Skip to main content

Advertisement

Log in

Solvothermal synthesis of high hydrogen permeable Pd/Ag alloy particles and their hydrogen transport properties

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Pd76Ag24 nanoparticles with high purity and a face-centered cubic structure were prepared using a solvothermal method. The lattice parameter of the Pd77Ag23 nanopowders (space group 225Fm3m) was calculated to be a = 3.9382 Å. The primary particle size was calculated to be 7.7 nm from the X-ray line width using the Scherrer formula, and the interplanar distances was estimated to be 2.272 and 2.000 Å based on indexing on the (111) and (200) plane, respectively. These values are slightly larger than those of pure Pd and smaller than Ag in the (111) plane. The linear relationship of the hydrogen permeation flux with the square root of the hydrogen partial pressure gradient across a 0.26-mm-thick Pd/Ag-YSZ cermet membrane confirmed the major hydrogen transport through the Pd/Ag phase of cermet membranes. The Pd/Ag-YSZ cermet membranes showed significantly higher hydrogen permeation flux than the Pd-YSZ cermet membrane, even though the activation energy for the Pd/Ag alloy cermet membranes showed slightly higher values than that of the Pd cermet membranes. The hydrogen–oxygen dual flux through Pd/Ag-YSZ cermet membranes was confirmed by the maximum hydrogen production by combining the ability of hydrogen production from water with the function of hydrogen separation on composite membranes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sharma A, Kumar S, Tripathi B, Singh M, Vijay YK (2009) Int J Hydrogen Energ 34:3977–3982

    Article  CAS  Google Scholar 

  2. Song SJ, Wachsman ED, Rhodes J, Dorris SE, Balachandran U (2004) Solid State Ionics 167:99–105

    Article  CAS  Google Scholar 

  3. Matsumoto H, Shimura T, Iwahara H, Higuchi T, Yashiro K, Kaimai A, Kawada T, Mizusaki J (2006) J Alloys Compd 408:456–462

    Article  CAS  Google Scholar 

  4. Tosti S, Bettinali L, Violante V (2000) Int J Hydrogen Energ 25:319–325

    Article  CAS  Google Scholar 

  5. Spillman RW, Grace WR (1989) Chem Eng Prog 85:41–62

    CAS  Google Scholar 

  6. Norby T, Larring Y (2000) Solid State Ionics 136:139–148

    Article  Google Scholar 

  7. Song SJ, Lee TH, Wachsman ED, Chen L, Dorris SE, Balachandran U (2005) J Electrochem Soc 152:J125–J129

    Article  Google Scholar 

  8. Balachandran U, Lee TH, Chen L, Song SJ, Picciolo JJ, Dorris SE (2006) Fuel 85:150–155

    Article  CAS  Google Scholar 

  9. Jeon SY, Lim DK, Choi MB, Wachsman ED, Song SJ (2011) Sep Purif Technol 79:337–341

    Article  CAS  Google Scholar 

  10. Pacheco TDA, Llosa TMA, Niwa S, Wakui Y, Mizukami F, Namba T, Suzuki TM (2005) J Membr Sci 247:21–27

    Article  CAS  Google Scholar 

  11. Chen W, Hu X, Wang R, Huang Y (2010) Sep Purif Technol 72:92–97

    Article  CAS  Google Scholar 

  12. Hu X, Chen W, Huang Y (2010) Int J Hydrogen Energ 35:7803–7808

    Article  CAS  Google Scholar 

  13. Wang D, Flanagan TB, Shanahan K (2008) J Phys Chem B 112:1135–1148

    Article  CAS  Google Scholar 

  14. Paglieri SN, Way JD (2002) Sep Purif Rev 31(1):1–169

    Article  CAS  Google Scholar 

  15. Balachandran U, Lee TH, Dorris SE (2007) Int J Hydrogen Energ 32:451–456

    Article  CAS  Google Scholar 

  16. Park CY, Lee TH, Dorris SE, Balachandran U (2010) Int J Hydrogen Energ 35:4103–4110

    Article  CAS  Google Scholar 

  17. Song SJ, Moon JH, Ryu HW, Lee TH, Dorris SE, Balachandran U (2008) J Ceram Process Res 9:123–125

    Google Scholar 

  18. Choi MB, Jeon SY, Hwang HJ, Park JY, Song SJ (2010) Solid State Ionics 181:1680–1684

    Article  CAS  Google Scholar 

  19. Song SJ, Moon JH, Lee TH, Dorris SE, Balachandran U (2008) Solid State Ionics 179:1854–1857

    Article  CAS  Google Scholar 

  20. Kim CH, Lim JS, Choi MB, Kim J, Yang HS, Song SJ (2010) J Electrochem Soc 157(7):E107–E110

    Article  CAS  Google Scholar 

  21. Song SJ, Wachsman ED (2006) Chem Lett 35:1068–1069

    Article  CAS  Google Scholar 

  22. Song SJ, Lee TH, Dorris SE, Balachandran U (2009) Chem Lett 38:344–345

    Article  CAS  Google Scholar 

  23. Jeon SY, Choi MB, Park CN, Wachsman ED, Song SJ (2011) J Membr Sci 382:323–327

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study was the outcome of a Manpower Development Program for Energy & Resources supported by the Ministry of Knowledge and Economy (MIKE), South Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeon, S.Y., Im, H.N., Lim, J.S. et al. Solvothermal synthesis of high hydrogen permeable Pd/Ag alloy particles and their hydrogen transport properties. Ionics 19, 171–176 (2013). https://doi.org/10.1007/s11581-012-0702-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-012-0702-3

Keywords

Navigation