Skip to main content
Log in

Atomistic simulation study of favored compositions of Ni-Nb-Al metallic glasses

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

This study investigates the formation process of Ni-Nb-Al metallic glasses. To this end, a long-range n-body potential was constructed for the Ni-Nb-Al ternary metal system, and applied to atomistic simulations. The simulations not only showed the physical origins of the amorphous phase formation, but also quantitatively predicted a hexagonal compositional region that energetically favors the glass formation. The energy difference between the solid solution and metallic glass, which generates the amorphization driving force (ADF), was suggested to indicate the glass-formation ability (GFA) of each alloy. Based on the computed ADFs, the Ni55Nb25Al20 alloy exhibited the highest GFA among the Ni-Nb-Al members, implying that the glass formed by this amorphous alloy is more thermodynamically stable than other alloys in the system. In a Voronoi tessellation analysis, the knee point of the coordination-number distribution curve corresponded to the glass-formation region of the Ni-Nb-Al system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yavari A R, Lewandowski J J, Eckert J. Mechanical properties of bulk metallic glasses. MRS Bull, 2004, 32: 635–638

    Article  Google Scholar 

  2. Trexler M M, Thadhani N N. Mechanical properties of bulk metallic glasses. Prog Mater Sci, 2010, 55: 759–839

    Article  Google Scholar 

  3. Johnson W L. Bulk glass-forming metallic alloys: Science and technology. MRS Bull, 1999, 24: 42–56

    Article  Google Scholar 

  4. Murty B. Influence of oxygen on the crystallization behavior of Zr65Cu27.5Al7.5 and Zr66.7Cu33.3 metallic glasses. Acta Mater, 2000, 48: 3985–3996

    Article  Google Scholar 

  5. Qin C L, Zhang W, Asami K, et al. Glass formation, corrosion behavior and mechanical properties of bulk glassy Cu-Hf-Ti-Nb alloys. Acta Mater, 2005, 53: 3903–3911

    Article  Google Scholar 

  6. Zeng Q, Sheng H, Ding Y, et al. Long-range topological order in metallic glass. Science, 2011, 332: 1404–1406

    Article  Google Scholar 

  7. Tian L, Cheng Y Q, Shan Z W, et al. Approaching the ideal elastic limit of metallic glasses. Nat Commun, 2012, 3: 609

    Article  Google Scholar 

  8. Han F F, Inoue A, Han Y, et al. Novel heating-induced reversion during crystallization of Al-based glassy alloys. Sci Rep, 2017, 7: 46113

    Article  Google Scholar 

  9. Inoue A. Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems. Prog Mater Sci, 1998, 43: 365–520

    Article  Google Scholar 

  10. Louzguine D V, Inoue A. Crystallization behaviour of Al-based metallic glasses below and above the glass-transition temperature. J Non-Cryst Solids, 2002, 311: 281–293

    Article  Google Scholar 

  11. Janik-Czachor M, Kudelski A, Dolata M, et al. Modification of surface activity of Cu-Zr amorphous alloys and Cu metal by electrochemical methods. Mater Sci Eng-A, 1999, 267: 227–234

    Article  Google Scholar 

  12. Yang G W, Lin C, Liu J B, et al. Formation of metastable crystalline phases by solid state reaction in Ni-Nb multilayered films. J Phys DAppl Phys, 1999, 32: 79–83

    Article  Google Scholar 

  13. Kung K T Y, Liu B X, Nicolet M A. Study of Ni-Nb system by Ion mixing. Phys Stat Sol, 2010, 77: 355–359

    Article  Google Scholar 

  14. Jiang Q K, Liu P, Ma Y, et al. Super elastic strain limit in metallic glass films. Sci Rep, 2012, 2: 852

    Article  Google Scholar 

  15. Wang W H, Dong C, Shek C H. Bulk metallic glasses. Mater Sci Eng R, 2004, 44: 45–89

    Article  Google Scholar 

  16. Lu Z P, Bei H, Liu C T. Recent progress in quantifying glass-forming ability of bulk metallic glasses. Intermetallics, 2007, 15: 618–624

    Article  Google Scholar 

  17. Turnbull D. Under what conditions can a glass be formed? Contemp Phys, 1969, 10: 473–488

    Article  Google Scholar 

  18. Egami T, Waseda Y. Atomic size effect on the formability of metallic glasses. J Non-Cryst Solids, 1984, 64: 113–134

    Article  Google Scholar 

  19. Lu Z P, Liu C T. A new glass-forming ability criterion for bulk metallic glasses. Acta Mater, 2002, 50: 3501–3512

    Article  Google Scholar 

  20. Lu Z P, Liu C T. Glass formation criterion for various glass-forming systems. Phys Rev Lett, 2003, 91: 115505

    Article  Google Scholar 

  21. Li J H, Dai X D, Liang S H, et al. Interatomic potentials of the binary transition metal systems and some applications in materials physics. Phys Rep, 2008, 455: 1–134

    Article  Google Scholar 

  22. Liu B X, Li J H, Lai W S. Metallic glass-forming composition range of the Cu-Zr-Ti ternary system determined by molecular dynamics simulations with many-body potentials. J Mater Res, 2011, 26: 547–560

    Article  Google Scholar 

  23. Li J H, Dai Y, Cui Y Y, et al. Atomistic theory for predicting the binary metallic glass formation. Mater Sci Eng-R-Rep, 2011, 72: 1–28

    Article  Google Scholar 

  24. Zhang K, Wang M, Papanikolaou S, et al. Quantum mechanical/molecular mechanical/continuum style solvation model: Time-dependent density functional theory. J Chem Phys, 2013, 139: 084106

    Article  Google Scholar 

  25. Li J H, Dai Y, Dai X D. Long-range n-body potential and applied to atomistic modeling the formation of ternary metallic glasses. Intermetallics, 2012, 31: 292–320

    Article  Google Scholar 

  26. Massalski T B, Hassen P, Jaffee R I. Amorphous metals and semiconductors: Proceeding of an international workshop. Coronado: Pergamon Press, 1986

    Google Scholar 

  27. Yang B, Yong D U, Liu Y. Recent progress in criterions for glass forming ability. Trans Nonferrous Met Soc China, 2009, 19: 78–84

    Article  Google Scholar 

  28. Dai X D, Kong Y, Li J H. Long-range empirical potential model: Application to fcc transition metals and alloys. Phys Rev B, 2007, 75: 104101

    Article  Google Scholar 

  29. Dai X D, Li J H, Kong Y. Long-range empirical potential for the bcc structured transition metals. Phys Rev B, 2007, 75: 052102

    Article  Google Scholar 

  30. Dai Y, Li J H, Liu B X. Long-range empirical potential model: Extension to hexagonal close-packed metals. J Phys-Condens Matter, 2009, 21: 385402

    Article  Google Scholar 

  31. Li J H, Dai Y, Dai X D, et al. Development of n-body potentials for hcp-bcc and fcc-bcc binary transition metal systems. Comput Mater Sci, 2008, 43: 1207–1215

    Article  Google Scholar 

  32. Li Y, Li J H, Liu J B, et al. Atomic approach to the optimized compositions of Ni-Nb-Ti glassy alloys with large glass-forming ability. RSC Adv, 2014, 5: 3054–3062

    Article  Google Scholar 

  33. Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation: Ideas, illustrations and the CASTEP code. J Phys-Condens Matter, 2002, 14: 2717–2744

    Article  Google Scholar 

  34. Clark S J, Segall M D, Pickard C J. First principles methods using CASTEP. Zeitschrift für Kristallographie, 2005, 220: 567–570

    Google Scholar 

  35. Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B, 1992, 45: 13244–13249

    Article  Google Scholar 

  36. Kittel C, McEuen P. Introduction to Solid-State Physics. New York: Wiley, 1996

    Google Scholar 

  37. Simmons G, Wang H. Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook. 2nd ed. Cambridge: MIT, 1971

    Google Scholar 

  38. Haynes W M, Lide D R, Bruno T J. CRC Handbook of Chemistry and Physics. Boca Raton: CRC Press, 2014

    Google Scholar 

  39. Villars P. Pearson’s handbook desk edition: Crystallo-graphic data for intermetallic phases. ASM International, Materials Park, 1997

    Google Scholar 

  40. Dai Y, Li J H, Che X L, et al. Proposed long-range empirical potential to study the metallic glasses in the Ni-Nb-Ta System. J Phys Chem B, 2009, 113: 7282–7290

    Article  Google Scholar 

  41. Zhang Z J, Huang X Y, Zhang Z X. Hexagonal metastable phase formation in Ni3RM (RM=Mo, Nb, Ta) multilayered films by solidstate reaction. Acta Mater, 1998, 46: 4189–4194

    Article  Google Scholar 

  42. Papadimitriou I, Utton C, Tsakiropoulos P. Ab initio investigation of the Nb-Al system. Comput Mater Sci, 2015, 107: 116–121

    Article  Google Scholar 

  43. Rose J H, Smith J R, Ferrante J. Universal features of bonding in metals. Phys Rev B, 1983, 28: 1835–1845

    Article  Google Scholar 

  44. Sheng H W, Wilde G, Ma E. The competing crystalline and amorphous solid solutions in the Ag-Cu system. Acta Mater, 2002, 50: 475–488

    Article  Google Scholar 

  45. Panagiotopoulos A Z, Quirke N, Stapleton M, et al. Phase equilibria by simulation in the Gibbs ensemble. Mol Phys, 1988, 63: 527–545

    Article  Google Scholar 

  46. Allen M P, Tildesley D J. Computer Simulation of Liquids. London: Oxford University Press, 1987

    MATH  Google Scholar 

  47. Parrinello M, Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J Appl Phys, 1981, 52: 7182–7190

    Article  Google Scholar 

  48. Dai Y, Li J H, Che X L, et al. Glass-forming region of the Ni-Nb-Ta ternary metal system determined directly from n-body potential through molecular dynamics simulations. J Mater Res, 2009, 24: 1815–1819

    Article  Google Scholar 

  49. Cheng Y Q, Ma E. Atomic-level structure and structure-property relationship in metallic glasses. Prog Mater Sci, 2011, 56: 379–473

    Article  Google Scholar 

  50. Hung L S, Gyulai J, Nastasi M, et al. Ion-induced amorphous and crystalline phase formation in Al/Ni, Al/Pd, and Al/Pt thin films. Appl Phys Lett, 1983, 42: 672–674

    Article  Google Scholar 

  51. Liu B X, Johnson W L, Nicolet M A. Nuclear Instruments & Methods in Physics Research, 1983, 209: 229–234

    Article  Google Scholar 

  52. Yoo D J, Hwang S M, Lee S M. Phase formation in mechanically alloyed Nb-Al powders. Appl Phys Lett, 1988, 53: 1399–1401

    Article  Google Scholar 

  53. Zhang Z J, Bai H Y, Qiu Q L, et al. Phase evolution upon ion mixing and solid-state reaction and thermodynamic interpretation in the Ni-Nb system. J Appl Phys, 1993, 73: 1702–1710

    Article  Google Scholar 

  54. Leonhardt M, Löser W, Lindenkreuz H G. Solidification kinetics and phase formation of undercooled eutectic Ni-Nb melts. Acta Mater, 1999, 47: 2961–2968

    Article  Google Scholar 

  55. Zhu Z, Zhang H, Pan D, et al. Fabrication of binary Ni-Nb bulk metallic glass with high strength and compressive plasticity. Adv Eng Mater, 2006, 8: 953–957

    Article  Google Scholar 

  56. Skakov Y A, Djakonova N P, Edneral N V, et al. Some peculiarities of the atomic structure of metallic phases formed during liquid quenching and solid state reactions. Mater Sci Eng-A, 1991, 133: 560–564

    Article  Google Scholar 

  57. Lee M, Bae D, Inoue A, et al. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans, 2005, 46: 2817–2829

    Article  Google Scholar 

  58. Xia L, Li W H, Fang S S, et al. Binary Ni-Nb bulk metallic glasses. J Appl Phys, 2006, 99: 026103

    Article  Google Scholar 

  59. Lee M H, Kim W T, Kim D H, et al. The effect of Al addition on the thermal properties and crystallization behavior of Ni60Nb40 metallic glass. Mater Sci Eng-A, 2004, 375–377: 336–340

    Article  Google Scholar 

  60. Petzoldt F. Synthesis and process characterization of mechanically alloyed amorphous Ni-Nb powders. J Less Common Met, 1988, 140: 85–92

    Article  Google Scholar 

  61. Tiainen T J, Schwarz R B. Synthesis and characterization of mechanically alloyed Ni-Sn powders. J Less Common Met, 1988, 140: 99–112

    Article  Google Scholar 

  62. Kosloske A M, Jewell P F, Florman A L, et al. Acute abdominal emergencies associated with cytomegalovirus infection in the young infant. Pediatr Surg Int, 1988, 3: 43–46

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JiaHao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, B., Yang, M., Liu, J. et al. Atomistic simulation study of favored compositions of Ni-Nb-Al metallic glasses. Sci. China Technol. Sci. 61, 1829–1838 (2018). https://doi.org/10.1007/s11431-018-9342-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-018-9342-3

Keywords

Navigation