Skip to main content
Log in

Emergence of higher-level neuron properties using a hierarchical statistical distribution model

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Essential to visual tasks such as object recognition is the formation of effective representations that generalize from specific instances of visual input. Neurons in primary visual cortex are typically hypothesized to efficiently encode image structures such as edge and textures from natural scenes. Here this paper proposed a novel hierarchical statistical distribution model to generalize higher-level neuron properties and encode distributed regularities that characterize local image regions. Two layers of our hierarchical model are presented to extract spiking activities of excitatory neurons decorrelated by inhibitory neurons and to construct the statistical patterns of input data, respectively. Trained on whitened natural images, parameters including neural connecting weights and distribution coding weights are estimated by their corresponding learning rules. To prove the feasibility and effectiveness of our model, several experiments on natural images are conducted. Adapting our model to natural scenes yields a distributed representation for higher-order statistical regularities. Comparison results provide insight into higher-level neurons which encode more abstract and invariant properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. van Hateren J H. Theoretical predictions of spatiotemporal receptive fields of fly LMCs, and experimental validation. J Comp Physiol A, 1992, 171: 157–170

    Article  Google Scholar 

  2. Freeman J, Ziemba C M, Heeger D J, et al. A functional and perceptual signature of the second visual area in primates. Nat Neurosci, 2013, 16: 974–981

    Article  Google Scholar 

  3. Field G D, Gauthier J L, Sher A, et al. Functional connectivity in the retina at the resolution of photoreceptors. Nature, 2010, 467: 673–677

    Article  Google Scholar 

  4. Dan Y, Atick J J, Reid R C. Efficient coding of natural scenes in the lateral geniculate nucleus: Experimental test of a computational theory. J Neurosci, 1996, 16: 3351–3362

    Article  Google Scholar 

  5. Olshausen B A, Field D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 1996, 381: 607–609

    Article  Google Scholar 

  6. Duan H B, Li P. Bio-inspired Computation in Unmanned Aerial Vehicles. Berlin, Heidelberg: Springer, 2014

    Book  Google Scholar 

  7. Duan H, Deng Y, Wang X, et al. Biological eagle-eye: Based visual imaging guidance simulation platform for unmanned flying vehicles. IEEE Aerosp Electron Syst Mag, 2013, 28: 36–45

    Article  Google Scholar 

  8. Itti L, Koch C. Computational modelling of visual attention. Nat Rev Neurosci, 2001, 2: 194–203

    Article  Google Scholar 

  9. Deng Y M, Duan H B. Avian contrast sensitivity inspired contour detector for unmanned aerial vehicle landing. Sci China Tech Sci, 2017, 60: 1958–1965

    Article  Google Scholar 

  10. Duan H, Deng Y, Wang X, et al. Small and dim target detection via lateral inhibition filtering and artificial bee colony based selective visual attention. PLoS ONE, 2013, 8: e72035

    Article  Google Scholar 

  11. Krüger N, Janssen P, Kalkan S, et al. Deep hierarchies in the primate visual cortex: What can we learn for computer vision? IEEE Trans Pattern Anal Mach Intell, 2013, 35: 1847–1871

    Article  Google Scholar 

  12. Pajares G, Guijarro M, Herrera P J, et al. Combining classifiers through fuzzy cognitive maps in natural images. IET Comput Vis, 2009, 3: 112–123

    Article  Google Scholar 

  13. Wang K, Gu X F, Yu T, et al. Classification of hyperspectral remote sensing images using frequency spectrum similarity. Sci China Tech Sci, 2013, 56: 980–988

    Article  Google Scholar 

  14. Sohn K, Zhou G, Lee C, et al. Learning and selecting features jointly with point-wise gated boltzmann machines. In: International Conference on Machine Learning. Atlanta, 2013. 217–225

    Google Scholar 

  15. Li H, Duan H B. Verification of monocular and binocular pose estimation algorithms in vision-based UAVs autonomous aerial refueling system. Sci China Tech Sci, 2016, 59: 1730–1738

    Article  Google Scholar 

  16. Balakrishnan N, Hariharakrishnan K, Schonfeld D. A new image representation algorithm inspired by image submodality models, redundancy reduction, and learning in biological vision. IEEE Trans Pattern Anal Machine Intell, 2005, 27: 1367–1378

    Article  Google Scholar 

  17. Spratling M W. Image segmentation using a sparse coding model of cortical area V1. IEEE Trans Image Process, 2013, 22: 1631–1643

    Article  MathSciNet  MATH  Google Scholar 

  18. Lee T S. Image representation using 2D Gabor wavelets. IEEE Trans Pattern Anal Machine Intell, 1996, 18: 959–971

    Article  Google Scholar 

  19. Derpanis K G, Gryn J M. Three-dimensional nth derivative of Gaussian separable steerable filters. In: IEEE International Conference on Image Processing. Genoa: IEEE, 2005. 553–556

    Google Scholar 

  20. Zylberberg J, Murphy J T, DeWeese M R. A sparse coding model with synaptically local plasticity and spiking neurons can account for the diverse shapes of V1 simple cell receptive fields. PLoS Comput Biol, 2011, 7: e1002250

    Article  MathSciNet  Google Scholar 

  21. Doi E, Gauthier J L, Field G D, et al. Efficient coding of spatial information in the primate retina. J Neurosci, 2012, 32: 16256–16264

    Article  Google Scholar 

  22. King P D, Zylberberg J, DeWeese M R. Inhibitory interneurons decorrelate excitatory cells to drive sparse code formation in a spiking model of V1. J Neurosci, 2013, 33: 5475–5485

    Article  Google Scholar 

  23. Gu J, Han H, Li X, et al. Hierarchical spatial pyramid max pooling based on SIFT features and sparse coding for image classification. IET Comput Vision, 2013, 7: 144–150

    Article  Google Scholar 

  24. Riesenhuber M, Poggio T. Hierarchical models of object recognition in cortex. Nat Neurosci, 1999, 2: 1019–1025

    Article  Google Scholar 

  25. Serre T, Wolf L, Bileschi S, et al. Robust object recognition with cortex-like mechanisms. IEEE Trans Pattern Anal Mach Intell, 2007, 29: 411–426

    Article  Google Scholar 

  26. Deng Y, Duan H. Hybrid C2 features and spectral residual approach to object recognition. Optik-Int J Light Electron Opt, 2013, 124: 3590–3595

    Article  Google Scholar 

  27. Farabet C, Couprie C, Najman L, et al. Learning hierarchical features for scene labeling. IEEE Trans Pattern Anal Mach Intell, 2013, 35: 1915–1929

    Article  Google Scholar 

  28. Jarrett K, Kavukcuoglu K, Ranzato M A, et al. What is the best multistage architecture for object recognition? In: IEEE International Conference on Computer Vision. Kyoto: IEEE, 2009. 2146–2153

    Google Scholar 

  29. Karklin Y, Lewicki M S. A hierarchical Bayesian model for learning nonlinear statistical regularities in nonstationary natural signals. Neural Comput, 2005, 17: 397–423

    Article  MATH  Google Scholar 

  30. Karklin Y, Lewicki M S. Emergence of complex cell properties by learning to generalize in natural scenes. Nature, 2009, 457: 83–86

    Article  Google Scholar 

  31. Faivre O, Juusola M. Visual coding in locust photoreceptors. PLoS ONE, 2008, 3: e2173

    Article  Google Scholar 

  32. Mika S, Ratsch G, Weston J, et al. Fisher discriminant analysis with kernels. In: IEEE Conference on Neural Networks for Signal Processing. Madison: IEEE, 1999. 41–48

    Google Scholar 

  33. Li F F, Fergus R, Perona P. Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories. Comput Vis Image Underst, 2007, 106: 59–70

    Article  Google Scholar 

  34. Hou X D, Zhang L Q. Saliency detection: A spectral residual approach. In: IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis: IEEE, 2007. 1–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HaiBin Duan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xian, N., Deng, Y. & Duan, H. Emergence of higher-level neuron properties using a hierarchical statistical distribution model. Sci. China Technol. Sci. 62, 628–634 (2019). https://doi.org/10.1007/s11431-018-9327-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-018-9327-9

Keywords

Navigation