Skip to main content
Log in

Recent progress in stretchable organic field-effect transistors

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Stretchable organic field-effect transistors (STOFETs) employing organic semiconductors as active layers are highly attractive ongoing from health monitoring to biological research owing to some favorable advantages over their inorganic counterpart, including light weight, low cost, solution processing, high flexibility and simple adjustment of functionalities through molecular design. Although the development of STOFETs with original electrical performances under large mechanical deformation remain rudimentary, major efforts have recently been devoted to the investigation on STOFETs, and remarkable advances in stretchable components and novel fabrication methods have been achieved. A detailed overview of the advantages, challenges and current achievements in STOFETs was given including stretchable electrodes, semiconductors, dielectrics and substrates. Furthermore, conclusions and prospects for the future development of STOFETs with both high stretchability and superb electrical performances fabricated using intrinsically stretchable components are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chortos A, Koleilat G I, Pfattner R, et al. Mechanically durable and highly stretchable transistors employing carbon nanotube semiconductor and electrodes. Adv Mater, 2016, 28: 4441–4448

    Google Scholar 

  2. Rogers J A, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science, 2010, 327: 1603–1607

    Google Scholar 

  3. Hammock M L, Chortos A, Tee B C K, et al. The evolution of electronic skin (E-Skin): A brief history, design considerations, and recent progress. Adv Mater, 2013, 25: 5997–6038

    Google Scholar 

  4. Benight S J, Wang C, Tok J B H, et al. Stretchable and self-healing polymers and devices for electronic skin. Prog Polymer Sci, 2013, 38: 1961–1977

    Google Scholar 

  5. Tee B C K, Chortos A, Dunn R R, et al. Tunable flexible pressure sensors using microstructured elastomer geometries for intuitive electronics. Adv Funct Mater, 2014, 24: 5427–5434

    Google Scholar 

  6. Roh E, Hwang B U, Kim D, et al. Stretchable, transparent, ultrasensitive, and patchable strain sensor for human-machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano, 2015, 9: 6252–6261

    Google Scholar 

  7. Yamada T, Hayamizu Y, Yamamoto Y, et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotech, 2011, 6: 296–301

    Google Scholar 

  8. Tee B C K, Chortos A, Berndt A, et al. A skin-inspired organic digital mechanoreceptor. Science, 2015, 350: 313–316

    Google Scholar 

  9. Son D, Lee J, Qiao S, et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat Nanotech, 2014, 9: 397–404

    Google Scholar 

  10. Kang S K, Murphy R K J, Hwang S W, et al. Bioresorbable silicon electronic sensors for the brain. Nature, 2016, 530: 71–76

    Google Scholar 

  11. Kim D H, Lu N, Ghaffari R, et al. Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nat Mater, 2011, 10: 316–323

    Google Scholar 

  12. Ying M, Bonifas A P, Lu N, et al. Silicon nanomembranes for fingertip electronics. Nanotechnology, 2012, 23: 344004

    Google Scholar 

  13. Lim S, Son D, Kim J, et al. Transparent and stretchable interactive human machine interface based on patterned graphene heterostructures. Adv Funct Mater, 2015, 25: 375–383

    Google Scholar 

  14. Kim J, Lee M, Shim H J, et al. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat Commun, 2014, 5: 5747

    Google Scholar 

  15. Li S, Zhao H, Shepherd R F. Flexible and stretchable sensors for fluidic elastomer actuated soft robots. MRS Bull, 2017, 42: 138–142

    Google Scholar 

  16. Rus D, Tolley M T. Design, fabrication and control of soft robots. Nature, 2015, 521: 467–475; Muth J T, Vogt D M, Truby R L, et al. Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv Mater, 2014, 26: 6307–6312; Yan C, Wang J, Wang X, et al. An intrinsically stretchable nanowire photodetector with a fully embedded structure. Adv Mater, 2014, 26: 943–950

    Google Scholar 

  17. Liang J, Li L, Chen D, et al. Intrinsically stretchable and transparent thin-film transistors based on printable silver nanowires, carbon nanotubes and an elastomeric dielectric. Nat Commun, 2015, 6: 7647

    Google Scholar 

  18. Shin G, Yoon C H, Bae M Y, et al. Stretchable field-effect-transistor array of suspended SnO2 nanowires. Small, 2011, 7: 1181–1185

    Google Scholar 

  19. Pang C, Koo J H, Nguyen A, et al. Highly skin-conformal microhairy sensor for pulse signal amplification. Adv Mater, 2015, 27: 634–640

    Google Scholar 

  20. Chortos A, Lim J, To J W F, et al. Highly stretchable transistors using a microcracked organic semiconductor. Adv Mater, 2014, 26: 4253–4259

    Google Scholar 

  21. Chatterjee P, Pan Y, Stevens E C, et al. Controlled morphology of thin film silicon integrated with environmentally responsive hydrogels. Langmuir, 2013, 29: 6495–6501

    Google Scholar 

  22. Wong W S, Salleo A. Flexible Electronics: Materials and Applications. Berlin: Springer, 2009

    Google Scholar 

  23. Sun Y, Rogers J. Inorganic semiconductors for flexible electronics. Adv Mater, 2007, 19: 1897–1916

    Google Scholar 

  24. Kaltenbrunner M, White M S, Głowacki E D, et al. Ultrathin and lightweight organic solar cells with high flexibility. Nat Commun, 2012, 3: 1–7

    Google Scholar 

  25. Schwartz G, Tee B C K, Mei J, et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat Commun, 2013, 4: 1859

    Google Scholar 

  26. Shyu T C, Damasceno P F, Dodd P M, et al. A kirigami approach to engineering elasticity in nanocomposites through patterned defects. Nat Mater, 2015, 14: 785-789

    Google Scholar 

  27. Blees M K, Barnard A W, Rose P A, et al. Graphene kirigami. Nature, 2015, 524: 204–207

    Google Scholar 

  28. Yokota T, Zalar P, Kaltenbrunner M, et al. Ultraflexible organic photonic skin. Sci Adv, 2016, 2: e1501856

    Google Scholar 

  29. White M S, Kaltenbrunner M, Głowacki E D, et al. Ultrathin, highly flexible and stretchable PLEDs. Nat Photon, 2013, 7: 811–816

    Google Scholar 

  30. Sun Y, Choi W M, Jiang H, et al. Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat Nanotech, 2006, 1: 201–207

    Google Scholar 

  31. Lee H, Choi T K, Lee Y B, et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat Nanotech, 2016, 11: 566–572

    Google Scholar 

  32. Lee S K, Kim B J, Jang H, et al. Stretchable graphene transistors with printed dielectrics and gate electrodes. Nano Lett, 2011, 11: 4642–4646

    Google Scholar 

  33. Smith Z C, Wright Z M, Arnold A M, et al. Increased toughness and excellent electronic properties in regioregular random copolymers of 3-alkylthiophenes and thiophene. Adv Electron Mater, 2017, 3: 1600316

    Google Scholar 

  34. Kang I, Yun H J, Chung D S, et al. Record high hole mobility in polymer semiconductors via side-chain engineering. J Am Chem Soc, 2013, 135: 14896–14899

    Google Scholar 

  35. Luo C, Kyaw A K K, Perez L A, et al. General strategy for selfassembly of highly oriented nanocrystalline semiconducting polymers with high mobility. Nano Lett, 2014, 14: 2764–2771

    Google Scholar 

  36. Jung I, Xiao J, Malyarchuk V, et al. Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability. Proc Natl Acad Sci USA, 2011, 108: 1788–1793

    Google Scholar 

  37. Pattanasattayavong P, Yaacobi-Gross N, Zhao K, et al. Hole-transporting transistors and circuits based on the transparent inorganic semiconductor copper(I) thiocyanate (CuSCN) processed from solution at room temperature. Adv Mater, 2013, 25: 1504–1509

    Google Scholar 

  38. Tseng H R, Phan H, Luo C, et al. High-mobility field-effect transistors fabricated with macroscopic aligned semiconducting polymers. Adv Mater, 2014, 26: 2993–2998

    Google Scholar 

  39. Mei J, Kim D H, Ayzner A L, et al. Siloxane-terminated solubilizing side chains: Bringing conjugated polymer backbones closer and boosting hole mobilities in thin-film transistors. J Am Chem Soc, 2011, 133: 20130–20133

    Google Scholar 

  40. Matthews J R, Niu W, Tandia A, et al. Scalable synthesis of fused thiophene-diketopyrrolopyrrole semiconducting polymers processed from nonchlorinated solvents into high performance thin film transistors. Chem Mater, 2013, 25: 782–789

    Google Scholar 

  41. Wang G J N, Gasperini A, Bao Z. Stretchable polymer semiconductors for plastic electronics. Adv Electron Mater, 2018, 4: 1700429

    Google Scholar 

  42. Xu J, Wang S, Wang G J N, et al. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science, 2017, 355: 59–64

    Google Scholar 

  43. Oh J Y, Rondeau-Gagn;e S, Chiu Y C, et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature, 2016, 539: 411–415

    Google Scholar 

  44. Scott J I, Xue X, Wang M, et al. Significantly increasing the ductility of high performance polymer semiconductors through polymer blending. ACS Appl Mater Interfaces, 2016, 8: 14037–14045

    Google Scholar 

  45. Sekitani T, Zschieschang U, Klauk H, et al. Flexible organic transistors and circuits with extreme bending stability. Nat Mater, 2010, 9: 1015–1022

    Google Scholar 

  46. Yi H T, Payne M M, Anthony J E, et al. Ultra-flexible solutionprocessed organic field-effect transistors. Nat Commun, 2012, 3: 1259

    Google Scholar 

  47. Kim D H, Song J, Mook Choi W, et al. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc Natl Acad Sci USA, 2008, 105: 18675–18680

    Google Scholar 

  48. Chae S H, Yu W J, Bae J J, et al. Transferred wrinkled Al2O3 for highly stretchable and transparent grapheme-carbon nanotube transistors. Nat Mater, 2013, 12: 403–409

    Google Scholar 

  49. Savagatrup S, Printz A D, Rodriquez D, et al. Best of both worlds: Conjugated polymers exhibiting good photovoltaic behavior and high tensile elasticity. Macromolecules, 2014, 47: 1981–1992

    Google Scholar 

  50. Müller C, Goffri S, Breiby D, et al. Tough, semiconducting polyethylene- poly(3-hexylthiophene) diblock copolymers. Adv Funct Mater, 2007, 17: 2674–2679

    Google Scholar 

  51. Sekitani T, Nakajima H, Maeda H, et al. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat Mater, 2009, 8: 494–499

    Google Scholar 

  52. Song E, Kang B, Choi H H, et al. Stretchable and transparent organic semiconducting thin film with conjugated polymer nanowires embedded in an elastomeric matrix. Adv Electron Mater, 2016, 2: 1500250

    Google Scholar 

  53. Wang S, Xu J, Wang W, et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature, 2018, 555: 83–88

    Google Scholar 

  54. Tey J N, Wijaya I P M, Wang Z, et al. Laminated, microfluidicintegrated carbon nanotube based biosensors. Appl Phys Lett, 2009, 94: 013107

    Google Scholar 

  55. Shin M, Song J H, Lim G H, et al. Highly stretchable polymer transistors consisting entirely of stretchable device components. Adv Mater, 2014, 26: 3706–3711

    Google Scholar 

  56. Choi J S, Chan W P, Na B S, et al. Stretchable organic thin-film transistors fabricated on wavy-dimensional elastomer substrates using stiff-island structures. IEEE Electron Device Letters, 2014, 35: 762–764

    Google Scholar 

  57. Wu H, Kustra S, Gates E M, et al. Topographic substrates as strain relief features in stretchable organic thin film transistors. Org Electron, 2013, 14: 1636–1642

    Google Scholar 

  58. Rao Y L, Chortos A, Pfattner R, et al. Stretchable self-healing polymeric dielectrics cross-linked through metal-ligand coordination. J Am Chem Soc, 2016, 138: 6020–6027

    Google Scholar 

  59. Choi T, Kim S J, Park S, et al. Roll-to-roll continuous patterning and transfer of graphene via dispersive adhesion. Nanoscale, 2015, 7: 7138–7142

    Google Scholar 

  60. Wang Y, Wang L, Yang T, et al. Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv Funct Mater, 2014, 24: 4666–4670

    Google Scholar 

  61. Koo J H, Kim D C, Shim H J, et al. Flexible and stretchable smart display: Materials, fabrication, device design, and system integration. Adv Funct Mater, 2018, 28: 1801834

    Google Scholar 

  62. Xu F, Zhu Y. Highly conductive and stretchable silver nanowire conductors. Adv Mater, 2012, 24: 5117–5122

    Google Scholar 

  63. Amjadi M, Pichitpajongkit A, Lee S, et al. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano, 2014, 8: 5154-5163

    Google Scholar 

  64. Zhang R, Engholm M. Recent progress on the fabrication and properties of silver nanowire-based transparent electrodes. Nanomaterials, 2018, 8: 628

    Google Scholar 

  65. Kwon J, Suh Y D, Lee J, et al. Recent progress in silver nanowire based flexible/wearable optoelectronics. J Mater Chem C, 2018, 6: 7445–7461

    Google Scholar 

  66. Zhu Y, Qin Q, Xu F, et al. Size effects on elasticity, yielding, and fracture of silver nanowires: In situ experiments. Phys Rev B, 2012, 85: 045443

    Google Scholar 

  67. Araki T, Mandamparambil R, Martinus Peterus van Bragt D, et al. Stretchable and transparent electrodes based on patterned silver nanowires by laser-induced forward transfer for non-contacted printing techniques. Nanotechnology, 2016, 27: 45LT02

    Google Scholar 

  68. Lee P, Lee J, Lee H, et al. Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv Mater, 2012, 24: 3326–3332

    Google Scholar 

  69. Liu Y, Zhang J, Gao H, et al. Capillary-force-induced cold welding in silver-nanowire-based flexible transparent electrodes. Nano Lett, 2017, 17: 1090–1096

    Google Scholar 

  70. Di J, Hu D, Chen H, et al. Ultrastrong, foldable, and highly conductive carbon nanotube film. ACS Nano, 2012, 6: 5457–5464

    Google Scholar 

  71. Morales P, Moyanova S, Pavone L, et al. Self-grafting carbon nanotubes on polymers for stretchable electronics. Eur Phys J Plus, 2018, 133: 214

    Google Scholar 

  72. Lei T, Pochorovski I, Bao Z. Separation of semiconducting carbon nanotubes for flexible and stretchable electronics using polymer removable method. Acc Chem Res, 2017, 50: 1096–1104

    Google Scholar 

  73. Kaskela A, Nasibulin A G, Timmermans M Y, et al. Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique. Nano Lett, 2010, 10: 4349–4355

    Google Scholar 

  74. Yu Z, Niu X, Liu Z, et al. Intrinsically stretchable polymer lightemitting devices using carbon nanotube-polymer composite electrodes. Adv Mater, 2011, 23: 3989–3994

    Google Scholar 

  75. Lipomi D J, Vosgueritchian M, Tee B C K, et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotech, 2011, 6: 788–792

    Google Scholar 

  76. Xu F, Wang X, Zhu Y, et al. Wavy ribbons of carbon nanotubes for stretchable conductors. Adv Funct Mater, 2012, 22: 1279–1283

    Google Scholar 

  77. Rangari V K, Yousuf M, Jeelani S, et al. Alignment of carbon nanotubes and reinforcing effects in nylon-6 polymer composite fibers. Nanotechnology, 2008, 19: 245703

    Google Scholar 

  78. Shin M K, Oh J, Lima M, et al. Elastomeric conductive composites based on carbon nanotube forests. Adv Mater, 2010, 22: 2663–2667

    Google Scholar 

  79. Gilshteyn E P, Lin S, Kondrashov V A, et al. A one-step method of hydrogel modification by single-walled carbon nanotubes for highly stretchable and transparent electronics. ACS Appl Mater Interfaces, 2018, 10: 28069–28075

    Google Scholar 

  80. Huang X, Zeng Z, Fan Z, et al. Graphene-based electrodes. Adv Mater, 2012, 24: 5979–6004

    Google Scholar 

  81. Zang J, Ryu S, Pugno N, et al. Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nat Mater, 2013, 12: 321–325

    Google Scholar 

  82. Bronsgeest M S, Bendiab N, Mathur S, et al. Strain relaxation in CVD graphene: Wrinkling with shear lag. Nano Lett, 2015, 15: 5098–5104

    Google Scholar 

  83. Nicholl R J T, Conley H J, Lavrik N V, et al. The effect of intrinsic crumpling on the mechanics of free-standing graphene. Nat Commun, 2015, 6: 8789

    Google Scholar 

  84. An B W, Hyun B G, Kim S Y, et al. Stretchable and transparent electrodes using hybrid structures of grapheme-metal nanotrough networks with high performances and ultimate uniformity. Nano Lett, 2014, 14: 6322–6328

    Google Scholar 

  85. Chen T, Xue Y, Roy A K, et al. Transparent and stretchable highperformance supercapacitors based on wrinkled graphene electrodes. ACS Nano, 2014, 8: 1039–1046

    Google Scholar 

  86. Cai C, Jia F, Li A, et al. Crackless transfer of large-area graphene films for superior-performance transparent electrodes. Carbon, 2016, 98: 457–462

    Google Scholar 

  87. Ding J, Du K, Wathuthanthri I, et al. Transfer patterning of large-area graphene nanomesh via holographic lithography and plasma etching. J Vacuum Sci Tech B Nanotechnol MicroElectron-Mater Processing Measurement Phenomena, 2014, 32: 06FF01

    Google Scholar 

  88. Ding J, Fisher F T, Yang E H. Direct transfer of corrugated graphene sheets as stretchable electrodes. J Vacuum Sci Tech B Nanotechnol MicroElectron-Mater Processing Measurement Phenomena, 2016, 34: 051205

    Google Scholar 

  89. Hong J Y, Kim W, Choi D, et al. Omnidirectionally stretchable and transparent graphene electrodes. ACS Nano, 2016, 10: 9446–9455

    Google Scholar 

  90. Liu N, Chortos A, Lei T, et al. Ultratransparent and stretchable graphene electrodes. Sci Adv, 2017, 3: e1700159

    Google Scholar 

  91. Choi T Y, Hwang B U, Kim B Y, et al. Stretchable, transparent, and stretch-unresponsive capacitive touch sensor array with selectively patterned silver nanowires/reduced graphene oxide electrodes. ACS Appl Mater Interfaces, 2017, 9: 18022–18030

    Google Scholar 

  92. Lee J, Woo J Y, Kim J T, et al. Synergistically enhanced stability of highly flexible silver nanowire/carbon nanotube hybrid transparent electrodes by plasmonic welding. ACS Appl Mater Interfaces, 2014, 6: 10974–10980

    Google Scholar 

  93. Deng B, Hsu P C, Chen G, et al. Roll-to-roll encapsulation of metal nanowires between graphene and plastic substrate for high-performance flexible transparent electrodes. Nano Lett, 2015, 15: 4206–4213

    Google Scholar 

  94. Li Q, Ullah Z, Li W, et al. Wide-range strain sensors based on highly transparent and supremely stretchable graphene/Ag-nanowires hybrid structures. Small, 2016, 12: 5058–5065

    Google Scholar 

  95. Ding J, Fu S, Zhang R, et al. Graphene.Vertically aligned carbon nanotube hybrid on PDMS as stretchable electrodes. Nanotechnology, 2017, 28: 465302

    Google Scholar 

  96. Chun K Y, Oh Y, Rho J, et al. Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nat Nanotech, 2010, 5: 853–857

    Google Scholar 

  97. Jin L, Chortos A, Lian F, et al. Microstructural origin of resistancestrain hysteresis in carbon nanotube thin film conductors. Proc Natl Acad Sci USA, 2018, 115: 1986–1991

    Google Scholar 

  98. Zu M, Li Q, Wang G, et al. Carbon nanotube fiber based stretchable conductor. Adv Funct Mater, 2013, 23: 789–793

    Google Scholar 

  99. Akter T, Kim W S. Reversibly stretchable transparent conductive coatings of spray-deposited silver nanowires. ACS Appl Mater Interfaces, 2012, 4: 1855–1859

    Google Scholar 

  100. Yao S, Zhu Y. Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale, 2014, 6: 2345–2352

    Google Scholar 

  101. Ge J, Yao H B, Wang X, et al. Stretchable conductors based on silver nanowires: Improved performance through a binary network design. Angew Chem Int Ed, 2013, 52: 1654–1659

    Google Scholar 

  102. Lee P, Ham J, Lee J, et al. Highly stretchable or transparent conductor fabrication by a hierarchical multiscale hybrid nanocomposite. Adv Funct Mater, 2014, 24: 5671–5678

    Google Scholar 

  103. Xie Y, Liu Y, Zhao Y, et al. Stretchable all-solid-state supercapacitor with wavy shaped polyaniline/graphene electrode. J Mater Chem A, 2014, 2: 9142–9149

    Google Scholar 

  104. Lee M S, Lee K, Kim S Y, et al. High-performance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures. Nano Lett, 2013, 13: 2814–2821

    Google Scholar 

  105. Liu J, Yi Y, Zhou Y, et al. Highly stretchable and flexible graphene/ITO hybrid transparent electrode. Nanoscale Res Lett, 2016, 11: 108

    Google Scholar 

  106. Qian Y, Zhang X, Xie L, et al. Stretchable organic semiconductor devices. Adv Mater, 2016, 28: 9243–9265

    Google Scholar 

  107. Gelinck G, Heremans P, Nomoto K, et al. Organic transistors in optical displays and microelectronic applications. Adv Mater, 2010, 22: 3778–3798

    Google Scholar 

  108. Trung T Q, Lee N E. Recent progress on stretchable electronic devices with intrinsically stretchable components. Adv Mater, 2017, 29: 1603167

    Google Scholar 

  109. Takacs C J, Treat N D, Kramer S, et al. Remarkable order of a highperformance polymer. Nano Lett, 2013, 13: 2522–2527

    Google Scholar 

  110. Wang C, Dong H, Hu W, et al. Semiconducting π-conjugated systems in field-effect transistors: A material odyssey of organic electronics. Chem Rev, 2012, 112: 2208–2267

    Google Scholar 

  111. Li R, Hu W, Liu Y, et al. Micro- and nanocrystals of organic semiconductors. Acc Chem Res, 2010, 43: 529–540

    Google Scholar 

  112. Reyes-Martinez M A, Crosby A J, Briseno A L. Rubrene crystal field-effect mobility modulation via conducting channel wrinkling. Nat Commun, 2015, 6: 6948

    Google Scholar 

  113. Briseno A, Tseng R, Ling M M, et al. High-performance organic single-crystal transistors on flexible substrates. Adv Mater, 2006, 18: 2320–2324

    Google Scholar 

  114. Cai X, Ji D, Jiang L, et al. Solution-processed high-performance flexible 9, 10-bis(phenylethynyl)anthracene organic single-crystal transistor and ring oscillator. Appl Phys Lett, 2014, 104: 063305

    Google Scholar 

  115. Tang K, Song Z, Tang Q, et al. Effect of the deformation state on the response of a flexible H2S sensor based on a Ph5T2 single-crystal transistor. IEEE Electron Device Lett, 2018, 39: 119–122

    Google Scholar 

  116. Wang H, Deng L, Tang Q, et al. Flexible organic single-crystal field-effect transistor for ultra-sensitivity strain sensing. IEEE Electron Device Lett, 2017, 38: 1598–1601

    Google Scholar 

  117. Kim T H, Lee J H, Kim J, et al. Field-effect transistors of tetracene single crystal on top of a flexible substrate. MRS Proc, 2006, 920: 0920–S02–04

    Google Scholar 

  118. Rang Z, Haraldsson A, Kim D M, et al. Hydrostatic-pressure dependence of the photoconductivity of single-crystal pentacene and tetracene. Appl Phys Lett, 2001, 79: 2731–2733

    Google Scholar 

  119. Rang Z, Nathan M I, Ruden P P, et al. Hydrostatic pressure dependence of charge carrier transport in single-crystal rubrene devices. Appl Phys Lett, 2005, 86: 123501

    Google Scholar 

  120. Jedaa A, Halik M. Toward strain resistant flexible organic thin film transistors. Appl Phys Lett, 2009, 95: 103309

    Google Scholar 

  121. Sokolov A N, Cao Y, Johnson O B, et al. Mechanistic considerations of bending-strain effects within organic semiconductors on polymer dielectrics. Adv Funct Mater, 2012, 22: 175–183

    Google Scholar 

  122. Savagatrup S, Makaram A S, Burke D J, et al. Mechanical properties of conjugated polymers and polymer-fullerene composites as a function of molecular structure. Adv Funct Mater, 2014, 24: 1169–1181

    Google Scholar 

  123. McCulloch I, Heeney M, Bailey C, et al. Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat Mater, 2006, 5: 328–333

    Google Scholar 

  124. Reddy C M, Padmanabhan K A, Desiraju G R. Structure-property correlations in bending and brittle organic crystals. Cryst Growth Des, 2006, 6: 2720–2731

    Google Scholar 

  125. O’Connor B, Chan E P, Chan C, et al. Correlations between mechanical and electrical properties of polythiophenes. ACS Nano, 2010, 4: 7538–7544

    Google Scholar 

  126. O’Connor B, Kline R J, Conrad B R, et al. Anisotropic structure and charge transport in highly strain-aligned regioregular poly(3-hexylthiophene). Adv Funct Mater, 2011, 21: 3697–3705

    Google Scholar 

  127. Sekitani T, Someya T. Stretchable, large-area organic electronics. Adv Mater, 2010, 22: 2228–2246

    Google Scholar 

  128. Zhang X, Bronstein H, Kronemeijer A J, et al. Molecular origin of high field-effect mobility in an indacenodithiophene-benzothiadiazole copolymer. Nat Commun, 2013, 4: 2238

    Google Scholar 

  129. Venkateshvaran D, Nikolka M, Sadhanala A, et al. Approaching disorder-free transport in high-mobility conjugated polymers. Nature, 2014, 515: 384–388

    Google Scholar 

  130. Wu H C, Benight S J, Chortos A, et al. A rapid and facile soft contact lamination method: Evaluation of polymer semiconductors for stretchable transistors. Chem Mater, 2014, 26: 4544–4551

    Google Scholar 

  131. Lu C, Lee W Y, Gu X, et al. Effects of molecular structure and packing order on the stretchability of semicrystalline conjugated poly (tetrathienoacene-diketopyrrolopyrrole) polymers. Adv Electron Mater, 2017, 3: 1600311

    Google Scholar 

  132. Yang H, Shin T J, Yang L, et al. Effect of mesoscale crystalline structure on the field-effect mobility of regioregular poly(3-hexyl thiophene) in thin-film transistors. Adv Funct Mater, 2005, 15: 671–676

    Google Scholar 

  133. Kim J S, Kim J H, Lee W, et al. Tuning mechanical and optoelectrical properties of poly(3-hexylthiophene) through systematic regioregularity control. Macromolecules, 2015, 48: 4339–4346

    Google Scholar 

  134. Son S Y, Kim Y, Lee J, et al. High-field-effect mobility of low-crystallinity conjugated polymers with localized aggregates. J Am Chem Soc, 2016, 138: 8096–8103

    Google Scholar 

  135. Palaniappan K, Hundt N, Sista P, et al. Block copolymer containing poly(3-hexylthiophene) and poly(4-vinylpyridine): Synthesis and its interaction with CdSe quantum dots for hybrid organic applications. J Polym Sci A Polym Chem, 2011, 49: 1802–1808

    Google Scholar 

  136. Sommer M, Lang A S, Thelakkat M. Crystalline-crystalline donoracceptor block copolymers. Angew Chem Int Ed, 2008, 47: 7901–7904

    Google Scholar 

  137. Nguyen H Q, Bhatt M P, Rainbolt E A, et al. Synthesis and characterization of a polyisoprene-b-polystyrene-b-poly(3-hexylthiophene) triblock copolymer. Polym Chem, 2013, 4: 462–465

    Google Scholar 

  138. Peng R, Pang B, Hu D, et al. An ABA triblock copolymer strategy for intrinsically stretchable semiconductors. J Mater Chem C, 2015, 3: 3599–3606

    Google Scholar 

  139. Khang D Y, Jiang H, Huang Y, et al. A stretchable form of singlecrystal silicon for high-performance electronics on rubber substrates. Science, 2006, 311: 208–212

    Google Scholar 

  140. Park K, Lee D K, Kim B S, et al. Stretchable, transparent zinc oxide thin film transistors. Adv Funct Mater, 2010, 20: 3577–3582

    Google Scholar 

  141. Kim D H, Xiao J, Song J, et al. Stretchable, curvilinear electronics based on inorganic materials. Adv Mater, 2010, 22: 2108–2124

    Google Scholar 

  142. Graz I M, Cotton D P J, Robinson A, et al. Silicone substrate with in situ strain relief for stretchable thin-film transistors. Appl Phys Lett, 2011, 98: 124101

    Google Scholar 

  143. Khang D Y, Rogers J A, Lee H H. Mechanical buckling: Mechanics, metrology, and stretchable electronics. Adv Funct Mater, 2009, 19: 1526–1536

    Google Scholar 

  144. Kaltenbrunner M, Sekitani T, Reeder J, et al. An ultra-lightweight design for imperceptible plastic electronics. Nature, 2013, 499: 458–463

    Google Scholar 

  145. Shin M, Oh J Y, Byun K E, et al. Polythiophene nanofibril bundles surface-embedded in elastomer: A route to a highly stretchable active channel layer. Adv Mater, 2015, 27: 1255–1261

    Google Scholar 

  146. Street R A. Thin-film transistors. Adv Mater, 2009, 21: 2007–2022

    Google Scholar 

  147. Yang S Y, Shin K, Park C E. The effect of gate-dielectric surface energy on pentacene morphology and organic field-effect transistor characteristics. Adv Funct Mater, 2005, 15: 1806–1814

    Google Scholar 

  148. Zhao X, Wang S, Li A, et al. Universal solution-processed high-k amorphous oxide dielectrics for high-performance organic thin film transistors. RSC Adv, 2014, 4: 14890–14895

    Google Scholar 

  149. Jiang Y, Guo Y, Liu Y. Engineering of amorphous polymeric insulators for organic field-effect transistors. Adv Electron Mater, 2017, 3: 1700157

    Google Scholar 

  150. Lee J, Kaake L G, Cho J H, et al. Ion gel-gated polymer thin-film transistors: Operating mechanism and characterization of gate dielectric capacitance, switching speed, and stability. J Phys Chem C, 2009, 113: 8972–8981

    Google Scholar 

  151. Lee J, Panzer M J, He Y, et al. Ion gel gated polymer thin-film transistors. J Am Chem Soc, 2007, 129: 4532–4533

    Google Scholar 

  152. Pu J, Yomogida Y, Liu K K, et al. Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett, 2012, 12: 4013–4017

    Google Scholar 

  153. Yomogida Y, Pu J, Shimotani H, et al. Ambipolar organic singlecrystal transistors based on ion gels. Adv Mater, 2012, 24: 4392–4397

    Google Scholar 

  154. Xu F, Wu M Y, Safron N S, et al. Highly stretchable carbon nanotube transistors with ion gel gate dielectrics. Nano Lett, 2014, 14: 682–686

    Google Scholar 

  155. Wu M Y, Zhao J, Xu F, et al. Highly stretchable carbon nanotube transistors enabled by buckled ion gel gate dielectrics. Appl Phys Lett, 2015, 107: 053301

    Google Scholar 

  156. Kim B J, Jang H, Lee S K, et al. High-performance flexible graphene field effect transistors with ion gel gate dielectrics. Nano Lett, 2010, 10: 3464–3466

    Google Scholar 

  157. Pu J, Zhang Y, Wada Y, et al. Fabrication of stretchable MoS2 thinfilm transistors using elastic ion-gel gate dielectrics. Appl Phys Lett, 2013, 103: 023505

    Google Scholar 

  158. Qian C, Sun J, Yang J, et al. Flexible organic field-effect transistors on biodegradable cellulose paper with efficient reusable ion gel dielectrics. RSC Adv, 2015, 5: 14567–14574

    Google Scholar 

  159. Trung T Q, Ramasundaram S, Hwang B U, et al. An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics. Adv Mater, 2016, 28: 502–509

    Google Scholar 

  160. Xia M, Cheng Z, Han J, et al. Extremely stretchable all-carbonnanotube transistor on flexible and transparent substrates. Appl Phys Lett, 2014, 105: 143504

    Google Scholar 

  161. Du P, Lin X, Zhang X. Dielectric constants of PDMS nanocomposites using conducting polymer nanowires. In: Proceedings of 16th International Solid-State Sensors, Actuators and Microsystems Conference. Brijing: IEEE, 2011. 645–648

    Google Scholar 

  162. Lee Y, Oh J Y, Kim T R, et al. Deformable organic nanowire fieldeffect transistors. Adv Mater, 2018, 30: 1704401

    Google Scholar 

  163. Grigorescu R M, Ciuprina F, Ghioca P, et al. Mechanical and dielectric properties of SEBS modified by graphite inclusion and composite interface. J Phys Chem Solids, 2016, 89: 97–106

    Google Scholar 

  164. Kong D, Pfattner R, Chortos A, et al. Capacitance characterization of elastomeric dielectrics for applications in intrinsically stretchable thin film transistors. Adv Funct Mater, 2016, 26: 4680–4686

    Google Scholar 

  165. Son D, Kang J, Vardoulis O, et al. An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nat Nanotech, 2018, 13: 1057–1065

    Google Scholar 

  166. Kang J, Son D, Wang G J N, et al. Tough and water-insensitive selfhealing elastomer for robust electronic skin. Adv Mater, 2018, 30: 1706846

    Google Scholar 

  167. Huang J, Zhang L, Tang Z, et al. Bioinspired engineering of sacrificial bonds into rubber networks towards high-performance and functional elastomers. Compos Commun, 2018, 8: 65–73

    Google Scholar 

  168. Li C H, Wang C, Keplinger C, et al. A highly stretchable autonomous self-healing elastomer. Nat Chem, 2016, 8: 618–624

    Google Scholar 

  169. Zhang B, Zhang P, Zhang H, et al. A transparent, highly stretchable, autonomous self-healing poly(dimethyl siloxane) elastomer. Macromol Rapid Commun, 2017, 38: 1700110

    Google Scholar 

  170. Huang Y, Zhong M, Huang Y, et al. A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. Nat Commun, 2015, 6: 10310

    Google Scholar 

  171. Wang H, Zhu B, Jiang W, et al. A mechanically and electrically self-healing supercapacitor. Adv Mater, 2014, 26: 3638–3643

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YunLong Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Guo, Y. & Liu, Y. Recent progress in stretchable organic field-effect transistors. Sci. China Technol. Sci. 62, 1255–1276 (2019). https://doi.org/10.1007/s11431-018-9503-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-018-9503-8

Keywords

Navigation