Skip to main content
Log in

Coupled-Resonator-Induced Fano Resonances for Plasmonic Sensing with Ultra-High Figure of Merits

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Fano resonances are numerically predicted in an ultracompact plasmonic structure, comprising a metal-isolator-metal (MIM) waveguide side-coupled with two identical stub resonators. This phenomenon can be well explained by the analytic model and the relative phase analysis based on the scattering matrix theory. In sensing applications, the sensitivity of the proposed structure is about 1.1 × 103 nm/RIU and its figure of merit is as high as 2 × 105 at λ = 980 nm, which is due to the sharp asymmetric Fano line-shape with an ultra-low transmittance at this wavelength. This plasmonic structure with such high figure of merits and footprints of only about 0.2 μm2 may find important applications in the on-chip nano-sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Miroshnichenko E, Flach S, Kivshar YS (2010) Fano resonances in nanoscale structures. Rev Mod Phys 82(3):2257–2298

    Article  CAS  Google Scholar 

  2. Luk’yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9(9):707–715

    Article  Google Scholar 

  3. Verellen N, Sonnefraud Y, Sobhani H, Hao F, Moshchalkov VV, Van Dorpe P, Nordlander P, Maier SA (2009) Fano resonances in individual coherent plasmonic nanocavities. Nano Lett 9:1663–1667

    Article  CAS  Google Scholar 

  4. Chen JJ, Li Z, Zhang X, Xiao JH, Gong QH (2013) Submicron bidirectional all-optical plasmonic switches. Sci Rep 3:1451. doi:10.1038/srep01451, Published online 2013 March 14

    Google Scholar 

  5. Fedotov VA, Rose M, Prosvirnin SL, Papasimakis N, Zheludev NI (2007) Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Phys Rev Lett 99:147401

    Article  CAS  Google Scholar 

  6. Christ A, Martin OJF, Ekinei Y, Gippius NA, Tikhodeev SG (2008) Symmetry breaking in a plasmonic metamaterial at optical wavelength. Nano Lett 8:2171–2175

    Article  CAS  Google Scholar 

  7. Christ A, Ekinei Y, Solak HH, Gippius NA, Tikhodeev SG, Martin OFJ (2007) Controlling the Fano interference in a plasmonic lattice. Phys Rev B 76:201405

    Article  Google Scholar 

  8. Liu N, Kaiser S, Giessen H (2008) Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules. Adv Mater 20:4521–4525

    Article  CAS  Google Scholar 

  9. Liu N, Langguth L, Weiss T, Kastel J, Fleischhauer M, Pfau T, Giessen H (2009) Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat Mater 8:758–762

    Article  CAS  Google Scholar 

  10. Zhang S, Genov DA, Wang Y, Liu M, Zhang X (2008) Plasmon-induced transparency in metamaterials. Phys Rev Lett 101:047401

    Article  Google Scholar 

  11. Hentschel M, Saliba M, Vogelgesang R, Giessen H, Alivisatos AP, Liu N (2010) Transition from isolated to collective modes in plasmonic oligomers. Nano Lett 10:2721–2726

    Article  CAS  Google Scholar 

  12. Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sönnichsen C, Giessen H (2010) Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett 10:1103–1107

    Article  CAS  Google Scholar 

  13. Aydin K, Pryce IM, Atwater HA (2010) Symmetry breaking and strong coupling in planar optical metamaterials. Opt Express 18:13407–13417

    Article  CAS  Google Scholar 

  14. Artar A, Yanik AA, Altug H (2011) Multispectral plasmon-induced transparency in coupled meta-atoms. Nano Lett 11:1685–1689

    Article  CAS  Google Scholar 

  15. Hentschel M, Dregely D, Vogelgesang R, Giessen H, Liu N (2011) Plasmonic oligomers: the role of individual particles in collective behavior. Acs Nano 5:2042–2050

    Article  CAS  Google Scholar 

  16. Rahmani M, Lukiyanchuk B, Ng B, Tavakkoli KGA, Liew YF, Hong MH (2011) Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers. Opt Express 19:4949–4956

    Article  CAS  Google Scholar 

  17. Zhang J, Bai WL, Cai LK, Xu Y, Song GF, Gan QQ (2011) Observation of ultra-narrow band plasmon induced transparency based on large-area hybrid plasmon-waveguide systems. Appl Phys Lett 99:181120

    Article  Google Scholar 

  18. Kekatpure RD, Barnard ES, Cai W, Brongersma M (2010) Phase-coupled plasmon-induced transparency. Phys Rev Lett 104:243902

    Article  Google Scholar 

  19. He YR, Zhou H, Jin Y, He SL (2011) Plasmon induced transparency in a dielectric waveguide, Appl Phys Lett 99:043113

    Article  Google Scholar 

  20. Zhang Y, Darmawan S, Tobing LYM, Mei T, Zhang DH (2011) Coupled resonator-induced transparency in ring-bus-ring Mach–Zehnder interferometer. J Opt Soc Am B 28(1):28–36

    Article  Google Scholar 

  21. Chen JJ, Li Z, Yue S, Gong QH (2011) Compact and high–resolution plasmonic wavelength demultiplexers based on Fano interference. Opt Express 19:9976–9985

    Article  CAS  Google Scholar 

  22. Han Z, Bozhevolnyi SI (2011) Plasmon-induced transparency with detuned ultracompact Fabry–Perot resonators in integrated plasmonic devices. Opt Express 19:3251–3257

    Article  CAS  Google Scholar 

  23. Chen JJ, Li Z, Lei M, Fu XL, Xiao JH, Gong QH (2012) Plasmonic y-splitters of high wavelength resolution based on strongly-coupled-resonator effects. Plasmonics 7:441–445

    Article  CAS  Google Scholar 

  24. Piao X, Yu S, Park N (2012) Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator. Opt Express 20(17):18994–18999

    Article  Google Scholar 

  25. Lu H, Liu XM, Mao D, Gong YK, Wang GX (2011) Induced transparency in nanoscale plasmonic resonator systems. Opt Lett 36:3233–3235

    Article  Google Scholar 

  26. Chen JJ, Wang C, Zhang R, Xiao JH (2012) Multiple plasmon-induced transparencies in coupled-resonator systems. Opt Lett 37:5133–5135

    Article  Google Scholar 

  27. Wang G, Lu H, Liu X (2012) Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency. Opt Express 20:20902–20907

    Article  Google Scholar 

  28. Chen JJ, Li Z, Yue S, Xiao JH, Gong QH (2012) Plasmon-induced transparency in asymmetric T-shape single slit. Nano Lett 12:2494–2498

    Article  CAS  Google Scholar 

  29. Lu H, Liu X, Mao D, Wang G (2012) Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators. Opt Lett 37:3780–3782

    Article  Google Scholar 

  30. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  31. Ameling R, Langguth L, Hentschel M, Mesch M, Braun PV, Giessen H (2010) Cavity-enhanced localized plasmon resonance sensing. Appl Phys Lett 97:253116

    Article  Google Scholar 

  32. Becker J, Truegler A, Jakab A, Hohenester U, Soennichsen C (2010) The optimal aspect ratio of gold nanorods for plasmonic bio-sensing. Plasmonics 5:161

    Article  CAS  Google Scholar 

  33. Haus HA (1984) Waves and fields in optoelectronics. Prentice Hall, New York

    Google Scholar 

  34. Economou EN (1969) Surface plasmons in thin films. Phys Rev 182(2):539–554

    Article  Google Scholar 

  35. Veronis G, Fan S (2005) Bends and splitters in metal–dielectric–metal subwavelength plasmonic waveguides. Appl Phys Lett 87:131102

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant nos. 11204018, 61177085, and 51172030) and the National Basic Research Program of China (Grants 2010CB923200, 2009CB930504, and 2013CB328704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Li, Z., Zou, Y. et al. Coupled-Resonator-Induced Fano Resonances for Plasmonic Sensing with Ultra-High Figure of Merits. Plasmonics 8, 1627–1631 (2013). https://doi.org/10.1007/s11468-013-9580-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9580-4

Keywords

Navigation