Skip to main content
Log in

Advanced solar materials for thin-film photovoltaic cells

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

As one of the most promising solutions for the green energy, thin-film photovoltaic cell technology is still immature and far from large-scale industrialization. The major issue is getting low cost and stable module efficiency. To solve these problems, a large amount of advanced solar materials have been developed to improve all parts of solar cell modules. Here, some new solar material developments applied in different critical parts of chalcogenide thin-film photovoltaic cells are reviewed. The main efforts are focused on improving light trapping and antireflection, internal quantum efficiency and collection of photo-generated carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Green, J. Mater. Sci. Mater. Electron., 2007, 18(S1): S15

    Article  Google Scholar 

  2. J. M. Woodcock, H. Schade, H. Maurus, B. Dimmler, J. Springer, and A. Ri-caud, in: Proc. 14th Europ. Photovolt. Solar Energy Conf., edited by H. A. Ossenbrink, P. Helm, and H. Ehmann, Bedford, UK: Stephans, 1997: 857

    Google Scholar 

  3. J. G. Mutitu, S. Y. Shi, C. H. Chen, T. Creazzo, A. Barnett, C. Honsberg, and D. W. Prather, Opt. Express, 2008, 16(19): 15238

    Article  ADS  Google Scholar 

  4. C. G. Granqvist, Thin Solid Films, 1990, 193–194: 730

    Article  Google Scholar 

  5. D. S. Ginley and C. Bright, Eds., MRS Bull., 2000, 25: 15

  6. H. Kim, J. S. Horwitz, G. P. Kushto, Z. H. Kafafi, and D. B. Chrisey, Appl. Phys. Lett., 2001, 79(3): 284

    Article  ADS  Google Scholar 

  7. D. Wan, F. Huang, Y. Wang, X. Mou, and F. Xu, ACS Appl. Mater. Interfaces, 2010, 2(7): 2147

    Article  Google Scholar 

  8. R. F. Xiao, J. I. D. Alexander, and F. Rosenberger, Phys. Rev. A, 1991, 43(6): 2977

    Article  ADS  Google Scholar 

  9. I. Volintiru, M. Creatore, B. J. Kniknie, C. I. M. A. Spee, and M. C. M. van de Sanden, J. Appl. Phys., 2007, 102(4): 043709–1

    Article  ADS  Google Scholar 

  10. K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayashi, K. Adachi, and H. Nishimura, Rep. Res. Lab. Asahi Glass Co. Ltd., 1992, 42: 129

  11. W. N. Shafarman and J. E. Phillips, Proceedings of the 25th IEEE Photovolt, D. C. Washington: Spec. Conf. IEEE, 1996: 917

    Google Scholar 

  12. V. G. Glebovsky and E. A. Markaryans, J. Alloy. Comp., 1993, 190(2): 157

    Article  Google Scholar 

  13. Y. G. Shen, Mater. Sci. Eng. A, 2003, 359(1–2): 158

    Google Scholar 

  14. T. J. Vink, M. A. J. Somers, J. L. C. Daams, and A. G. Dirks, J. Appl. Phys., 1991, 70(8): 4301

    Article  ADS  Google Scholar 

  15. A. K. Geim and K. S. Novoselov, Nat. Mater., 2007, 6(3): 183

    Article  ADS  Google Scholar 

  16. T. Q. Lin, F. Q. Huang, J. Liang, and Y. X. Wang, Energy & Environmental Science, Published online, DOI: 10.1039/c0ee00512f

  17. Z. S. Wu, S. F. Pei, W. C. Ren, D. M. Tang, L. B. Gao, B. L. Liu, F. Li, C. Liu, and H. M. Cheng, Adv. Mater. (Deerfield Beach Fla.), 2009, 21(17): 1756

    Article  Google Scholar 

  18. K. S. Krishnan and N. Ganguli, Nature, 1939, 144(3650): 667

    Article  ADS  Google Scholar 

  19. A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering, New York: Wiley, 2003

    Book  Google Scholar 

  20. R. B. Petit and C. J. Brinker, Sol. Energy Mater., 1986, 14: 269

    Article  Google Scholar 

  21. C. Brückner, B. Pradarutti, O. Stenzel, R. Steinkopf, S. Riehemann, G. Notni, and A. Tünnermann, Opt. Express, 2007, 15(3): 779

    Article  ADS  Google Scholar 

  22. S. A. Boden and D. M. Bagnall, Appl. Phys. Lett., 2008, 93(13): 133108

    Article  ADS  Google Scholar 

  23. Z. Chen and L. Gao, J. Cryst. Growth, 2006, 293(2): 522

    Article  ADS  Google Scholar 

  24. M. K. Kim, D. K. Yi, and U. Paik, Langmuir, 2010, 26(10): 7552

    Article  Google Scholar 

  25. C. J. Brinker and G. W. Scherer, Sol-Gel Science, San Diego: Academic Press, 1990

    Google Scholar 

  26. A. Pudov, J. Sites, and T. Nakada, Jpn. J. Appl. Phys., 2002, 41(Part 2, No. 6B): L672

    Article  ADS  Google Scholar 

  27. Z. Zhen, Z. Kui, and H. Fuqiang J, Inorg. Mater., 2010, 25: 1

    Google Scholar 

  28. H. Fujiwara, Spectroscopic Ellipsometry Principles and Applications, England: John Wiley & Sons Ltd., 2007

    Google Scholar 

  29. D. Lincot and R. O. Borges, J. Electrochem. Soc., 1992, 139(7): 1880

    Article  Google Scholar 

  30. F. Gode, C. Gumus, and M. Zor, J. Cryst. Growth, 2007, 299(1): 136

    Article  ADS  Google Scholar 

  31. G. Conibeer, M. Green, R. Corkish, Y. Cho, E. C. Cho, C. W. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang, T. Puzzer, T. Trupke, B. Richards, A. Shalav, and K. Lin, Thin Solid Films, 2006, 511: 654

    Article  ADS  Google Scholar 

  32. T. Terasako, Y. Uno, T. Kariya, and S. Shirakata, Sol. Energy Mater. Sol. Cells, 2006, 90(3): 262

    Article  Google Scholar 

  33. N. Stratieva, E. Tzvetkova, M. Ganchev, K. Kochev, and I. Tomov, Sol. Energy Mater. Sol. Cells, 1997, 45(1): 87

    Article  Google Scholar 

  34. A. Rothwarf and K. W. Böer, JPSSC 10(2-B), Progress in Solid-State Chemistry, 1975, 10(part 2): 71

    Article  Google Scholar 

  35. J. H. Schon, V. Alberts, and E. Bucher, Thin Solid Films, 1997, 301(1–2): 115

    Article  ADS  Google Scholar 

  36. S. B. Moorthy, R. Dhanasekaram, and P. Ramasamy, Thin Solid Films, 1991, 198: 209

    Google Scholar 

  37. E. Tzvetkova, N. Stratieva, M. Ganchev, I. Tomov, K. Ivanova, and K. Kochev, Thin Solid Films, 1997, 311(1–2): 101

    Article  ADS  Google Scholar 

  38. A. Zouaoui, M. Lachab, M. L. Hidalgo, A. Chaffa, C. Llinares, and N. Kesri, Thin Solid Films, 1999, 339(1–2): 10

    Article  ADS  Google Scholar 

  39. W. Henkel, H. D. Hochheimer, C. Carlone, A. Werner, S. Ves, and H. G. Von Schnering, Phys. Rev. B, 1982, 26(6): 3211

    Article  ADS  Google Scholar 

  40. M. Hanias, A. N. Anagnoustopoulos, K. Kambas, and J. Spyridelis, Physica B, 1989, 160(2): 154

    Article  ADS  Google Scholar 

  41. J. F. Guillemoles, Thin Solid Films, 2000, 361–362(1–2): 338

    Article  Google Scholar 

  42. A. Zunger, Thin Solid Films, 2007, 515(15): 6160

    Article  ADS  Google Scholar 

  43. J. Yao, C. N. Kline, H. Gu, M. Yan, and J. A. Aitken, J. Solid State Chem., 2009, 182(9): 2579

    Article  ADS  Google Scholar 

  44. M. L. Liu, I. W. Chen, F. Q. Huang, and L. D. Chen, Adv. Mater., 2009, 21(37): 3808

    Article  Google Scholar 

  45. M. L. Liu, F. Q. Huang, L. D. Chen, and I. W. Chen, Appl. Phys. Lett., 2009, 94(20): 202103

    Article  ADS  Google Scholar 

  46. X. Y. Shi, F. Q. Huang, M. L. Liu, and L. D. Chen, Appl. Phys. Lett., 2009, 94(12): 122103

    Article  ADS  Google Scholar 

  47. M. L. Liu, L. B. Wu, F. Q. Huang, L. D. Chen, and J. A. Ibers, J. Solid State Chem., 2007, 180(1): 62

    Article  ADS  Google Scholar 

  48. S. R. Hall, J. T. Szymański, and J. M. Stewart, Can. Mineral., 1978, 16: 131

    Google Scholar 

  49. X. J. wang, M. B. Tang, J. T. Zhao, H. H. Chen, and X. X. Yang, Appl. Phys. Lett., 2007, 90: 232107

    Article  ADS  Google Scholar 

  50. G. S. Nolas, J. Sharp, and H. J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments, New York: Springer, 2001, Chap. 5

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-qiang Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Fq., Yang, Cy. & Wan, Dy. Advanced solar materials for thin-film photovoltaic cells. Front. Phys. 6, 177–196 (2011). https://doi.org/10.1007/s11467-011-0173-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-011-0173-4

Keywords

Navigation