Skip to main content
Log in

Interpretation of the DAMPE 1.4 TeV peak according to the decaying dark matter model

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Highly accurate measurements of cosmic ray electron flux by the dark matter particle explorer (DAMPE) ranging between 25 GeV and 4.6 TeV have recently been published. A sharp peak structure was found at ~ 1.4 TeV. This unexpected peak structure can be reproduced by the annihilation/decay of a nearby dark matter (DM) halo. In this study, we adopt the decaying-DM model to interpret the ~ 1.4 TeV peak. We found that the decay products of the local DM subhalo could contribute to the DMAPE peak with mDM = 3 TeV and τ ~ 1028 s. We also obtain constraints on DM lifetime and the distance of the local DM subhalo by comparison with DAMPE data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. R. Ade, et al. (Planck Collaboration), Astron. Astrophys. 594, A13 (2016), arXiv: 1502. 01589.

    Article  Google Scholar 

  2. G. Bertone, Particle Dark Matter Observations, Models and Searches (Academic, Cambridge, 2010), p. 121.

    Book  MATH  Google Scholar 

  3. G. Bertone, D. Hooper, and J. Silk, Phys. Rep. 405, 279 (2005).

    Article  ADS  Google Scholar 

  4. M. S. Turner, and F. Wilczek, Phys. Rev. D 42, 1001 (1990).

    Article  ADS  Google Scholar 

  5. J. L. Feng, Annu. Rev. Astron. Astrophys. 48, 495 (2010), arXiv: 1003. 0904.

    Article  ADS  Google Scholar 

  6. Y. Z. Fan, B. Zhang, and J. Chang, Int. J. Mod. Phys. D 19, 2011 (2010), arXiv: 1008. 4646.

    Article  ADS  Google Scholar 

  7. M. Ackermann, et al. (Fermi–LAT Collaboration), Phys. Rev. D 82, 092003 (2010), arXiv: 1008. 5119.

    Article  ADS  Google Scholar 

  8. G. Ambrosi, et al. (DAMPE Collaboration), Nature 552, 63 (2017), arXiv: 1711. 10981.

    Article  ADS  Google Scholar 

  9. C. Yue, J. Zang, T. Dong, X. Li, Z. Zhang, S. Zimmer, W. Jiang, Y. Zhang, and D. Wei, Nucl. Instrum. Methods Phys. Res. Sect. A 856, 11 (2017), arXiv: 1703. 02821.

    Article  ADS  Google Scholar 

  10. Z. Zhang, C. Wang, J. Dong, Y. Wei, S. Wen, Y. Zhang, Z. Li, C. Feng, S. Gao, Z. T. Shen, D. Zhang, J. Zhang, Q. Wang, S. Y. Ma, D. Yang, D. Jiang, D. Chen, Y. Hu, G. Huang, X. Wang, Z. Xu, S. Liu, Q. An, and Y. Gong, Nucl. Instrum. Methods Phys. Res. Sect. A 836, 98 (2016), arXiv: 1602. 07015.

    Article  ADS  Google Scholar 

  11. F. Aharonian, et al. (H ESS Collaboration), Phys. Rev. Lett. 101, 261104 (2008), arXiv: 0811. 3894.

    Article  ADS  Google Scholar 

  12. Q. Yuan, L. Feng, P. F. Yin, Y. Z. Fan, X. J. Bi, M. Y. Cui, T.–K. Dong, Y.–Q. Guo, K. Fang, H.–B. Hu, X. Huang, S.–J. Lei, X. Li, S.–J. Lin, H. Liu, P.–X. Ma, W.–X. Peng, R. Qiao, Z.–Q. Shen, M. Su, Y.–F. Wei, Z.–L. Xu, C. Yue, J.–J. Zang, C. Zhang, X. Zhang, Y.–P. Zhang, Y.–J. Zhang, and Y.–L. Zhang, arXiv: 1711. 10989.

  13. A. Fowlie, Phys. Lett. B 780, 181 (2018), arXiv: 1712. 05089.

    Article  ADS  Google Scholar 

  14. H. B. Jin, B. Yue, X. Zhang, and X. L. Chen, arXiv: 1712. 00362.

  15. L. Zu, C. Zhang, L. Feng, Q. Yuan, and Y. Z. Fan, arXiv: 1711. 11052.

  16. Y. Z. Fan, W. C. Huang, M. Spinrath, Y. L. S. Tsai, and Q. Yuan, Phys. Lett. B 781, 83 (2018), arXiv: 1711. 10995.

    Article  ADS  Google Scholar 

  17. P. H. Gu, and X. G. He, Phys. Lett. B 778, 292 (2018), arXiv: 1711. 11000.

    Article  ADS  Google Scholar 

  18. G. H. Duan, L. Feng, F. Wang, L. Wu, J. M. Yang, and R. Zheng, J. High Energ. Phys. 2018, 107 (2018), arXiv: 1711. 11012.

    Article  Google Scholar 

  19. Y. L. Tang, L. Wu, M. Zhang, and R. Zheng, arXiv: 1711. 11058.

  20. W. Chao, and Q. Yuan, arXiv: 1711. 11182.

  21. P. H. Gu, arXiv: 1711. 11333.

  22. P. Athron, C. Balazs, A. Fowlie, and Y. Zhang, J. High Energ. Phys. 2018, 121 (2018), arXiv: 1711. 11376.

    Article  Google Scholar 

  23. J. Cao, L. Feng, X. Guo, L. Shang, F. Wang, and P. Wu, arXiv: 1711. 11452.

  24. G. H. Duan, X. G. He, L. Wu, and J. M. Yang, Eur. Phys. J. C 78, 323 (2018), arXiv: 1711. 11563.

    Article  ADS  Google Scholar 

  25. X. Liu, and Z. Liu, arXiv: 1711. 11579.

  26. X. J. Huang, Y. L. Wu, W. H. Zhang, and Y. F. Zhou, arXiv: 1712. 00005.

  27. W. Chao, H. K. Guo, H. L. Li, and J. Shu, arXiv: 1712. 00037.

  28. Y. Gao, and Y. Z. Ma, arXiv: 1712. 00370.

  29. J. S. Niu, T. Li, R. Ding, B. Zhu, H. F. Xue, and Y. Wang, Phys. Rev. D 97, 083012 (2018), arXiv: 1712. 00372.

    Article  ADS  Google Scholar 

  30. C. H. Chen, C. W. Chiang, and T. Nomura, Phys. Rev. D 97, 061302 (2018), arXiv: 1712. 00793.

    Article  ADS  Google Scholar 

  31. T. Li, N. Okada, and Q. Shafi, Phys. Lett. B 779, 130 (2018), arXiv: 1712. 00869.

    Article  ADS  Google Scholar 

  32. R. Zhu, and Y. Zhang, arXiv: 1712. 01143.

  33. P. H. Gu, arXiv: 1712. 00922.

  34. T. Nomura, and H. Okada, arXiv: 1712. 00941.

  35. K. Ghorbani, and P. H. Ghorbani, arXiv: 1712. 01239.

  36. J. Cao, L. Feng, X. Guo, L. Shang, F. Wang, P. Wu, and L. Zu, Eur. Phys. J. C 78, 198 (2018), arXiv: 1712. 01244.

    Article  ADS  Google Scholar 

  37. F. Yang, and M. Su, arXiv: 1712. 01724.

  38. R. Ding, Z. L. Han, L. Feng, and B. Zhu, arXiv: 1712. 02021.

  39. G. Liu, F. Wang, W. Wang, and J. M. Yang, Chin. Phys. C 42, 035101 (2018), arXiv: 1712. 02381.

    Article  ADS  Google Scholar 

  40. S. F. Ge, H. J. He, and Y. C. Wang, Phys. Lett. B 781, 88 (2018), arXiv: 1712. 02744.

    Article  ADS  Google Scholar 

  41. Y. Zhao, K. Fang, M. Su, and M. C. Miller, arXiv: 1712. 03210.

  42. Y. Sui, and Y. Zhang, Phys. Rev. D 97, 095002 (2018), arXiv: 1712. 03642.

    Article  ADS  Google Scholar 

  43. N. Okada, and O. Seto, arXiv: 1712. 03652.

  44. J. Cao, X. Guo, L. Shang, F. Wang, P. Wu, and L. Zu, Phys. Rev. D 97, 063016(2018), arXiv: 1712. 05351.

    Article  ADS  Google Scholar 

  45. Z. L. Han, W. Wang, and R. Ding, Eur. Phys. J. C 78, 216 (2018), arXiv: 1712. 05722.

    Article  ADS  Google Scholar 

  46. J. S. Niu, T. Li, and F. Z. Xu, arXiv: 1712. 09586.

  47. T. Nomura, H. Okada, and P. Wu, arXiv: 1801. 04729.

  48. A. W. Strong, I. V. Moskalenko, and V. S. Ptuskin, Annu. Rev. Nucl. Part. Sci. 57, 285 (2007).

    Article  ADS  Google Scholar 

  49. E. S. Seo, and V. S. Ptuskin, Astrophys. J. 431, 705 (1994).

    Article  ADS  Google Scholar 

  50. A. W. Strong, and I. V. Moskalenko, Astrophys. J. 509, 212 (1998).

    Article  ADS  Google Scholar 

  51. C. Evoli, D. Gaggero, D. Grasso, and L. Maccione, J. Cosmol. Astropart. Phys. 2008, 018 (2008), arXiv: 0807. 4730.

    Article  Google Scholar 

  52. X. Huang, Y. L. S. Tsai, and Q. Yuan, Comput. Phys. Commun. 213, 252 (2017), arXiv: 1603. 07119.

    Article  ADS  Google Scholar 

  53. M. Aguilar, et al. (AMS Collaboration), Phys. Rev. Lett. 110, 141102 (2013).

    Article  ADS  Google Scholar 

  54. L. Feng, Q. Yuan, X. Li, and Y. Z. Fan, Phys. Lett. B 720, 1 (2013), arXiv: 1206. 4758.

    Article  ADS  Google Scholar 

  55. L. Bergström, T. Bringmann, I. Cholis, D. Hooper, and C. Weniger, Phys. Rev. Lett. 111, 171101 (2013), arXiv: 1306. 3983.

    Article  ADS  Google Scholar 

  56. H. B. Jin, Y. L. Wu, and Y. F. Zhou, J. Cosmol. Astropart. Phys. 2015, 049 (2015), arXiv: 1410. 0171.

    Article  Google Scholar 

  57. Q. Yuan, S. J. Lin, K. Fang, and X. J. Bi, Phys. Rev. D 95, 083007 (2017), arXiv: 1701. 06149.

    Article  ADS  Google Scholar 

  58. L. Feng, R. Z. Yang, H. N. He, T. K. Dong, Y. Z. Fan, and J. Chang, Phys. Lett. B 728, 250 (2014), arXiv: 1303. 0530.

    Article  ADS  Google Scholar 

  59. N. Kawanaka, K. Ioka, and M. M. Nojiri, Astrophys. J. 710, 958 (2010), arXiv: 0903. 3782.

    Article  ADS  Google Scholar 

  60. P. D. Serpico, Astropart. Phys. 39–40, 2 (2012), arXiv: 1108. 4827.

  61. I. V. Moskalenko, A. W. Strong, J. F. Ormes, and M. S. Potgieter, Astrophys. J. 565, 280 (2002).

    Article  ADS  Google Scholar 

  62. A. Strong, and J. Mattox, Astron. Astrophys. 308, L21 (1996).

    ADS  Google Scholar 

  63. R. Blandford, and D. Eichler, Phys. Rep. 154, 1 (1987).

    Article  ADS  Google Scholar 

  64. D. Maurin, F. Donato, R. Taillet, and P. Salati, Astrophys. J. 555, 585 (2001).

    Article  ADS  Google Scholar 

  65. S. P. Swordy, D. Mueller, P. Meyer, J. L'Heureux, and J. M. Grunsfeld, Astrophys. J. 349, 625 (1990).

    Article  ADS  Google Scholar 

  66. J. F. Navarro, C. S. Frenk, and S. D. M. White, Astrophys. J. 490, 493 (1997).

    Article  ADS  Google Scholar 

  67. J. Einasto, arXiv: 0901. 0632.

  68. L. Bergstrom, P. Ullio, and J. Buckley, Astropart. Phys. 9, 44 (1997).

    Google Scholar 

  69. B. Moore, S. Ghigna, F. Governato, G. Lake, T. Quinn, J. Stadel, and P. Tozzi, Astrophys. J. 524, L19 (1999).

    Article  ADS  Google Scholar 

  70. A. M. Atoyan, F. A. Aharonian, and H. J. Volk, Phys. Rev. D 52, 3265 (1995).

    Article  ADS  Google Scholar 

  71. V. Springel, J. Wang, M. Vogelsberger, A. Ludlow, A. Jenkins, A. Helmi, J. F. Navarro, C. S. Frenk, and S. D. M. White, Mon. Not. R. Astron. Soc. 391, 1685 (2008), arXiv: 0809. 0898.

    Article  ADS  Google Scholar 

  72. M. Aguilar, et al. (AMS Collaboration), Phys. Rev. Lett. 113, 221102 (2014).

    Article  ADS  Google Scholar 

  73. T. Kamae, N. Karlsson, T. Mizuno, T. Abe, and T. Koi, Astrophys. J. 647, 692 (2006).

    Article  ADS  Google Scholar 

  74. L. Bergström, T. Bringmann, M. Eriksson, and M. Gustafsson, Phys. Rev. Lett. 94, 131301 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, X., Zhang, C. & Feng, L. Interpretation of the DAMPE 1.4 TeV peak according to the decaying dark matter model. Sci. China Phys. Mech. Astron. 61, 101006 (2018). https://doi.org/10.1007/s11433-018-9257-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-018-9257-3

Keywords

Navigation