Skip to main content
Log in

Quasi-degenerate dark matter for DAMPE excess and 3.5 keV line

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We propose a quasi-degenerate dark matter scenario to simultaneously explain the 1.4 TeV peak in the high-energy cosmic-ray electron-positron spectrum reported by the DAMPE collaboration very recently and the 3.5 keV X-ray line observed in galaxies clusters and from the Galactic centre and confirmed by the Chandra and NuSTAR satellites. We consider a dark SU(2)' × U(1)' gauge symmetry under which the dark matter is a Dirac fermion doublet composed of two SU(2)' doublets with non-trivial U(1)' charges. At the one-loop level the two dark fermion components can have a mass split as a result of the dark gauge symmetry breaking. Through the exchange of a mediator scalar doublet the two quasi-degenerate dark fermions can mostly annihilate into the electron-positron pairs at the tree level for explaining the 1.4 TeV positron anomaly, meanwhile, the heavy dark fermion can very slowly decay into the light dark fermion with a photon at the one-loop level for explaining the 3.5 keV X-ray line. Our dark fermions can be also verified in the direct detection experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Ambrosi, et al. (DAMPE Collaboration), Nature 552, 63 (2017), arXiv: 1711.10981.

    Google Scholar 

  2. Y. Z. Fan,W. C. Huang, M. Spinrath, Y. L. S. Tsai, and Q. Yuan, arXiv: 1711.10995.

  3. P. H. Gu, and X. G. He, arXiv: 1711.11000.

  4. G. H. Duan, L. Feng, F.Wang, L.Wu, J. M. Yang, and R. Zheng, arXiv: 1711.11012.

  5. Q. Yuan, L. Feng, P.-F. Yin, Y.-Z. Fan, X.-J. Bi, M.-Y. Cui, T.-K. Dong, Y.-Q. Guo, K. Fang, H.-B. Hu, X. Huang, S.-J. Lei, X. Li, S.-J. Lin, H. Liu, P.-X. Ma, W.-X. Peng, R. Qiao, Z.-Q. Shen, M. Su, Y.-F. Wei, Z.-L. Xu, C. Yue, J.-J. Zang, C. Zhang, X. Zhang, Y.-P. Zhang, Y.-J. Zhang, and Y.-L. Zhang, arXiv: 1711.10989.

  6. K. Fang, X. J. Bi, and P. F. Yin, arXiv: 1711.10996.

  7. L. Zu, C. Zhang, L. Feng, Q. Yuan, and Y. Z. Fan, arXiv: 1711.11052.

  8. Y. L. Tang, L. Wu, M. Zhang, and R. Zheng, arXiv: 1711.11058.

  9. W. Chao, and Q. Yuan, arXiv: 1711.11182.

  10. P. H. Gu, arXiv: 1711.11333.

  11. P. Athron, C. Balazs, A. Fowlie, and Y. Zhang, arXiv: 1711.11376.

  12. J. Cao, L. Feng, X. Guo, L. Shang, F. Wang, and P. Wu, arXiv: 1711.11452.

  13. G. H. Duan, X. G. He, L. Wu, and J. M. Yang, arXiv: 1711.11563.

  14. X. Liu, and Z. Liu, arXiv: 1711.11579.

  15. X. J. Huang, Y. L. Wu, W. H. Zhang, and Y. F. Zhou, arXiv: 1712.00005.

  16. I. Cholis, T. Karwal, and M. Kamionkowski, arXiv: 1712.00011.

  17. W. Chao, H. K. Guo, H. L. Li, and J. Shu, arXiv: 1712.00037.

  18. Y. Gao, and Y. Z. Ma, arXiv: 1712.00370.

  19. J. S. Niu, T. Li, R. Ding, B. Zhu, H.-F. Xue, and Y. Wang, arXiv: 1712.00372.

  20. E. Bulbul, M. Markevitch, A. Foster, R. K. Smith, M. Loewenstein, and S. W. Randall, Astrophys. J. 789, 13 (2014), arXiv: 1402.2301.

    Article  ADS  Google Scholar 

  21. A. Boyarsky, O. Ruchayskiy, D. Iakubovskyi, and J. Franse, Phys. Rev. Lett. 113, 251301 (2014), arXiv: 1402.4119.

    Article  ADS  Google Scholar 

  22. N. Cappelluti, E. Bulbul, A. Foster, P. Natarajan, M. C. Urry, M. W. Bautz, F. Civano, E. Miller, and R. K. Smith, arXiv: 1701.07932.

  23. D. Malyshev, A. Neronov, and D. Eckert, Phys. Rev. D 90, 103506 (2014), arXiv: 1408.3531.

    Article  ADS  Google Scholar 

  24. P. B. Pal, and L. Wolfenstein, Phys. Rev. D 25, 766 (1982).

    Article  ADS  Google Scholar 

  25. P. H. Gu, Phys. Dark Universe 2, 35 (2013), arXiv: 1301.4368.

    Article  ADS  Google Scholar 

  26. H. Ishida, K. S. Jeong, and F. Takahashi, Phys. Lett. B 732, 196 (2014), arXiv: 1402.5837.

    Article  ADS  Google Scholar 

  27. D. P. Finkbeiner, and N. Weiner, Phys. Rev. D 94, 083002 (2016), arXiv: 1402.6671.

    Article  ADS  Google Scholar 

  28. T. Higaki, K. S. Jeong, and F. Takahashi, Phys. Lett. B 733, 25 (2014), arXiv: 1402.6965.

    Article  ADS  Google Scholar 

  29. Z. Kang, P. Ko, T. Li, and Y. Liu, Phys. Lett. B 742, 249 (2015), arXiv: 1403.7742.

    Article  ADS  Google Scholar 

  30. J. Jaeckel, J. Redondo, and A. Ringwald, Phys. Rev. D 89, 103511 (2014), arXiv: 1402.7335.

    Article  ADS  Google Scholar 

  31. J. M. Cline, and A. R. Frey, J. Cosmol. Astropart. Phys. 1410, 013 (2014).

    Article  ADS  Google Scholar 

  32. H. M. Lee, S. C. Park, and W. I. Park, Eur. Phys. J. C 74, 3062 (2014), arXiv: 1403.0865.

    Article  ADS  Google Scholar 

  33. J. C. Park, K. Kong, and S. C. Park, Phys. Lett. B 733, 217 (2014), arXiv: 1403.1536.

    Article  ADS  Google Scholar 

  34. K. Y. Choi, and O. Seto, Phys. Lett. B 735, 92 (2014), arXiv: 1403.1782.

    Article  ADS  Google Scholar 

  35. S. Baek, and H. Okada, arXiv: 1403.1710.

  36. T. Tsuyuki, Phys. Rev. D 90, 013007 (2014), arXiv: 1403.5053.

    Article  ADS  Google Scholar 

  37. J. M. Cline, and A. R. Frey, Phys. Rev. D 90, 123537 (2014), arXiv: 1410.7766.

    Article  ADS  Google Scholar 

  38. F. L. Bezrukov, and D. S. Gorbunov, Phys. Lett. B 736, 494 (2014), arXiv: 1403.4638.

    Article  ADS  Google Scholar 

  39. C. Kolda, and J. Unwin, Phys. Rev. D 90, 023535 (2014), arXiv: 1403.5580.

    Article  ADS  Google Scholar 

  40. R. Allahverdi, B. Dutta, and Y. Gao, Phys. Rev. D 89, 127305 (2014), arXiv: 1403.5717.

    Article  ADS  Google Scholar 

  41. K. S. Babu, and R. N. Mohapatra, Phys. Rev. D 89, 115011 (2014), arXiv: 1404.2220.

    Article  ADS  Google Scholar 

  42. E. Dudas, L. Heurtier, and Y. Mambrini, Phys. Rev. D 90, 035002 (2014), arXiv: 1404.1927.

    Article  ADS  Google Scholar 

  43. C. El Aisati, T. Hambye, and T. Scarná, J. High Energ. Phys. 2014, 133 (2014), arXiv: 1403.1280.

    Article  Google Scholar 

  44. K. P. Modak, J. High Energ. Phys. 2015, 64 (2015), arXiv: 1404.3676.

    Article  Google Scholar 

  45. C. W. Chiang, and T. Yamada, J. High Energ. Phys. 2014, 6 (2014), arXiv: 1407.0460.

    Article  Google Scholar 

  46. A. Falkowski, Y. Hochberg, and J. T. Ruderman, J. High Energ. Phys. 2014, 140 (2014), arXiv: 1409.2872.

    Article  ADS  Google Scholar 

  47. S. Patra, N. Sahoo, and N. Sahu, Phys. Rev. D 91, 115013 (2015), arXiv: 1412.4253.

    Article  ADS  Google Scholar 

  48. G. Arcadi, L. Covi, and F. Dradi, J. Cosmol. Astropart. Phys. 2015, 023 (2015), arXiv: 1412.6351.

    Article  Google Scholar 

  49. A. D. Banik, M. Pandey, D. Majumdar, and A. Biswas, Eur. Phys. J. C 77, 657 (2017), arXiv: 1612.08621.

    Article  ADS  Google Scholar 

  50. K. N. Abazajian, arXiv: 1705.01837.

  51. J. Heeck, and D. Teresi, arXiv: 1706.09909.

  52. L. Roszkowski, E. M. Sessolo, and S. Trojanowski, arXiv: 1707.06277.

  53. K. J. Bae, A. Kamada, S. P. Liew, and K. Yanagi, arXiv: 1707.06418.

  54. A. Biswas, S. Choubey, L. Covi, and S. Khan, arXiv: 1711.00553.

  55. M. Cirelli, N. Fornengo, and A. Strumia, Nucl. Phys. B 753, 178 (2006).

    Article  ADS  Google Scholar 

  56. K. A. Olive, et al. (Particle Data Group Collaboration), Chin. Phys. C 40, 100001 (2016).

    Google Scholar 

  57. B. Ren, K. Tsumura, and X. G. He, Phys. Rev. D 84, 073004 (2011), arXiv: 1107.5879.

    Article  ADS  Google Scholar 

  58. J. Liu, X. Chen, and X. Ji, Nat. Phys. 13, 212 (2017), arXiv: 1709.00688.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei-Hong Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, PH. Quasi-degenerate dark matter for DAMPE excess and 3.5 keV line. Sci. China Phys. Mech. Astron. 61, 101005 (2018). https://doi.org/10.1007/s11433-018-9255-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-018-9255-x

Keywords

Navigation