Skip to main content
Log in

Design concept development of a variable magnetization motor with improved efficiency and controllable stiffness for robotic applications

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

A variable magnetization (VM) motor by incorporating magnets that can be flexibly configured with variable magnetization process is proposed to meet the emerging requirements on motor efficiency and actuator compliance in robotic applications. A generalized spin torque model is established which provides a relationship between the motor torque and two different types of motor inputs, the current inputs and the magnet magnetizations. A variable magnetization process is proposed based on the study of the hysteresis properties of the magnetic materials and the design criteria for implementing the variable magnetization process with current pulses are established. The feasibility of the variable magnetization is validated with experimental data and the motor functions and performances are numerically demonstrated and evaluated. The results show that the VM motor can maintain high efficiency by switching between two actuation modes. Controllable stiffness at different equilibria can be also achieved with the VM motor with instantaneous magnetizing current pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albu-Schaffer A, Eiberger O, Grebenstein M, et al. Soft robotics. IEEE Robotic Autom Mag, 2008, 15: 20–30

    Article  Google Scholar 

  2. Ding H, Yang X, Zheng N, et al. Tri-Co robot: A Chinese robotic research initiative for enhanced robot interaction capabilities. Natl Sci Rev, 2017, 485: 148

    Google Scholar 

  3. Carmichael M G, Liu D K. Estimating physical assistance need using a musculoskeletal model. IEEE Trans Biomed Eng, 2013, 60: 1912–1919

    Article  Google Scholar 

  4. Hsieh H C, Chen D F, Chien L, et al. Design of a parallel actuated exoskeleton for adaptive and safe robotic shoulder rehabilitation. IEEE/ASME Trans Mechatron, 2017, 22: 2034–2045

    Article  Google Scholar 

  5. Katsura S, Matsumoto Y, Ohnishi K. Modeling of force sensing and validation of disturbance observer for force control. IEEE Trans Ind Electron, 2007, 54: 530–538

    Article  Google Scholar 

  6. Ham R, Sugar T, Vanderborght B, et al. Compliant actuator designs. IEEE Robot Automat Mag, 2009, 16: 81–94

    Article  Google Scholar 

  7. Wolf S, Grioli G, Eiberger O, et al. Variable stiffness actuators: Review on design and components. IEEE/ASME Trans Mechatron, 2016, 21: 2418–2430

    Article  Google Scholar 

  8. Petit F, Dietrich A, Albu-Schaffer A. Generalizing torque control concepts: Using well-established torque control methods on variable stiffness robots. IEEE Robot Automat Mag, 2015, 22: 37–51

    Article  Google Scholar 

  9. Seok S, Wang A, Chuah M Y, et al. Design principles for highly efficient quadrupeds and implementation on the MIT Cheetah robot. In: Proceedings of the 2013 IEEE International Conference on Robotics and Automation. Karlsruhe, 2013. 3307–3312

    Chapter  Google Scholar 

  10. Knaian A N. Electropermanent Magnetic Connectors and Actuators: Devices and Their Application in Programmable Matter. Cambridge: Massachusetts Institute of Technology, 2010

    Google Scholar 

  11. Gilpin K, Knaian A, Rus D. Robot pebbles: One centimeter modules for programmable matter through self-disassembly. In: Proceedings of the 2010 IEEE International Conference on Robotics and Automation. Anchorage, 2010. 2485–2492

    Chapter  Google Scholar 

  12. Marchese A D, Onal C D, Rus D. Soft robot actuators using energyefficient valves controlled by electropermanent magnets. In: Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco, 2011. 756–761

    Google Scholar 

  13. Chossat J B, Maslyczyk A, Lavertu J S, et al. The programmable permanent magnet actuator: A paradigm shift in efficiency for lowspeed torque-holding robotic applications. IEEE Robot Autom Lett, 2018, 3: 1751–1758

    Article  Google Scholar 

  14. Jiles D C, Atherton D L. Theory of ferromagnetic hysteresis (invited). J Appl Phys, 1984, 55: 2115–2120

    Article  Google Scholar 

  15. Jiles D C, Thoelke J B, Devine M K. Numerical determination of hysteresis parameters for the modeling of magnetic properties using the theory of ferromagnetic hysteresis. IEEE Trans Magn, 1992, 28: 27–35

    Article  Google Scholar 

  16. Bai K, Xu R, Lee K M, et al. Design and development of a spherical motor for conformal printing of curved electronics. IEEE Trans Ind Electron, 2018, 65: 9190–9200

    Article  Google Scholar 

  17. Li L, Lee K M, Bai K, et al. Inverse models and harmonics compensation for suppressing torque ripples of multiphase permanent magnet motor. IEEE Trans Ind Electron, 2018, 65: 8730–8739

    Article  Google Scholar 

  18. Jackson J. Classical Electrodynamics. Hoboken: Wiley, 1998

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun Bai or Kok-Meng Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, K., Zhu, L., Yuan, M. et al. Design concept development of a variable magnetization motor with improved efficiency and controllable stiffness for robotic applications. Sci. China Technol. Sci. 62, 39–46 (2019). https://doi.org/10.1007/s11431-018-9406-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-018-9406-5

Keywords

Navigation