Skip to main content
Log in

Identification of Hercynian shoshonitic intrusive rocks in central Hainan Island and its geotectonic implications

  • Articles
  • Published:
Chinese Science Bulletin

Abstract

An identification has been made of some shoshonitic intrusive rocks in central Hainan Island recently. These rocks are K-rich (K2O=2.9%–5.1%, K2O/Na2O=0.95–2.12), distinctly enriched in LILE and LREE, strongly depleted in Nb, Ta, and moderately depleted in Sr and Ti, with (87Sr/86Sr)i = 0.70859–0.71425 and εNd(t) = (−2.77–−7.49). They were derived from an EM II-type mantle source. The enrichment process is related to metasomatism of depleted mantle caused by a great amount of fluid-melt released from oceanic crust and terrigenous sediments at great depth (eclogite facies) during the subduction of the South China plate under the Indochina-South China Sea plate in the Carboniferous-Early Permian. A SHRIMP U-Pb zircon dating yields a crystallization age of 272±7 Ma for the shoshonitic intrusions, which is coeval with the strongly peraluminous granites found in central Hainan Island. These two kinds of rocks generally possess syn-intrusion ductile deformation structures. Thus they are considered to have been generated during the early stage (syn-thrust phase) of a post-collisional event. The primary magma of shoshonitic rocks was produced at a depth > 80 km by decompression-dehydration melting of previously enriched lithospheric mantle wedge, phlogopite-bearing garnet peridotite, which was in turn caused by the break-off of a descendent slab and upwelling of a hot asthenosphere. The rising of melts was accompanied by crustal contamination and crystallization fractionation (AFC). Combining with other related data, it is proposed that the southwards subduction and amalgamation of the South China plate with the Indo-China-South China Sea plate took place at ca. 287–278 Ma, which was a part of the convergence process of the Pangea supercontinent. The suture zone was probably located along the line of Song Ma-Beibu Gulf-north margin of the Yunkai Mountains-Wuyi Mountains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nelson K D. Are crustal thickness variations in old mountain belts like the Appalachians a consequence of lithospheric delamination? Geology, 1992, 20: 498–502

    Article  Google Scholar 

  2. Bonin B, Azzouni-Sekkal A, Bussy F, et al. Alkali-calcic and alkaline post-orogegic (PO) granite magmatism: petrologic constraints and geodynamic settings. Lithos, 1998, 45: 45–70

    Article  Google Scholar 

  3. Lustrino M. Phanerozoic geodynamic evolution of the circum-Italian realm. Internat Geol Rev, 2000, 42: 724–757

    Article  Google Scholar 

  4. Bonin B. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources ? A Review. Lithos, 2004, 78: 1–24

    Article  Google Scholar 

  5. Hong D W, Zhang J S, Wang T, et al Continental crustal growth and the supercontinental cycle: evidence from the Central Asian Orogenic Belt. J Asian Earth Sci, 2004, 23: 799–813

    Article  Google Scholar 

  6. Lorenz V, Nicholls I A. Plate and intraplate processes of Hercynian Europe during the late Paleozoic. Tectonophysics, 1984, 107: 25–56

    Article  Google Scholar 

  7. Giovanni M, Dennis V K, Eduardo G, et al. Early Permian Pangea ‘B’ to Late Permian Pangea ‘A’. Earth Planet Sci Lett, 2003, 215: 379–394

    Article  Google Scholar 

  8. Veevers J J. Gondwanaland from 650–500 Ma assembly through 320 Ma merger in Pangea to 185–100 Ma breakup: supercontinental tectonics via stratigraphy and radiometric dating. Earth Sci Rev, 2004, 68: 1–132

    Article  Google Scholar 

  9. Matte P. Variscides between the Appalachians and the Urals: similarities and differences between Paleozoic subduction and collision belts. Spec Pap Geol Soc Am, 364, 2002, 239–251

    Google Scholar 

  10. Metcalfe I. Late Palaeozoic and Mesozoic paleogeography of eastern Pangea and Tethys. In: Embry A F, Beauchamp B, Glass D J, eds. Pangea: Global Environments and Resources. Canadian Society of Petroleum Geologists, Memoir, 1994, 17: 97–111

    Google Scholar 

  11. Metcalfe I. Gondwana dispersion and Asian accretion: an overview. In: Metcalfe I, ed. Gondwana Dispersion and Asian Accretion: IGCP 321 Final Results Volume. Rotterdam: Balkema Publications, 1999. 9–28

    Google Scholar 

  12. Hutchison C S. Geological Evolution of SE Asia. Oxford: Oxford University Press, 1989. 1–138

    Google Scholar 

  13. Carter A, Roques D, Bristow C, et al. Understanding Mesozoic accretion in southeast Asian: Significance of Triassic thermotectonism (Indosinian orogeny) in Vietnam. Geology, 2001, 29: 211–214

    Article  Google Scholar 

  14. Ma W P. Paleotethys in South China, Permian orogeny and the eastwards extension of interchange domain. Sci Geol Sin (in Chinese), 1996, 31(2): 105–113

    Google Scholar 

  15. Zhang N, Xia W C. Time-space distribution of late Paleozoic cherts and evolution of respreading trench in South China. Earth Science — J China Univ. of Geosci (in Chinese), 1998, 23(5): 480–486

    Google Scholar 

  16. Ren J S, Wang Z X, Chen B W, et al. Geotectonics of China in Global Scale—A Brief Explanation to Geotectonic Map of China and Neighboring Region (in Chinese). Beijing: Geological Publishing House, 1999, 1–50

    Google Scholar 

  17. Huang J Q, Chen B W. Tethys Evolution of China and Neighboring Region (in Chinese). Beijing: Geological Publishing House, 1987, 18–20

    Google Scholar 

  18. Hu S Z. On the event of Dongwu Movement and its relation with Permian subdivision. J Stratig (in Chinese), 1994, 18(4): 309–315

    Google Scholar 

  19. Hsü K J, Li J L, Chen H H, et al. Tectonics of South China: key to understanding West Pacific geology. Tectonophysics, 1990, 183: 9–39

    Article  Google Scholar 

  20. Chen H H, Sun S, Li J L, et al. Paleomagnetic constraints on early Triassic tectonics of South China. Sci Geol Sin (in Chinese), 1994, 29(1): 1–9

    Google Scholar 

  21. Yin H F, Wu S B, Du Y S, et al. South China defined as part of Tethyan archipelagic ocean system. Earth Sci — J China Univ Geosci (in Chinese), 1999, 24(1): 1–12

    Google Scholar 

  22. Lan C Y, Chung S L, Shen J S, et al. Geochemical and Sr-Nd isotope characteristic of granitic rocks from northern Vietnam. J Asian Earth Sci, 2000, 18: 267–280

    Article  Google Scholar 

  23. Li X H, Zhou H W, Chung S L, et al. Geochemical and Sm-Nd isotopic characteristics of metabasites from central Hainan Island, South China and their tectonic significance. The Island Arc, 2002, 11: 193–205

    Article  Google Scholar 

  24. Zhou X M. My thinking about granite geneses of South China. Geol J China Univ (in Chinese), 2003, 9(4): 556–565

    Google Scholar 

  25. Zhang B Y, Shi M Q, Yang S F, et al. New evidence of the Paleotethyan orogenic belt on the Guangdong-Guangxi border region, South China Geol Rev (in Chinese), 1995, 41(1): 1–6

    Google Scholar 

  26. Wu H R, Kuang G D, Wang Z C. The Yunkai block since Silurian. J Palaeogeograp (in Chinese), 2001, 3(3): 32–40

    Google Scholar 

  27. Wang D Z. The study of granitic rocks in South China: looking back and forward. Geol J China Univ (in Chinese), 2004, 10(3): 305–314

    Google Scholar 

  28. Ma D Q, Zhao Z J, et al. Intrusive rocks in Hainan Island. In: Wang X F, Ma D Q, Jiang D H, eds. Geology of Hainan Island (Part 2) (in Chinese). Beijing: Geological Publishing House, 1991, 1–167

    Google Scholar 

  29. Xie C F, Zhu J C, Zhao Z J, et al. Zircon SHRIMP U-Pb age of the Sanya garnet-acmite syenite: constraints on the Hercynian-Indosinian tectonic evolution of Hainan Island. Geol J China Univ (in Chinese), 2005, 11(1): 47–57

    Google Scholar 

  30. Morrison G W. Characteristics and tectonic setting of the shoshonite rock association. Lithos, 1980, 13: 97–108

    Article  Google Scholar 

  31. Deng J F, Zhao H L, Mo X X, et al. Continental Root-Plume Tectonics in China: A key to the Continental Dynamics (in Chinese). Beijing: Geological Publishing House, 1996, 1–110

    Google Scholar 

  32. Foley S F, Peccerillo A. Potassic and ultrapotassic magmas and their origin. Lithos, 1992, 28: 181–185

    Article  Google Scholar 

  33. Müller D, Groves D I. Potassic Igneous Rocks and Associated Gold-copper Mineralization. Berlin: Springer-Verlag, 1995, 1–144

    Google Scholar 

  34. Xie C F. A microstructure marker of syntectonic granitoids. Acta Petrol Mineral (in Chinese), 2002, 21(2): 179–185

    Google Scholar 

  35. Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Mineral Petrol, 1976, 58: 63–81

    Article  Google Scholar 

  36. Middlemost E A K. Naming materials in the magma/igneous rock system. Earth Sci Rev, 1994, 37: 215–224

    Article  Google Scholar 

  37. Irvine T N and Baragar W R A. A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci, 1971, 8: 523–548

    Google Scholar 

  38. Middlemost E A K. Magmas and Magmatic Rocks. London: Longman, 1985, 1–266

    Google Scholar 

  39. Turner S, Arnaud N, Liu J, et al. Post-collisional, shoshonitic volcanism on the Tibetan plateau: Implications for convective thinning of the lithosphere and the source of ocean island basalts. J Petrol, 1996, 37: 45–71

    Google Scholar 

  40. Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders A D, Norry M J, eds. Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 1989, 42: 313–345

  41. Hanchar J M, Millar C F. Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images: implications for interpretation of complex crustal histories. Chem Geol, 1993, 110: 1–13

    Article  Google Scholar 

  42. Williams I S, Claesson S. Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides, II. Ion microprobe zircon U-Th-Pb. Contrib Mineral Petrol, 1987, 97: 205–217

    Article  Google Scholar 

  43. Wysoczanski R J and Allibone A H. Age, correlation, and provenance of the Neoproterozoic Skelton Group, Antarctica: Grenville age detritus on the margin of East Antarctica. J Geol, 2004, 112: 401–416

    Google Scholar 

  44. Chen D G, Deloule E, Ni T. Study on metamorphic zircon U-Pb age and oxygen isotopes of eclogite at Xindian, Dabie terrain. Sci China Ser D-Earth Sci, 2005, 48(8): 691–699

    Google Scholar 

  45. Eklund O, Konopelko D, Rutanen H, et al. 1.8Ga Svecofennian post-collisional shoshonitic magmatism in the Fennoscandian shield. Lithos, 1998, 45: 87–108

    Article  Google Scholar 

  46. Feldstein S N, Lange R A. Pliocene potassic magmas from the Kings River region, Sierra Nevada, California: evidences for melting of a subduction-modified mantle. J Petrol, 1999, 40: 1301–1320

    Article  Google Scholar 

  47. Janoušek V, Bowes D R, Rogers G, et al. Modelling diverse processes in the Petrogenesis of a composite batholith: the Central Bohemian Pluton, Central European Hercynides. J Petrol, 2000, 41: 511–543

    Article  Google Scholar 

  48. López-Moro F J, López-Plaza M. Monzonitic series from the Variscan Tormes Dome (Central Iberian Zone): petrogenetic evolution from monzogabbro to granite magmas. Lithos, 2004, 72: 19–44

    Article  Google Scholar 

  49. Li X H, Zhou H W, Liu Y, et al. Shoshonitic intrusive suite in SE Guangxi: Petrology and geochemistry. Chin Sci Bull, 2000, 45(7): 653–659

    Google Scholar 

  50. Beard J S and Lofgren G E. Dehydration melting and water—saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kb. J Petrol, 1991, 32: 365–401

    Google Scholar 

  51. Zinder A, Hart S R. Chemical geodynamics. Ann Rev Earth Planet Sci, 1986, 14: 493–573

    Article  Google Scholar 

  52. Tommasini S, Poli G, Halliday A N. The role of sediment subduction and crustal growth in Hercynian plutonism: isotopic and trace-element evidence from the Sardinia-Corsica Batholith. J Petrol, 1995, 36: 1305–1332

    Google Scholar 

  53. Beccaluva L, Bianchini G, Bonadiman C, et al. Coexisting anorogenic and subduction-related metasomatism in mantle xenoliths from the Betic Cordillera (southern Spain). Lithos, 2004, 75: 67–87

    Article  Google Scholar 

  54. Li S G, Chen Y Z, Zhang Z Q, et al. Trace elements and Sr, Nd isotopic geochemistry of the Lajimiao norite-gabbro from the North Qinling Belt. Acta Geol Sin (in Chinese), 1993, 67(4): 310–322

    Google Scholar 

  55. Li S G, Nie Y H, Emil J, et al. Recycling of subducted continental crust in Dabie Mountains area—Geochemical evidence. Sci China Ser D-Earth Sci (in Chinese), 1997, 27(5): 412–418

    Google Scholar 

  56. Wang E K, Liu C. Late Peleozoic volcanism in SW Fujian-NE Guangdong area. In: Li J L, ed. Lithospheric Structure and Geological Evolution of Southeast China Continent (in Chinese). Beijing: Metallurgical Industry Press, 1993, 178–186

    Google Scholar 

  57. Gao T J, Wang Z M, Wu K L, et al. Tectono-magmatic Evolution and Metallogenesis of Taiwan Strait and Its Neighboring Region (in Chinese). Beijing: Geological Publishing House, 1999, 72–74

    Google Scholar 

  58. Uyeda S. Subduction zones: an introduction to comparative subductogoy. Tectonophys, 1982, 81: 133–159

    Article  Google Scholar 

  59. Lin H F, Jiang S Y. Geochemistry of radioactive isotopes. In: Chen J, Wang H N, eds. Geochemistry (in Chinese). Beijing: Science Press, 2004, 165

    Google Scholar 

  60. Furman T, Graham D. Erosion of lithospheric mantle beneath the East African Rift system: geochemical evidence from the Kivu volcanic province. Lithos, 1999, 48: 237–262

    Article  Google Scholar 

  61. Yang J H, Chung S L, Zhai M G, et al. Geochemical and Sr-Nd-Pb isotopic compositions of mafic dikes from the Jiaodong peninsula, China: evidence for vein-plus-peridotite melting in the lithospheric mantle. Lithos, 2004, 73: 145–160

    Article  Google Scholar 

  62. Green T H. Experimental studies of trace-element partitioning applicable to igneous petrogenesis Sedona 16 years later. Chem Geol, 1994, 117: 1–36

    Article  Google Scholar 

  63. Glaser S M, Foley S F, Günther D. Trace element compositions of minerals in garnet and spinel peridotite xenoliths from the Vitim volcanic field, Transbaikalia, eastern Siberia. Lithos, 1999, 48: 263–285

    Article  Google Scholar 

  64. Ge X Y, Li X H, Chen Z G, et al. Geochemistry and petrogenesis of Jurassic high Sr/low Y granitoids in eastern China: Constrains on crustal thickness. Chin Sci Bull, 2002, 47(11): 962–968

    Article  Google Scholar 

  65. Wu F Y, Ge W C, Sun D Y. The definition, discrimination of adakites and their geological role. In: Xiao Q H, Deng J F, Ma D Q, eds. The Ways of Investigation on Granitoids (in Chinese). Beijing: Geological Publishing House, 2002, 172–191

    Google Scholar 

  66. Wendlant R F, Eggler D H. The origins of potassic magmas. Am J Sci, 1980, 280: 421–45

    Article  Google Scholar 

  67. Olafsson M, Eggler D H. Phase relations of amphibole, amphibole-carbonate, and phlogopite-carbonate peridotite. Earth Planet Sci Lett, 1983, 64: 305–315

    Article  Google Scholar 

  68. Li X H, Chung S L, Zhou H W, et al. Jurassic intraplate magmatism in southern Hunan-eastern Guangxi: 40Ar/39Ar dating, geochemistry, Sr-Nd isotopes and implications for the tectonic evolution of SE China. In: Malpas J, Fletcher C J N, Ali J R, et al., eds. Aspects of the Tectonic Evolution of China. Geol Soc, Lond, Spec Publ, 2004, 226: 193–215

  69. Xia P, Xu Y G Domains and enrichment mechanism of the lithospheric mantle in western Yunnan: A comparative study on two types of Cenozoic ultrapotassic rocks. Sci China Ser D-Earth Sci, 2005, 48(3): 326–337

    Article  Google Scholar 

  70. Yang J H, Chung S L, Wilde S A, et al. Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, East China: geochronological, geochemical and Nd-Sr isotopic evidence. Chem Geol, 2005, 214: 99–125

    Article  Google Scholar 

  71. Duchesne J C, Berza T, Liégeois J P, et al. Shoshonitic liquid line of descent from diorite to granite: the Late Precambrian post-collisional Tismana pluton (South Carpathians, Romania). Lithos, 1998, 45: 281–303

    Article  Google Scholar 

  72. Ajaji T, Weis D, Giret A, et al. Coeval potassic and sodic calc-alkaline series in the post-collisional Hercynian Tanncherfi intrusive complex, northeastern Morocco: geochemical, isotopic and geochronological evidence. Lithos, 1998, 45: 371–393

    Article  Google Scholar 

  73. Väisänen M, Mänttäri I, Kriegsman L M, et al. Tectonic setting of post-collisional magmatism in the Palaeoproterozoic Svecofennian Orogen, SW Finland. Lithos, 2000, 54: 63–81

    Article  Google Scholar 

  74. Williams H M, Turner S P, Pearce J A, et al. Nature of the source regions for post-collisional, potassic magmatism in southern and northern Tibet from geochemical variations and inverse trace element modeling. J Petrol, 2004, 45(3): 555–607

    Article  Google Scholar 

  75. Venturelli G, Thorpe R S, Dal Piaz G V, et al. Petrogenesis of calc-alkaline, shoshonitic and associated ultrapotassic Oligocene volcanic rocks from the North-western Alps, Italy. Contrib Mineral Petrol, 1984, 86: 209–220

    Article  Google Scholar 

  76. Küster D, Harms U. Post-collisional potassic granitoids from the southern and northwestern parts of the Neoproterozoic East African Orogen: a review. Lithos, 1998, 45: 177–196

    Article  Google Scholar 

  77. Sylvester P J. Post-collisional strongly peraluminous granites. Lithos, 1998, 45: 29–44

    Article  Google Scholar 

  78. Liégeois J P, Naves J, Hertogen J, et al. Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitiods. The use of sliding normalization. Lithos, 1998, 45: 1–28

    Article  Google Scholar 

  79. Davis J H, Blackenourg von F. Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogenics. Earth Plannet Sci Lett, 1995, 129: 327–343

    Google Scholar 

  80. Chen J F, Xie Z, Li H M, et al. U-Pb zircon ages for a collision-related K-rich complex at Shidao in the Sulu ultrahigh pressure terrane, China. Geochem J, 2003, 37: 35–46

    Google Scholar 

  81. England P C, Houseman G A. Extension during continental convergence, with application to the Tibetan plateau. J Geophys Res, 1989, 94: 17561–17579

    Google Scholar 

  82. Black R, Liégeois J P. Cratons, mobiles, alkaline rocks and continental lithospheric mantle: the Pan-African testimony. J Geol Soc, London, 1993, 150: 89–98

    Google Scholar 

  83. Deng W M. Cenozoic volcanism and intraplate subduction in northern margin of the Tibetan plateau. Chin J Geochem, 1991, 10(2): 140–152

    Google Scholar 

  84. Atherton M P, Ghani A A. Slab breakoff: a model for Caledonian, late granite syn-collisional magmatism in the orthotectonic (metamorphic) zone of Scotland and Donegal, Ireland. Lithos, 2002, 62: 65–85

    Article  Google Scholar 

  85. Zheng S J, Yan B Q, Huang Q Z. Lithodemic Units Subdivision of Intrusions in Fujian Province (in Chinese). Xiamen: Xiamen University Press, 2000: 1–224

    Google Scholar 

  86. Pan G T, Wang P S, Xu Y R, et al. Cenozoic Tectonic Evolution of Qinghai-Xizang Plateau (in Chinese). Beijing: Geological Publishing House, 1990: 32–68

    Google Scholar 

  87. Liégeois J P. Preface-Some words on the post-collisional magmatism. Lithos, 1998, 45: XV–XVII

    Article  Google Scholar 

  88. Li J L, Sun S, Hao J, et al. Time limit of collision event of collision orogens. Acta Petrol Sin (in Chinese), 1999, 15(2): 315–320

    Google Scholar 

  89. Wang X F, Ma D Q, Jiang D. H, et al. Geology of Hainan Island (Part 1), Stratigraphy and Paleontology (in Chinese). Beijing: Geological Publishing House, 1992: 131–192

    Google Scholar 

  90. Zhang Y Q. Foreland thrust and nappe tectonics of Shiwandashan, Guangxi. Geosciences (in Chinese), 1999, 13(2): 150–156

    Google Scholar 

  91. Jin Y G. The pre-Lopingian benthos crisis. Compte Rendu, XII ICCP, Buenos Aires, 1993, 2: 269–278

    Google Scholar 

  92. Liu B P. Tectono-paleogeographic framework of Hercynian-Indosinian stage in South China. In: Wang H Z, ed. Tectonic History of South China Paleo-Continental Margin (in Chinese). Wuhan: China University of Geosciences Press, 1986: 65–77

    Google Scholar 

  93. Wang D Z, Liu C S. Distribution regularities and genetic series of granites of Hercynian-Indosinian cycle in SE China. Acta Petrol Sin (in Chinese), 1986, 2(4): 1–13

    Google Scholar 

  94. Wang Z M, Wang L S, Jiang M Z, et al. Gneissic granite at Chipan, Hualien County, Taiwan Province. Reg Geol of China (in Chinese), 1997, 16(3): 329–334

    Google Scholar 

  95. Deng X G, Chen Z G, Li X H, et al. SHRIMP U-Pb zircon dating of the Darongshan—Shiwandashan granitoid belt in southeastern Guangxi, China. Geol Rev (in Chinese), 2004, 50(4): 426–432

    Google Scholar 

  96. Chen D F, Li X H, Pang J M, et al. Metamorphic newly produced zircons, SHRIMPion microprobe U-Pb age of amphibolite of Hexi Group, Zhejiang and its implications. Acta Miner Sin (in Chinese), 1998, 18(4): 396–400

    Google Scholar 

  97. Wang Q, Li J W, Jian P, et al. Alkaline syenites in eastern Cathaysia (South China): link to Permian-Triassic transtension. Earth Planet Sci Lett, 2005, 230: 339–354

    Article  Google Scholar 

  98. Guo F, Fan W M, Lin G, et al. Sm-Nd isotopic age and genesis of gabbro xenoliths in Daoxian County, Hunan Province. Chin Sci Bull, 1997, 42(21): 1814–1817

    Article  Google Scholar 

  99. Qiu J S, McInnes B I A, Xu X X, et al. Zircon ELA-ICP-MS dating for Wuliting pluton at Dajishan, southern Jiangxi and new recognition about its relation to tungsten mineralization. Geol Rev (in Chinese), 2004, 50(2): 125–133

    Google Scholar 

  100. Lei Y H, Ding S J, Ma C Q, et al. Nd isotopic constraints on crustal growth and basement characters of Hainan Island, southern China. Chin J Geol (in Chinese), 2005, 40(3): 439–456

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xie Caifu.

About this article

Cite this article

Xie, C., Zhu, J., Ding, S. et al. Identification of Hercynian shoshonitic intrusive rocks in central Hainan Island and its geotectonic implications. CHINESE SCI BULL 51, 2507–2519 (2006). https://doi.org/10.1007/s11434-006-2122-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-006-2122-0

Keywords

Navigation