficult to extract pure coda waves from

ultrasonic measurements. Numerical simulations with

absorbing boundary for ultrasonic wave propagation in

digital heterogeneous cores can offer crucial information

on how the boundary reflections affect the P- and

S-codas in laboratory experiments. To this end, a stag-

gered-grid finite-difference (FD) method of Biot’s poro-

elastic equations is presented in this article with unsplit

convolutional perfectly matched layer (CPML) absorbing

boundary. We conduct comparisons of experimental and

numerical wave propagation in heterogeneous porous

cores, which can give important insight into under-

standing the complex process of laboratory ultrasonic

wave propagation.

Targeted at wave propagation in poroelastic media,

various FD numerical modeling techniques for poroelas-

tic wave equations have been extensively studied over

the past decades (e.g., Zhu and McMechan 1991; Dai

et al. 1995; Carcione and Goode 1995; Carcione and

Helle 1999; Wang et al. 2003; Sheen et al. 2006; Masson

et al. 2006; Wenzlau and Muller 2009), most of which

directly solve Biot’s poroelastic equations using con-

ventional staggered-grid FD methods. A comprehensive

review and mathematical details can be referred to Car-

cione (2007). The conventional PML boundary condition

has been successfully implemented in the FD (Zeng et al.

2001) and staggered-grid FD (Zhao et al. 2007) simula-

tion of poroelastic wave propagation. In general, poro-

elastic effects are much more pronounced at sonic and

ultrasonic frequencies than at seismic frequencies.

Gurevich (1996) suggested that all numerical simulations

based on complex rheological models should be com-

pared to an equivalent elastic model. This invokes

comparisons of poroelastic effects between experimental

and numerical data. Gurevich et al. (1999) compared

experiments on a sample made of sintered glass beads to

synthetic seismograms by a global matrix approach. Ar-

ntsen and Carcione (2001) simulated the Biot slow wave

based on the experimental data (Kelder and Smeulders

1997) in water-saturated Nivelsteiner Sandstone. More

recent poroelastic numerical models focused on the

effects of partial saturation (Carcione et al. 2003; Helle

et al. 2003; Picotti et al. 2007) and rock heterogeneity

(Carcione and Picotti 2006). Since digital core technol-

ogy based on X-ray tomography is used increasingly to

visualize the fluid distribution and spatial heterogeneities

in real rocks, it is possible to simulate poroelastic

propagation in authentic heterogeneous rock samples,

which may contribute to the interpretation of laboratory

test series.

Few comprehensive numerical simulations with con-

trollable absorbing boundary have been done for ultra-

sonic coda waves in digital and heterogeneous porous

cores. The simulation of experimental ultrasonic wave-

trains allows for the comprehensive investigation of the

effect of boundary reflections from the side ends on the

P- and S-codas in the laboratory experiment. However, it

challenges numerical techniques by three major issues.

First, the numerical simulation for comparisons to labo-

ratory measurements needs to abstract a numerical model

with its poroelastic properties reflecting the characteris-

tics of true rocks. Micro-tomographic images are made to
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map heterogeneous rock properties in detail, including

both pore and grain structures. Numerical calculations

(Arns et al. 2002) on digital image data are the key to

obtain accurate data for flow and elastic properties.

Improperness of model setting or errors in numerical

elastic properties of core material will affect seriously

comparisons of experimental and numerical propagation

in porous cores. Second, the strong boundary reflections

from the side ends of a sample core contaminate the tail

portion of ultrasonic wavetrains seriously, disabling the

extraction of coda waves from ultrasonic measurements.

Numerical schemes need to incorporate a controllable

and accurate absorbing boundary algorithm. The classical

split PML and conventional unsplit PML methods suffer

from large spurious reflections at grazing incidence and

low-frequency numerical simulation. An unsplit CPML

overcomes this difficulty with less memory and more

computational efficiency (Komatitsch and Martin 2007;

Martin and Komatitsch 2009). The CPML has been

incorporated into the standard (Martin et al. 2008) and

rotated (Zhang et al. 2010) staggered-grid FD simulation

of Biot’s equations to improve absorbing performance at

grazing incidence. The last factor, the strong heteroge-

neity at the pore scale from flow to solid faces, chal-

lenges numerical methods for accurate simulation of

subtle transmission/scattering effects across pores and

grains in digital cores. Numerical dispersions resulting

from high-frequency propagation and strong contrasts in

material will lead to computational instabilities easily, if

numerical schemes are not designed properly. The widely

used standard staggered-grid FD operators (Virieux 1986)

cause instability problems for strong heterogeneities in

medium and high-frequency simulation.

We present a staggered-grid high-order FD method of

Biot’s equations with its accuracy controllable to simu-

late the subtle transmission/scattering effects of elastic

wave across pores and grains in digital cores. In the first

section, we derive the staggered-grid FD formulas with

arbitrary even-order (2L)-order accuracy in space. The

high-order FD approximation for spatial derivatives

enables a controllable operation to reduce the numerical

dispersion for a given accuracy. An alternative way to

calculate FD coefficients is provided. The derivation is

based on the standard Taylor series expansion but is

given in a neat and explicit form. A new layout of grid

cells is given to enhance the stability of our formulas. In

the second section, we incorporate the high-order stag-

gered FD scheme with the CPML to investigate the

effect of boundary reflections on P- and S- codas in

digital porous cores. Comparisons between laboratory

records and the numerical waveforms with controllable

boundary attenuation are made by setting different

thicknesses of absorbing layers. In the final section, we

use the 2L-order FD scheme with the CPML to synthe-

size seismograms for digital and heterogeneous porous

cores. To avoid the difficulty of 3D digital core image,

we simplify the model to be a 2D double-phase medium

by digitalizing a section picture of the real core. The

transmission of ultrasonic waves through the digital core

is simulated with the observation setup exactly the same

as laboratory measurements. Numerical experiments with

a saturated heterogeneous core demonstrate that the

2L FD scheme with the CPML for ultrasonic wave

propagation significantly improves stability conditions at

strong heterogeneity and absorbing performance at

grazing incidence. Particular attention is paid to the

influence of the boundary reflections on the P- and

S-codas. Numerical simulations confirm that the bound-

ary reflections contaminate coda waves seriously, which

can increase the return of energy into the medium,

leading to much larger values of coda quality factor, and

decrease the scattering and intrinsic attenuations.

2 An arbitrary even-order (2L) staggered-grid FD

algorithm for velocity-stress equations of porous

media

As described in Appendix 1, the first-order velocity-stress

formulation of Biot’s equation (Eqs. (34)–(37)) is easily

solved using the conventional staggered-grid FD tech-

niques. The most attractive feature of the staggered-grid

algorithms is that they have higher computational accu-

racy and better stability than the conventional-grid FD

methods. However, the staggered-grid FD algorithms may

still suffer from the problem of instability, especially for

high-frequency propagation and strong heterogeneity in

poroelastic cores. The staggered-grid algorithms have

been improved by Mora (1989), Graves (1996), Moczo

et al. (2002), Saenger and Bohlen (2004), and others.

Based on the standard Taylor series expansion, Pei (2006)

derived an explicit staggered-grid FD method for inves-

tigation of S-wave splitting and S-wave second splitting at

low frequencies in weakly anisotropic media with a low

crack density. The method is extended to a high-order 2D

3C FD code for elastic waves propagation in fractured

coalbeds with strong anisotropy (Pei et al. 2012). Simi-

larly, Liu and Sen (2009) formulated an implicit stag-

gered-grid high-order FD method by a plane wave theory

and the Taylor series expansion. However, these works

were confined to simulate elastic wave propagation in

isotropic and anisotropic media. A staggered-grid high-

order FD solution of poroelastic Eqs. (34)–(37), described

in this section, can be used to model ultrasonic wave

propagation in digital porous cores with strong
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heterogeneity. Particular attention is paid to the numerical

approximation of spatial derivatives.

Assuming L is the half of the differential operator length

and uðxÞ has a (2L ? 1)-order derivative, the (2L ? 1)-

order Taylor expansion of uðxÞ at x ¼ x0 � ð2m�1Þ
2

Dx with

the truncation error OðDx2Lþ3Þ can be written as

u x0 �
ð2m� 1Þ

2
Dx

� �
¼ uðx0Þþ

X2Lþ1

l¼1

ð� 2m�1
2

ÞlðDxÞl

l!
uðlÞðx0Þ

þOðDx2Lþ3Þ; ð1Þ

where Dx is the spatial interval in the x-direction and m ¼
1;2; . . .;L is the number of staggered-grid points. From Eq.

(1), we have

u x0 þ
ð2m � 1Þ

2
Dx

� �
� u x0 �

ð2m � 1Þ
2

Dx

� �

¼ 2
XLþ1

l¼1

2m�1
2

� �2l�1ðDxÞ2l�1

ð2l � 1Þ! uð2l�1Þðx0Þ þ OðDx2Lþ3Þ:

ð2Þ

A staggered-grid FD expression of the first-order spatial

derivative can be expressed with (2L ? 1)-order accuracy

as

Dx
ouðxÞ
ox

x¼x0
j ¼

XL

m¼1

am u x0 þ
ð2m � 1Þ

2
Dx

� ��

�u x0 �
ð2m � 1Þ

2
Dx

� ��
þ OðDx2Lþ3Þ

ð3Þ

Substituting Eqs. (2) into (3), we obtain the following

2L-order expression:

Dxuð1Þðx0Þ ¼ 2
XL

m¼1

XL

l¼1

am

ð2m�1
2

Þ2l�1Dx2l�1

ð2l � 1Þ! uð2l�1Þðx0Þ
"

þam

ð2m�1
2

Þ2Lþ1Dx2Lþ1

ð2L þ 1Þ! uð2Lþ1Þðx0Þ
#

þOðDx2Lþ3Þ;

¼ 2
XL

m¼1

XL

l¼1

am

ð2m�1
2

Þ2l�1Dx2l�1

ð2l � 1Þ! uð2l�1Þðx0Þ

þeLDx2Lþ1uð2Lþ1Þðx0Þ þ OðDx2Lþ3Þ; ð4Þ

where uð1Þðx0Þ ¼ ouðxÞ
ox

jx¼x0
and the truncation error is

eL ¼ 2

ð2L þ 1Þ!
XL

m¼1

am

2m � 1

2

� �2Lþ1

: ð5Þ

Comparing the coefficients of the corresponding terms

on the both sides of Eq. (4), we have

1 31 � � � ð2L � 1Þ1

1 33 � � � ð2L � 1Þ3

..

. ..
. ..

. ..
.

1 32L�1 � � � ð2L � 1Þ2L�1

0
BBB@

1
CCCA

a1

a2

..

.

aL

0
BBB@

1
CCCA ¼

1

0

..

.

0

0
BB@

1
CCA: ð6Þ

The FD coefficients amðm ¼ 1; 2; . . .; LÞ can be obtained

by solving Eq. (6). The solution is

am ¼
ð�1Þmþ1 QL

l¼1;l 6¼m

ð2l � 1Þ2

ð2m � 1Þ
QL�1

l¼1

ð2m � 1Þ2 � ð2l � 1Þ2
h i ; ð7Þ

which can be simplified for L ! 1 to (Fornberg and

Ghrist 1999)

am ¼ 4ð�1Þmþ1

pð2m � 1Þ2
; with eL ¼ 0: ð8Þ

Its coefficients can be also calculated from the staggered

convolution differentiator (Zhou et al. 1994) and the Padé

expansion (Fornberg and Ghrist 1999), but we derived

them in a different way. From Eq. (3), the first-order spatial

derivative can be given by

ouðxÞ
ox

x¼x0
j �

XL

m¼1

am u x0 þ ð2m�1Þ
2

Dx
� �

� u x0 � ð2m�1Þ
2

Dx
� �� �

Dx
;

ð9Þ

which has 2L-order accuracy.

Fig. 1 Layout of a finite-difference grid cell in the XZ-plane for the

staggered-grid formulation in 2D poroelastic media. The node

numbers define the locations of wavefield variables and elastic

parameters that are listed in Table 1
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A staggered-grid FD scheme with 2L-order spatial

accuracy and 2nd-order temporal accuracy is imple-

mented for poroelastic wave propagation. All elastic

constants and wavefield variables are placed at different

positions within a staggered-grid FD cell. The detailed

layout of a cell is shown in Fig. 1, and the physical

parameters at the corresponding position are listed in

Table 1. After a lot of numerical tests, we found that the

calculation is a little more stable using the layout shown

in Fig. 1 than using other layouts (e.g., Virieux 1986).

For the first-order velocity-stress formulation of Biot’s

equation as described in Appendix 1 (Eqs. 34–37), the

discrete form of particle velocity component vx is given

by

vnþ1
x ðiþ; jÞ ¼ vn

xðiþ; jÞf1þ ½D2ðiþ; jÞþD3ðiþ; jÞ�bDtg
�D2ðiþ; jÞDtfLþ

x ½rnþ
xx ði; jÞ�þ L�

z ½rnþ
xz ðiþ; jþÞ�g

þD3ðiþ; jÞDtLþ
x ½sði; jÞ� �Vn

x ðiþ; jÞ½D2ðiþ; jÞ
þD3ðiþ; jÞ�bDt þ f s

x ðiþ; jÞ ; ð10Þ

and

Vnþ1
x ðiþ; jÞ ¼Vn

x ðiþ; jÞf1þ ½D1ðiþ; jÞ þD3ðiþ; jÞ�bDtg
þD3ðiþ; jÞDtfLþ

x ½rnþ
xx ði; jÞ� þ L�

z ½rnþ
xz ðiþ; jþÞ�g

�D1ðiþ; jÞDtLþ
x ½sði; jÞ� � vn

xðiþ; jÞ½D1ðiþ; jÞ
þD3ðiþ; jÞ�bDt þ f f

x ðiþ; jÞ; ð11Þ

where

D1 ¼ q11=ðq2
12 � q11q22Þ

D2 ¼ q22=ðq2
12 � q11q22Þ

D3 ¼ q12=ðq2
12 � q11q22Þ

8<
: ; ð12aÞ

q11 ¼ qsð1 � /Þ þ /qf ðs � 1Þ
q12 ¼ /qf ð1 � sÞ
q22 ¼ s/qf

8<
: ; ð12bÞ

fx is the body force, s ¼ �/p, and the discrete forms of

stress components are expressed as

rnþ
xx ði; jÞ ¼ rn�

xx ði; jÞ þ ½kuði; jÞ þ 2lði; jÞ�DtL�
x vn

xðiþ; jÞ
� 	

þ kuði; jÞDtL�
z vn

z ði; jþÞ
� 	

þQði; jÞDtfL�
x ½Vxðiþ; jÞ�

þ L�
z ½Vzði; jþÞ�g; ð13aÞ

and

rnþ
xz ðiþ; jþÞ ¼ rn�

xz ðiþ; jþÞ þ lði; jÞDtfLþ
x ½vn

z ði; jþÞ�
þ Lþ

z ½vn
xðiþ; jÞ�g; ð13bÞ

where Dt is the time step, and the others are given by

iþ ¼ ði þ 1
2
ÞDx

jþ ¼ ðj þ 1
2
ÞDz



; ð14aÞ

and

rnþ
xx ði; jÞ ¼ rxxðiDx; jDz; ðn þ 1

2
ÞDtÞ

rn�
xx ði; jÞ ¼ rxxðiDx; jDz; ðn � 1

2
ÞDtÞ



; ð14bÞ

with Dz the spatial step in the z-direction.

In the above equations, the spatial-differential functions

are approximated by

and

Table 1 Distribution of elastic constants and wavefields in a grid cell

Node 1 2 3 4

Wavefield variables and elastic

parameters

rxx, rzz, s,

Q,

q11, q22,

q12, b

rxz vx;Vx vz;Vz

The node numbers correspond to those shown in Fig. 1

of ðx;zÞ
ox

���
ðiþ1=2ÞDx

� Lþ
x ½f ði; jÞ� ¼ 1

Dx

PL
l¼1

al f ðx þ lDx; zÞ � f ðx � ðl � 1ÞDx; zÞf g

of ðx;zÞ
ox

���
ði�1=2ÞDx

� L�
x ½f ði; jÞ� ¼ 1

Dx

PL
l¼1

al f ðx þ ðl � 1ÞDx; zÞ � f ðx � lDx; zÞf g

8>><
>>:

; ð15aÞ

of ðx;zÞ
oz

���
ðjþ1=2ÞDz

� Lþ
z ½f ði; jÞ� ¼ 1

Dz

PL
l¼1

al f ðx; z þ lDzÞ � f ðx; z � ðl � 1ÞDzÞf g

of ðx;zÞ
oz

���
ðj�1=2ÞDz

� L�
z ½f ði; jÞ� ¼ 1

Dz

PL
l¼1

al f ðx; z þ ðl � 1ÞDzÞ � f ðx; z � lDzÞf g

8>><
>>:

: ð15bÞ
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The staggered-grid discrete form of other compo-

nents (e.g., rzz and vz) can be obtained in the same

way.

In numerical examples, we set L = 10 to guarantee a

computation accuracy of O(Dt2, Dx20). Two steps are

needed to perform the scheme for poroelastic wave prop-

agation. First, the particle velocities and stresses are ini-

tialized with the initial conditions viðx; z; 0Þ ¼ 0 and

rijðx; z; 0Þ ¼ 0, where the indices i and j represent the

spatial coordinate ðx; zÞ. Second, the initial model is

updated for all time as the following

ð1Þ ojviðx; z; tÞ ! rij x; z; t þ Dt

2

� �
; x; z 2 X; ð16aÞ

ð2Þ ojvi x; z; tð Þ ! rijðx; z; t þ Dt

2
Þ; x; z 2 ~X; ð16bÞ

ð3Þ qðx; zÞ; ojrij x; z; t þ Dt

2

� �
;

fjðx; z; tÞ ! viðx; z; t þ DtÞ; x; z 2 X; ð16cÞ

and

ð4Þ qðx; zÞ; ojrij x; z; t þ Dt

2

� �
;

fjðx; z; tÞ ! viðx; z; t þ DtÞ; x; z 2 ~X; ð16dÞ

where oj is a short form of the first-order spatial derivative,

fjðx; z; tÞ the source wavelet in a type of stress, X the

interior calculation domain, and ~X the absorbing layers to

be addressed in the next section. The stability condition of

the presented scheme for 2D cases is given by the

following inequality:

DtVmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Dx2
þ 1

Dz2

� �s
� 1

PL
l¼1

alj j
; ð17Þ

where Vmax is the maximum phase velocity and al the FD

coefficients.

The accuracy of the proposed high-order staggered FD

method is examined by comparing with the exact solution

given by Dai et al. (1995) for a homogeneous porous

medium with its poroelastic parameters listed in Table 2.

The model is 1,500 9 1,500 m with the grid intervals

being Dx = Dz = 2.5 m. The time sampling interval is

Dt = 0.2 ms. The P-wave source function is a Ricker

wavelet with a dominant frequency of 50 Hz and is placed

in the center of the model. Figure 2 shows an excellent

agreement between the numerical (dotted line) and ana-

lytical (solid line) solutions at the receiver (x = 750 m,

z = 625 m) as functions of time.

3 Unsplit convolutional PML formulation for velocity-

stress poroelastic equations

As described in Appendix 2, the first-order velocity-stress

formulation of Biot’s equation is easily reformulated using

the classical split PML and conventional unsplit PML

methods. There are two main drawbacks associated with

these PML approaches: the requirement of much memory

and computation, and more importantly, the poor perfor-

mance at grazing incidence after discretization. The CPML

technique (e.g., Roden and Gedney 2000; Komatitsch and

Martin 2007) has been developed for improvement at

grazing incidence and low frequency with less memory and

more computational efficiency. This section incorporates

the CPML technique into the velocity-stress formulation of

Biot’s equation. The technique is developed by introducing

memory variables into the CPML model to not have to

explicitly store all the past states of the medium during the

convolution operation, but rather to calculate this convo-

lution in a recursive way.

The key factor leading to the reduction of efficiency of

the traditional PML models at grazing incidence is the

complex coefficient Sk in Eq. (40). The CPML approach

improves the conventional unsplit PML algorithm by

introducing not only the damping profile dk, but also two

other real variables ak � 0 and vk � 1, such that Eq. (40)

becomes

Fig. 2 Comparison of numerical (dots) and analytical (solid line)

solutions of Biot’s equation for a homogeneous porous medium with

its poroelastic parameters listed in Table 2. The vertical component of

the solid phase is shown as function of time. The P-wave source

function is a Ricker wavelet with a dominant frequency of 50 Hz

Table 2 Poroelastic parameters for a homogeneous porous medium

Js (GPa) Jd (GPa) l (GPa) qs (t/m3) / J (D) m Jf (GPa) qf (t/m3) g (mPa)

34.3 8.67 6.61 2.585 0.3 0.55 2.5 2.4 1.04 1.8
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Sk ¼ vk þ
dk

ak þ ix
: ð18Þ

Substituting Eqs. (18) into (39) yields (with o=o~xk

denoted by o~xk)

o~xk ¼
1

Sk

oxk ¼
1

vk

� dk

v2
k ix þ ak þ dk=vkð Þ


 �
oxk

¼ 1

vk

oxk þ �wk; ð19Þ

where �wk is a memory variable that can be rewritten as

ix �wk þ ak þ
dk

vk

� �
�wk ¼ � dk

v2
k

oxk: ð20Þ

Using an inverse Fourier transform to Eq. (20), we

have

owk

ot
þ ak þ

dk

vk

� �
wk ¼ � dk

v2
k

oxk; ð21Þ

where wk is the inverse of �wk. This equation has an iterative

solution of the form:

wn
k ¼ wn�1

k e�ðakþdk=vkÞDt

þ dkoxk

vk akvk þ dkð Þ e�ðakþdk=vkÞDt � 1
� �

; ð22Þ

with the initial condition of iterative solution wkjt¼0 ¼ 0.

Equation (22) is derived simply by solving a first-order

differential equation, leading to the same result in Ko-

matitsch and Martin (2007) obtained by a recursive con-

volution method. We see that the implementation of the

CPML scheme is efficient through introducing the memory

variable wk whose time evolution is governed at each time

step by recursive Eq. (22). It avoids splitting the fields in

the classical split PML method that involves with extensive

memory and computation. It also solves the problem of the

expensive calculation of convolutions in the conventional

unsplit PML approach that requires at each time step a sum

over all the previous time steps. The CPML formulation

can be implemented in the PML region easily in an existing

finite-difference code (without PML) by simply replacing

each spatial derivative ox with ox=vk þ wx and advancing

wk in time using Eq. (22).

In this article, the CPML technique based on Eqs. (18)

and (22) is used for the first-order formulation of the

poroelastic wave equation. Following Collino and Tsogka

(2001), the damping profile dk in the PML region is chosen

as

dkðrÞ ¼ dmax

r

L

� �m

; ð23Þ

where r is the distance from the calculation point to the

inner boundary of the PML region, satisfying 0� r � L

with L being the thickness of the absorbing layer. The

constant dmax is set as

dmax ¼ �ðm þ 1ÞVmax

2L
lnðRÞ; ð24Þ

where Vmax is the maximum unrelaxed speed of the pres-

sure wave, m is the order of the multinomial, usually

chosen as 2 or 3, and R is the theoretical reflection coef-

ficient, set to 10�6 here.

When ak ¼ 0 and vk ¼ 1, Sk reduces to that of the

classical PML method. As in Martin and Komatitsch

(2009), we make ak and vk vary linearly in the PML layer

by taking

akðrÞ ¼ pamax 1 � r

L

� �
; ð25Þ

vkðrÞ ¼ 1 þ vmax�1ð Þ r

L

� �m

; ð26Þ

where the maximum value amax ¼ pf0 set at the inner

boundary of the PML region with f0 being the dominant

frequency of the source wavelet. The maximum value vmax

set at the external boundary of the PML region can be

determined by a series of simulations.

An 2L staggered FD scheme with the CPML absorbing

boundary for the first-order velocity-stress formulation of

2D poroelastic equations can be implemented (i) using Eq.

(22) for the estimation of the memory variables (wn
x;vi

, wn
z;vi

,

wn
x;qi

, wn
z;qi

, wn
x;sij

, wn
z;sij

, wn
x;p, wn

z;p) in the differential oper-

ators; (ii) substituting these memory variables into Eq. (19)

for the implementation of the CPML model to map the

first-order spatial derivatives of all the field components

into the complex stretched coordinates; (iii) substituting

into the velocity-stress poroelastic Eqs. (34–37) to yield

the CPML formulation of poroelastic equations.

A simple two-layer model (314 9 114 m) separated at

the depth of 67 m is used to compare the absorbing effi-

ciency between the conventional and unsplit convolutional

PML methods, with a particular attention paid to the

absorbing performance at grazing incidence. Both the

layers are homogeneous porous media with the physical

parameters of the model listed in Table 3, showing the

same physical parameters in fluid phase, but different in

solid phase. The grid and time sampling intervals are

Dx = Dz = 0.5 m and Dt = 0.05 ms, respectively. The

P-wave source function is a Ricker wavelet with a domi-

nant frequency of 40 Hz and is placed at x = 56 m and

z = 97 m. The absorbing layers with a thickness of 10

grids are attached around the vertical and horizontal

boundaries of the model. The parameters for the absorbing

layers are set to be m = 2 and R = 10-6. The additional

two parameters for the CPML are vmax = 1.0 and

amax = 40.0. Figure 3 shows snapshots of the simulation

for applying the CPML to all the absorbing boundaries (left
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panel) and then replacing the bottom boundary by the

conventional PML (right panel). We see an excellent per-

formance of the CPML in all the absorbing boundaries,

whereas the conventional PML exhibits significant spuri-

ous oscillations along the bottom boundary to which the

waves reach largely at grazing incidence.

4 Applications of numerical simulations to digital

porous core

The rock sample used in this experiment is a high-porosity

(19 %), moderate-permeability (41 mD) massive sand-

stone. It is from about 3,300 m depth and presents amounts

of intra-grain pores and fractures. Figure 4 gives a close up

of the center of the sandstone sample, showing micro-

structures with various sizes of quartz grains and pores. It

comprises moderately sorted, subangular to subrounded

quartz grains (0.1–0.3 mm diameter) in point contact with

one another. Pore size is variable, ranging from about

0.11 mm up to 0.42 mm. The minor clays and glauconite

that are present generally reside in pores, and most grain

boundaries are direct contacts between rigid framework

grains. Intragrain fractures are rare, although grain

boundary cracks are ubiquitous.

How to create a reasonable digital porous core, with a

proper assignment of elastic properties for the different

components in the model, is always controversial for

experimental and numerical comparisons of wave propa-

gation. Numerical calculations (Arns et al. 2002) are con-

ducted to obtain the digital image data for fluid and elastic

Fig. 3 Snapshots of the vertical component of the solid phase, at time

0.06 (top), 0.12, 0.18, 0.24, and 0.3 s (bottom), for a two-layer

homogeneous porous media with their poroelastic parameters listed in

Table 3, where the CPML is implemented on the four sides (left

panel), then replaced by the conventional PML only for the bottom

boundary (right panel). Amplitudes higher than a threshold of 5 % of

the maximum are shown in red (positive) or blue (negative), with the

normalized values raised to the power 0.3 to enhance small

amplitudes that otherwise would not be clearly visible. The cross

indicates the location of the source, and the interface between the two

media is represented by a light line

Fig. 4 Close up of the center of the sandstone sample tested under

triaxial loading in this study, showing microstructures with various

sizes of quartz grains and pores

Fig. 5 Numerical core model with the white and black colors

indicating the quartz grains and clays, respectively, and the oil

saturated in pores is filled in the whole background. The positions of

the source and receiver are indicated by star and triangle, respec-

tively. The vertical and horizontal lines around the core represent the

CPML layer edge

Table 3 Physical parameters for the two-layer model

Parameters Js (GPa) Jd (GPa) l (GPa) qs (t/m3) / J (D) m Jf (GPa) qf (t/m3) g (mPa)

Top layer 35.0 5.0 11.0 2.65 0.2 1.0 2.0 2.25 1.0 1.0

Bottom layer 35.0 2.5 1.0 2.65 0.3 1000.0 2.5 2.25 1.0 1.0
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properties based on the micro-tomographic image of the

real core. The resulting digital core model, as shown in

Fig. 5, basically maps heterogeneous rock properties in

detail, including both pore and grain structures, with the

white and black colors indicating the quartz grains and

interstitial clays residing in pores, respectively. The crucial

problem to be solved is that every point of the image,

however, is a single-phase medium, either the quartz grains

or the interstitial clays. To make Biot’s poroelastic equa-

tions applicable for numerical modeling, we need to build a

digital core model as a double-phase medium.

Based on the concept of a real reservoir of oil/gas, the

fluid exists always as a mixture with sands/clays rather than

a pure fluid pool. Therefore, in this study, oil is set to be

filled in the whole background of the digital core model to

assure the model to be a heterogeneous double-phase

medium. That is, every point of the model, as a sort of

effective double-phase medium, is a mixture of oil with

either quartz grains or interstitial clays residing in pores. It

is obvious that the core is significantly simplified with

attempt to approximate the main characteristics of the true

model. Parameters of the core are shown in Table 4. The

rock matrix of the original core consists of two parts: the

‘‘harder’’ rock frame (mainly quartz grains with a little of

potash feldspar and glauconite) and the ‘‘softer’’ clays

reside in pores between quartz grains (including ankerite,

quartz, clay, and opaque). Both have different porosities.

The space ratio of the quartz grains (white color) and the

clays (black color) residing in pores is about 70 %:30 %

based on the image analysis of thin-section

microphotographs.

To compare with the numerical simulation on poro-

elastic media, we conduct a laboratory experiment using an

ultrasonic system. In the Acoustic Measurements System

with its schematic diagram shown in Fig. 6, the core is cut

to a cylindrical shape, generally 40 mm in diameter and

80 mm in length. It is jacketed with rubber tubing to isolate

it from the confining pressure. The length-to-diameter ratio

of the rock specimen is set to 2 to avoid end constraint

effects (Franklin and Dusseault 1989). The core with oil

saturated is tested under ambient pressure condition in a

triaxial cell along the stress path with a constant effective

pressure. Ultrasonic S waves with a 600-kHz characteristic

Fig. 6 Schematic of the experimental apparatus, consisting of

transmitting piezoelectric transducer (indicated by a star), receiving

piezoelectric transducer (indicated by a filled triangle), jacketed rock

core, rubber jackets, pore fluid inlet, and downstream pore fluid outlet

Fig. 7 Wavefield snapshots of vertical component at different times

of 7.2, 12, 16.8, and 26.4 ls for the numerical core model as shown in

Fig. 5, with different CPML thicknesses np = 1, 5, and 15 grids

Table 4 Physical parameters for the numerical core model

Parameters Js (GPa) Jd (GPa) l (GPa) qs (t/m3) / J (mD) m Jf (GPa) qf (t/m3) g (mPa)

Quartz grain 32.0 10.0 12.0 2.76 0.05 10.86 3.0 – – –

Clay 12.0 1.2 8.0 2.0 0.55 118.66 3.0 – – –

Oil – – – – – – – 0.7 0.88 1.0
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frequency are emitted from a pulse generator (Panametrics

5077PR) in the PZT-crystal mounted on steel endplates.

The receiving transducer is connected to the digitizing

board in the PC through a signal amplifier. The amplitudes

of transmitted elastic waves are monitored by the digital

oscilloscope (Tektronix TDS 420A) at the opposite side of

the sample. The source pulses lasted for 0.25 9 10-5 s.

The maximum duration of receiver is 0.25 9 10-4 s.

The poroelastic simulation for the heterogeneous core

model shown in Fig. 5 is conducted with the accuracy-

controllable CPML layers around the model to demonstrate

the influence of boundary reflections on coda waves. The

ultrasonic S-wave source with a center frequency of

600 kHz used by the laboratory experiment is employed in

the numerical example, shifted in time by 0.000008 ms for

a null initial condition. The grid intervals are

Dx = Dz = 0.00005 m to produce a total size of

1,600 9 800 grid points (exclude the CPML layers). The

time sampling interval is Dt = 0.000008 ms in accordance

with the time step of the source function. The thickness of

the CPML layers varies from 1 to 30 grid points, with the

CPML parameters set to be m = 2, R = 10-6, vmax = 1.0,

and amax = 600000.0. The radial and vertical components

of the stress and velocity are recorded to analyze the effect

of boundary reflections.

Figure 7 shows wavefield snapshots of vertical compo-

nent at different times for the numerical core model as shown

in Fig. 5, with different CPML thicknesses np = 1, 5, and 15

grids. We see a clear onset with maximum amplitude in the

consecutive wavefronts as the direct ultrasonic waves for the

calculation of velocity and attenuation. Wave scattering as a

superposition of incoherent scattered waves in short wave-

lengths exhibits strong apparent attenuation due to the small-

scale random heterogeneities in the digital core. These

snapshots demonstrate the development of ultrasonic scat-

tering waves, as well as the formation of coda as continuous

waves in the tail portion of wavetrains. We also see a bundle

of repetitive boundary reflections from the surrounding side

ends of the numerical core. These boundary reflections,

strong at np = 1, become weaker with the increase of CPML

thicknesses, almost disappearing at np = 15. The excellent

performance of the CPML enables us to control the influence

of boundary reflections on coda waves in the digital core

model and further to estimate the contribution of boundary

reflections to ultrasonic coda attenuation in laboratory

acoustic measurements.

Comparisons of numerical and experimental ultrasonic

waveforms can provide a major impetus to the under-

standing of the detailed characteristics of ultrasonic wave

propagation in porous core. Particularly, the simulation

with absorbing boundary in digital heterogeneous cores

offers insight into the effect of boundary reflections on

ultrasonic coda attenuation. It really challenges the

numerical techniques by the digital image of poroelastic

Fig. 8 Comparisons of laboratory and numerical ultrasonic S-wave trains with the numerical simulation of the core model as shown in Fig. 5

implemented by different CPML thicknesses np = 1, 5, and 15 grids, respectively. The coda window and the calculated coda Qsc value are

marked in the figure
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properties, the numerical dispersion of waves because of

high-frequency propagation and strong heterogeneity, and

the accurate absorbing boundary scheme at grazing inci-

dence. Figure 8 compares numerical and laboratory

waveforms for an experimental ultrasonic S-wave record.

The numerical simulations are conducted with the different

CPML thicknesses np = 1, 5, and 15 grids. A similar coda

window with the time length about 0.017 ms is selected for

both numerical and laboratory records. The coda Qsc values

are calculated by Sato’s (1977) single scattering model and

marked in the figure to demonstrate what a degree the

boundary reflections affect ultrasonic coda attenuation.

We see that the boundary reflection is so strong at

np = 1 grid that significantly contaminates the tail portion

of records, and thus makes the coda Qsc up to 174.3,

considerably larger than the laboratory value 52.8. As

shown in Fig. 6, the rubber jackets are usually used around

the rock sample in the laboratory experiment to weaken

boundary reflections to some degree. For more detail, the

waves in the coda window become low in frequency, as

shown in the top panel of Fig. 8, indicating strong atten-

uation in high-frequent components by multi-scatterings in

the saturated porous media. In the numerical simulation,

however, we use the artificial boundary surrounding the

digital core as shown in Fig. 6, causing total reflections at

np = 0. The faster decay of boundary reflections can be

seen at np = 5 and 15 grids in the CPML thickness as

shown in the lower two panel of Fig. 8. The resulting coda

Qsc values reduce to 34.2 and 33.3, toward a normal level

without the attribution from boundary reflections. This

example indicates that the boundary reflection may con-

tribute around one-third of ultrasonic coda attenuation

observed in the laboratory experiment.

We note that the FD numerical simulation lowers the

frequency of the direct S wave. Theoretically, the high-

order FD approximation with much more orders of Taylor

series for higher accuracy (e.g., Wang et al. 2003; Liu and

Sen 2009; Pei et al. 2012) should not cause such smoothing

effect in the resulting synthetic seismograms. It is obvi-

ously difficult to investigate the smoothing effect because

of the complexity of problem. The main influences on the

problem are possibly associated with the imperfect digital

imaging of poroelastic properties, the digitalization of

porous cores, and the theoretical defect of Biot’s poro-

elastic equations.

5 Conclusions

Ultrasonic coda waves, observed as the tail portion of an

ultrasonic wavetrain in laboratory ultrasonic measure-

ments, are often ignored as noises because of the con-

tamination of boundary reflections from the side ends of a

sample core. Numerical simulations with accuracy-con-

trolled absorbing boundary can provide insight into the

effect of boundary reflections on the coda waves in labo-

ratory experiments. Few comprehensive numerical simu-

lations with accurate absorbing boundary have been done

for ultrasonic coda waves in digital and heterogeneous

porous cores. It really challenges numerical techniques by

digital image of poroelastic properties, numerical disper-

sion at high frequency and strong heterogeneity, and

accurate absorbing boundary schemes at grazing incidence.

In this article, a staggered-grid high-order FD method of

Biot’s poroelastic equations is presented to model ultra-

sonic wave propagation in digital porous cores with strong

heterogeneity. To investigate the influence of boundary

reflections on ultrasonic coda waves, an unsplit convolu-

tional PML absorbing boundary is employed in the simu-

lation to overcome the difficulty of conventional PML

methods at grazing incidence. Numerical experiments with

a saturated heterogeneous core demonstrate that the 2L FD

scheme with the CPML for ultrasonic wave propagation

significantly improves stability conditions at strong heter-

ogeneity and absorbing performance at grazing incidence.

We conduct comparisons of numerical and experimental

ultrasonic S waveforms for a cylindrical rock sample with

40 mm in diameter and 80 mm in length. Numerical sim-

ulations show that the boundary reflections from the arti-

ficial boundary surrounding the digital core decay fast with

the increase of CPML thicknesses, almost disappearing at

the CPML thickness of 15 grids. The excellent perfor-

mance of the CPML enables us to estimate the contribution

of boundary reflections to ultrasonic coda attenuation in

laboratory acoustic measurements. Comparison of the

resulting ultrasonic coda Qsc values between the experi-

mental records and numerical waveforms without the

contamination from boundary reflections indicates that the

boundary reflection may contribute around one-third of the

ultrasonic coda attenuation observed in laboratory

experiments.
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Appendix 1

Elastic wave equation in saturated poroelastic medium

This appendix describes the poroelastic wave equation as

the theoretical background for our staggered-grid FD
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solution with unsplit convolutional PML for simulating

ultrasonic wave propagation in digital porous cores. Using

tensor notation and neglecting source terms, Biot’s equa-

tions for an isotropic fluid-saturated porous medium can be

written in Cartesian coordinates as (Biot 1962)

qb€ui þ qf €wi ¼ ðku þ lÞuj;ji þ lui;jj þ aMwj;ji

qf€ui þ qm€wi ¼ aMuj;ji þ Mwj;ji � b _wi

wi ¼ uðuf
i � uiÞ ;

8<
: ð27Þ

where ui, u
f
i , and wi are, respectively, the solid, fluid, and

relative displacements, is the porosity, the bulk density

qb ¼ /qf þ ð1 � /Þqs, qf and qs are, respectively, the fluid

and solid densities, the effective fluid density qm ¼ sqf

�
/

with s the tortuosity (a parameter characterizing the pore

geometry), and the indices i and j can be 1 or 2 here in 2D

and with the Einstein convention of implicit summation

over a repeated index.

As described in Picotti et al. (2007) and Wenzlau and

Muller (2009), the following simplified relations for the

variables, the Biot coefficient of poroelastic medium a, the

coupling modulus M, the undrained Lamé parameter ku,

and the friction coefficient b of the saturated matrix can be

obtained for an isotropic porous medium

a ¼ 1 � Kd

Ks

; ð28Þ

M ¼ a � /
Ks

þ /
Kf


 ��1

; ð29Þ

ku ¼ Kd �
2

3
l þ a2M; ð30Þ

b ¼ 1

k
¼ g

j
; ð31Þ

Q ¼ ða � /Þ/ Ks

D
; ð32Þ

D ¼ a � / þ /
Ks

Kf

; ð33Þ

with Ks and Kf the bulk moduli of the solid and fluid

phases, respectively, Kd and l the bulk and shear moduli of

the dry porous matrix, respectively, k the fluid conductiv-

ity, g the fluid viscosity, and j the rock permeability.

In this article, the classical velocity-stress formulation is

employed, an approach proposed for elastic wave equations

by Virieux (1986). The velocity-stress version of Biot’s

poroelastic Eqs. (27) can be rewritten as a set of four

evolution equations of the first order for the field variables,

the particle velocities vi ¼ _ui and qi ¼ _wi, the total stress

sij, and the pore pressure p.

q _vi ¼ qmsij;j þ qf p;i þ qf bqi; ð34Þ

q _qi ¼ �qf sij;j � qbp;i � qbbqi; ð35Þ

_sij ¼ lðvi;j þ vj;iÞ þ ðkuvi;i þ aMqi;iÞdij; ð36Þ

_p ¼ �Mðavi;i þ qi;iÞ; ð37Þ

where q ¼ qmqb � qfqf . Together with suitable boundary

conditions, Eqs. (34)–(37) describe poroelastic wave

propagation in heterogeneous porous media.

Several assumptions applied to the Biot linear theory for

poroelastic wave propagation (Mavko et al. 1998) may

affect numerical simulations of ultrasonic wave propaga-

tion in digital porous cores. The small deformation to

ensure linear elastic behavior, the statistically isotropic

porous medium, the large wavelength compared to

microscopic pore scales, and the connected pores consid-

ered in the equations can be satisfied for ultrasonic wave

propagation in fully saturated high-porosity cores with a

small size. It is well known that Biot’s poroelastic Eq. (27)

are frequency-dependent, characterized by the Biot critical

frequency (typically on the order of megahertz). For the

range of high frequencies, the Biot slow P-wave is a

propagating wave mode and scattering attenuation may be

dominant; whereas in the long-wavelength limit, i.e., at

frequencies much lower than the Biot critical frequency,

friction between the solid matrix and the pore fluid

becomes dominant and this wave mode becomes diffusive.

Simulations of the low-frequency Biot poroelastic equa-

tions particularly challenge numerical schemes.

Appendix 2

Conventional PML in velocity-stress poroelastic

formulation

This appendix describes the conventional PML in the

velocity-stress formulation as the base on which the unsplit

convolutional PML is developed for simulating ultrasonic

wave propagation in digital porous cores. The PML

absorbing boundary condition (Bérenger 1994) has proven

to be very efficient to minimize spurious reflections at the

artificial boundaries of the computational domain. The

classic PML has been extensively developed and is now

routinely used in both acoustic and elastic problems. It is

naturally formulated in terms of the first-order velocity-

stress equations in time.

To introduce the PML for wave propagation, Eqs. (34)–

(37) will be reformulated using the complex stretched

coordinates within the matched layers surrounding a 2D

computational domain. As denoted in Zeng et al. (2001)

and Martin et al. (2008), the complex coordinate-stretching

variables are chosen in the frequency domain as

~xk ¼ xk �
i

x

Zxk

0

dkðsÞds ðk ¼ 1; 2Þ ; ð38Þ
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where i ¼
ffiffiffiffiffiffiffi
�1

p
and the damping functions dk = 0 inside

the computational domain and dk [ 0 in the PML region.

In the PML formulation, the regular coordinate variables xk

are replaced by the complex coordinate variables ~xk using

the fact that

o

o~xk

¼ ix
ix þ dk

o

oxk

¼ 1

Sk

o

oxk

; ð39Þ

with

Sk ¼ 1 þ dk

ix
: ð40Þ

The PML formulation is conducted directly by changing

original wave equations written in terms of variables xk into

new equations written in terms of variables ~xk.

The classical split PML formulation of the velocity-

stress poroelastic Eqs. (34)–(37) is implemented by: (i)

transforming the system of equations into the frequency-

domain form, (ii) mapping the resulting equations from the

regular Cartesian coordinates to the complex stretched

coordinates, (iii) splitting the velocity and strain fields into

two components perpendicular and parallel to absorbing

boundaries, and (iv) converting the resulting split equations

back to the time domain to obtain the final classical PML

formulation of the poroelastic equations in a split form. We

take Eq. (34) in 2D as an example with indices i and j

replaced by values 1 and 2 corresponding to coordinates x

and z, respectively. The equation is split into

q _vx
x ¼ qmsxx;x þ qfp;x þ qfbqx

q _vz
x ¼ qmsxz;z



: ð41Þ

By transforming into the frequency domain and refor-

mulating in terms of complex coordinates, Eq. (41)

becomes

ixq�vx
x ¼ qm

1
Sx
�sxx;x þ qf

1
Sx
�p;x þ qfb�qx

ixq�vz
x ¼ qm

1
Sz
�sxz;z

(
: ð42Þ

Converting back to the time domain by an inverse

Fourier transform, we have the classical split PML for-

mulation of Eq. (34)

qð _vx
x þ dxvx

xÞ ¼ qmsxx;x þ qfp;x þ qfb qx þ dx

R
qxdt

� �
qð _vz

x þ dzv
z
xÞ ¼ qmsxz;z



:

ð43Þ

This modified wave equation has exponentially decay-

ing plane wave solutions in the PML. As indicated by

Komatitsch and Martin (2007), the damping coefficient

depends on the direction of wave propagation. It is large

for a wave propagating close to normal incidence, but

becomes significantly smaller for a wave propagating at

grazing incidence.

The split fields in the classical PML formulation require

extensive memory and computation. The PML model can

be derived without splitting the fields, leading to the con-

ventional unsplit PML (Wang and Tang 2003; Song et al.

2005). Note that the inverse Fourier transform of Sk
-1 is

F�1ðS�1
k Þ ¼ dðtÞ � dkHðtÞe�dkt ¼ dðtÞ � fkðtÞ; ð44Þ

where d(t) and H(t) are the Dirac delta and Heaviside

functions, respectively. Converting Eq. (39) back to the

time domain, one gets

F�1 o

o~xk

� �
¼ 1 þ fkðtÞ	ð ÞF�1 o

oxk

� �
; ð45Þ

where * denotes a convolution operation. With Eq. (45),

the unsplit form of Eq. (43) becomes

q _vx ¼ qm 1 þ fxðtÞ	ð Þsxx;x þ qm 1 þ fzðtÞ	ð Þsxz;z

þ qf 1 þ fxðtÞ	ð Þp;x þ qfb 1 þ fxðtÞ	ð Þqx: ð46Þ

The unsplit formulation simplifies the classical split

algorithm without sacrificing the accuracy. It requires

nearly the same amount of computer storage as does the

split-field approach. Unfortunately, the conventional

unsplit PML approach does not give satisfactory results at

grazing incidence because the complex coefficient Sk used

is the same as the split-field approach.
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