Skip to main content
Log in

Effect of radial heat conduction on effective thermal conductivity of carbon nanotube bundles

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The effect of the radial heat conduction on the effective thermal conductivity of carbon nanotube (CNT) bundles is studied by the nonequilibrium molecular dynamics (NEMD) method. The hexagonal CNT bundle consists of seven (10, 10) single-walled carbon nanotubes (SWCNTs). The radial heat conduction is induced by creating the vacancy defects in some segments of the constituent CNTs. Combined with the temperature differences and the inter-tube thermal resistances at the different segments, the radial heat flow in the CNT bundle is calculated. The maximum percentage of the radial heat flow is less than 7% with the presence of four defective CNTs, while the resultant decrement of the effective thermal conductivity of the bundle is about 18%. The present results indicate that the radial heat flow can significantly diminish the axial heat conduction in the CNT bundles, which probably explains the smaller effective thermal conductivity in the CNT assemblies compared to that of the individual CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dresselhaus M S, Dresselhaus G, Charlier J C, et al. Electronic, thermal and mechanical properties of carbon nanotubes. Philos Trans R Soc A-Math Phys Eng Sci, 2004, 362: 2065–2098

    Article  Google Scholar 

  2. Li Y H, Wu Z H, Xie H Q, et al. Study on the performance of TEG with heat transfer enhancement using graphene-water nanofluid for a TEG cooling system. Sci China Technol Sci, 2017, 60: 1168–1174

    Article  Google Scholar 

  3. Kim P, Shi L, Majumdar A, et al. Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett, 2001, 87: 215502

    Article  Google Scholar 

  4. Fujii M, Zhang X, Xie H, et al. Measuring the thermal conductivity of a single carbon nanotube. Phys Rev Lett, 2005, 95: 065502

    Article  Google Scholar 

  5. Yu C, Shi L, Yao Z, et al. Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Lett, 2005, 5: 1842–1846

    Article  Google Scholar 

  6. Shi L, Li D, Yu C, et al. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J Heat Transfer, 2003, 125: 881–888

    Article  Google Scholar 

  7. Aliev A E, Guthy C, Zhang M, et al. Thermal transport in MWCNT sheets and yarns. Carbon, 2007, 45: 2880–2888

    Article  Google Scholar 

  8. Prasher R S, Hu X J, Chalopin Y, et al. Turning carbon nanotubes from exceptional heat conductors into insulators. Phys Rev Lett, 2009, 102: 105901

    Article  Google Scholar 

  9. Jakubinek M B, White M A, Li G, et al. Thermal and electrical conductivity of tall, vertically aligned carbon nanotube arrays. Carbon, 2010, 48: 3947–3952

    Article  Google Scholar 

  10. Behabtu N, Young C C, Tsentalovich D E, et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science, 2013, 339: 182–186

    Article  Google Scholar 

  11. Volkov A N, Salaway R N, Zhigilei L V. Atomistic simulations, mesoscopic modeling, and theoretical analysis of thermal conductivity of bundles composed of carbon nanotubes. J Appl Phys, 2013, 114: 104301

    Article  Google Scholar 

  12. Varshney V, Patnaik S S, Roy A K, et al. Modeling of thermal conductance at transverse cnt-cnt interfaces. J Phys Chem C, 2010, 114: 16223–16228

    Article  Google Scholar 

  13. Liu J, Alhashme M, Yang R. Thermal transport across carbon nanotubes connected by molecular linkers. Carbon, 2012, 50: 1063–1070

    Article  Google Scholar 

  14. Park J G, Cheng Q, Lu J, et al. Thermal conductivity of MWCNT/ epoxy composites: The effects of length, alignment and functionalization. Carbon, 2012, 50: 2083–2090

    Article  Google Scholar 

  15. Gharib-Zahedi M R, Tafazzoli M, Böhm M C, et al. Transversal thermal transport in single-walled carbon nanotube bundles: Influence of axial stretching and intertube bonding. J Chem Phys, 2013, 139: 184704

    Article  Google Scholar 

  16. Che J, Cagin T, Goddard III W A. Thermal conductivity of carbon nanotubes. Nanotechnology, 2000, 11: 65–69

    Article  Google Scholar 

  17. Park J, Bifano M F P, Prakash V. Sensitivity of thermal conductivity of carbon nanotubes to defect concentrations and heat-treatment. J Appl Phys, 2013, 113: 034312

    Article  Google Scholar 

  18. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys, 1995, 117: 1–19

    Article  MATH  Google Scholar 

  19. Hu G J, Cao B Y. Thermal resistance between crossed carbon nanotubes: Molecular dynamics simulations and analytical modeling. J Appl Phys, 2013, 114: 224308

    Article  Google Scholar 

  20. Schelling P K, Phillpot S R, Keblinski P. Comparison of atomic-level simulation methods for computing thermal conductivity. Phys Rev B, 2002, 65: 144306

    Article  Google Scholar 

  21. Lindsay L, Broido D A. Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys Rev B, 2010, 81: 205441

    Article  Google Scholar 

  22. Girifalco L A, Hodak M, Lee R S. Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys Rev B, 2000, 62: 13104–13110

    Article  Google Scholar 

  23. Yan X H, Xiao Y, Li Z M. Effects of intertube coupling and tube chirality on thermal transport of carbon nanotubes. J Appl Phys, 2006, 99: 124305

    Article  Google Scholar 

  24. Zhong H, Lukes J R. Interfacial thermal resistance between carbon nanotubes: Molecular dynamics simulations and analytical thermal modeling. Phys Rev B, 2006, 74: 125403

    Article  Google Scholar 

  25. Shiomi J, Maruyama S. Molecular dynamics of diffusive-ballistic heat conduction in single-walled carbon nanotubes. Jpn J Appl Phys, 2008, 47: 2005–2009

    Article  Google Scholar 

  26. Cao B Y, Li Y W. A uniform source-and-sink scheme for calculating thermal conductivity by nonequilibrium molecular dynamics. J Chem Phys, 2010, 133: 024106

    Article  Google Scholar 

  27. Jiang J W, Chen J, Wang J S, et al. Edge states induce boundary temperature jump in molecular dynamics simulation of heat conduction. Phys Rev B, 2009, 80: 052301

    Article  Google Scholar 

  28. Cao A, Qu J. Size dependent thermal conductivity of single-walled carbon nanotubes. J Appl Phys, 2012, 112: 013503

    Article  Google Scholar 

  29. Balasubramanian G, Puri I K. Heat conduction across a solid-solid interface: understanding nanoscale interfacial effects on thermal resistance. Appl Phys Lett, 2011, 99: 013116

    Article  Google Scholar 

  30. Liu J, Li T, Hu Y, et al. Benchmark study of the length dependent thermal conductivity of individual suspended, pristine SWCNTs. Nanoscale, 2017, 9: 1496–1501

    Article  Google Scholar 

  31. Zhan H, Zhang Y, Bell J M, et al. Suppressed thermal conductivity of bilayer graphene with vacancy-initiated linkages. J Phys Chem C, 2015, 119: 1748–1752

    Article  Google Scholar 

  32. Xu Z, Buehler M J. Nanoengineering heat transfer performance at carbon nanotube interfaces. ACS Nano, 2009, 3: 2767–2775

    Article  Google Scholar 

  33. Wang J, Chen D, Wallace J, et al. Introducing thermally stable intertube defects to assist off-axial phonon transport in carbon nanotube films. Appl Phys Lett, 2014, 104: 191902

    Article  Google Scholar 

  34. Venkateswaran U D, Rao A M, Richter E, et al. Probing the singlewall carbon nanotube bundle: Raman scattering under high pressure. Phys Rev B, 1999, 59: 10928–10934

    Article  Google Scholar 

  35. Shenogin S, Bodapati A, Xue L, et al. Effect of chemical functionalization on thermal transport of carbon nanotube composites. Appl Phys Lett, 2004, 85: 2229–2231

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JianLi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Song, Y., Zhang, Y. et al. Effect of radial heat conduction on effective thermal conductivity of carbon nanotube bundles. Sci. China Technol. Sci. 61, 1959–1966 (2018). https://doi.org/10.1007/s11431-018-9306-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-018-9306-8

Keywords

Navigation