Skip to main content
Log in

Climate tipping-point potential and paradoxical production of methane in a changing ocean

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The global warming potential of methane (CH4) is about 30 times stronger than that of carbon dioxide (CO2) over a century timescale. Methane emission is hypothesized to have contributed to global climate change events and mass extinctions during Earth’s history. Therefore, the study of CH4 production processes is critically important to the understanding of global climate change. It has been a dogma that biogenic CH4 detectable in the oceans originates exclusively from the anaerobic metabolic activity of methanogenic archaea in hypoxic and anoxic environments, despite reports that many oxic surface and near-surface waters of the world’s oceans are CH4-supersaturated, thereby rendering net sea-to-air emissions of CH4. The phenomenon of CH4 production in oxic marine waters is referred to as the “ocean methane paradox”. Although still not totally resolved, recent studies have generated several hypotheses regarding the sources of CH4 production in oxic seawater. This review will summarize our current understanding of the importance of CH4 in the global climate and analyze the biological processes and their underpinning mechanisms that lead to the production of CH4 in oxic seawater environments. We will also tentatively explore the relationships of these microbial metabolic processes with global changes in climate and environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angle J C, Morin T H, Solden L M, Narrowe A B, Smith G J, Borton M A, Rey-Sanchez C, Daly R A, Mirfenderesgi G, Hoyt D W, Riley W J, Miller C S, Bohrer G, Wrighton K C. 2017. Methanogenesis in oxygenated soils is a substantial fraction of wetland methane emissions. Nat Commun, 8: 1567

    Google Scholar 

  • Archer D. 2007. Methane hydrate stability and anthropogenic climate change. Biogeosciences, 4: 521–544

    Google Scholar 

  • Archer D, Buffett B, Brovkin V. 2009. Ocean methane hydrates as a slow tipping point in the global carbon cycle. Proc Natl Acad Sci USA, 106: 20596–20601

    Google Scholar 

  • Aronson E L, Allison S D, Helliker B R. 2013. Environmental impacts on the diversity of methane-cycling microbes and their resultant function. Front Microbiol, 4: 225

    Google Scholar 

  • Auman A J, Speake C C, Lidstrom M E. 2001. nifH sequences and nitrogen fixation in type I and type II methanotrophs. Appl Environ Microbiol, 67: 4009–4016

    Google Scholar 

  • Bakker D C E, Bange H W, Gruber N, Johannessen T, Upstill-Goddard R C, Borges A V, Delille B, Löscher C L, Naqvi S W A, Omar A M, Santana-Casiano J M. 2014. Air-sea interactions of natural long-lived greenhouse gases (CO2, N2O, CH4) in a changing climate. In: Liss P S, Johnson M T, eds. Ocean-Atmosphere Interactions of Gases and Particles. Heidelberg: Springer

    Google Scholar 

  • Bakun A. 2017. Climate change and ocean deoxygenation within intensified surface-driven upwelling circulations. Phil Trans R Soc A, 375: 20160327

    Google Scholar 

  • Balch W E, Fox G E, Magrum L J, Woese C R, Wolfe R S. 1979. Methanogens: Reevaluation of a unique biological group. Microbiol Rev, 43: 260–296

    Google Scholar 

  • Bange H W. 2006. Nitrous oxide and methane in European coastal waters. Estuar Coast Shelf Sci, 70: 361–374

    Google Scholar 

  • Bange H W, Bartell U H, Rapsomanikis S, Andreae M O. 1994. Methane in the Baltic and North Seas and a reassessment of the marine emissions of methane. Glob Biogeochem Cycle, 8: 465–480

    Google Scholar 

  • Bange H W, Ramesh R, Rapsomanikis S, Andreae M O. 1998. Methane in surface waters of the Arabian Sea. Geophys Res Lett, 25: 3547–3550

    Google Scholar 

  • Bates T S, Kelly K C, Johnson J E, Gammon R H. 1996. A reevaluation of the open ocean source of methane to the atmosphere. J Geophys Res, 101: 6953–6961

    Google Scholar 

  • Beerling D J, Royer D L. 2011. Convergent Cenozoic CO2 history. Nat Geosci, 4: 418–420

    Google Scholar 

  • Beman J M, Chow C E, King A L, Feng Y, Fuhrman J A, Andersson A, Bates N R, Popp B N, Hutchins D A. 2011. Global declines in oceanic nitrification rates as a consequence of ocean acidification. Proc Natl Acad Sci USA, 108: 208–213

    Google Scholar 

  • Beversdorf L J, White A E, Björkman K M, Letelier R M, Karl D M. 2010. Phosphonate metabolism by Trichodesmium IMS101 and the production of greenhouse gases. Limnol Oceanogr, 55: 1768–1778

    Google Scholar 

  • Biastoch A, Treude T, Rüpke L H, Riebesell U, Roth C, Burwicz E B, Park W, Latif M, Böning C W, Madec G, Wallmann K. 2011. Rising Arctic Ocean temperatures cause gas hydrate destabilization and ocean acidification. Geophys Res Lett, 38: L08602

    Google Scholar 

  • Bijma J, Pörtner H O, Yesson C, Rogers A D. 2013. Corrigendum to “Climate change and the oceans—What does the future hold?” Mar Pollut Bull, 76: 436

    Google Scholar 

  • Boetius A, Wenzhöfer F. 2013. Seafloor oxygen consumption fuelled by methane from cold seeps. Nat Geosci, 6: 725–734

    Google Scholar 

  • Bogard M J, del Giorgio P A, Boutet L, Chaves M C G, Prairie Y T, Merante A, Derry A M. 2014. Oxic water column methanogenesis as a major component of aquatic CH4 fluxes. Nat Commun, 5: 5350

    Google Scholar 

  • Borges A V, Champenois W, Gypens N, Delille B, Harlay J. 2016. Massive marine methane emissions from near-shore shallow coastal areas. Sci Rep, 6: 27908

    Google Scholar 

  • Boswell R, Collett T S. 2011. Current perspectives on gas hydrate resources. Energy Environ Sci, 4: 1206–1215

    Google Scholar 

  • Boudreau B P, Luo Y, Meysman F J R, Middelburg J J, Dickens G R. 2015. Gas hydrate dissociation prolongs acidification of the Anthropocene oceans. Geophys Res Lett, 42: 9337–9344

    Google Scholar 

  • Braeckman U, Van Colen C, Guilini K, Van Gansbeke D, Soetaert K, Vincx M, Vanaverbeke J. 2014. Empirical evidence reveals seasonally dependent reduction in nitrification in coastal sediments subjected to near future ocean acidification. Plos One, 9: e108153

    Google Scholar 

  • Bridgham S D, Cadillo-Quiroz H, Keller J K, Zhuang Q. 2013. Methane emissions from wetlands: Biogeochemical, microbial, and modeling perspectives from local to global scales. Glob Change Biol, 19: 1325–1346

    Google Scholar 

  • Brigham-Grette J, Melles M, Minyuk P, Andreev A, Tarasov P, DeConto R, Koenig S, Nowaczyk N, Wennrich V, Rosén P, Haltia E, Cook T, Gebhardt C, Meyer-Jacob C, Snyder J, Herzschuh U. 2013. Pliocene warmth, polar amplification, and stepped Pleistocene cooling recorded in NE Arctic Russia. Science, 340: 1421–1427

    Google Scholar 

  • Brooks J M, Reid D F, Bernard B B. 1981. Methane in the upper water column of the northwestern Gulf of Mexico. J Geophys Res, 86: 11029–11040

    Google Scholar 

  • Bullock H A, Luo H, Whitman W B. 2017. Evolution of dimethylsulfoniopropionate metabolism in marine phytoplankton and bacteria. Front Microbiol, 8: 637

    Google Scholar 

  • Capelle D W, Tortell P D. 2016. Factors controlling methane and nitrousoxide variability in the southern British Columbia coastal upwelling system. Mar Chem, 179: 56–67

    Google Scholar 

  • Carini P. 2016. Microbial oxidation of DMS to DMSO: A biochemical surprise with geochemical implications. Environ Microbiol, 18: 2302–2304

    Google Scholar 

  • Carini P, White A E, Campbell E O, Giovannoni S J. 2014. Methane production by phosphate-starved SAR11 chemoheterotrophic marine bacteria. Nat Commun, 5: 4346

    Google Scholar 

  • Carpenter L J, Archer S D, Beale R. 2012. Ocean-atmosphere trace gas exchange. Chem Soc Rev, 41: 6473–6506

    Google Scholar 

  • Cha I T, Min U G, Kim S J, Yim K J, Roh S W, Rhee S K. 2013. Methanomethylovorans uponensis sp. nov., a methylotrophic methanogen isolated from wetland sediment. Antonie van Leeuwenhoek, 104: 1005–1012

    Google Scholar 

  • Chronopoulou P M, Shelley F, Pritchard W J, Maanoja S T, Trimmer M. 2017. Origin and fate of methane in the Eastern Tropical North Pacific oxygen minimum zone. ISME J, 11: 1386–1399

    Google Scholar 

  • Conrad R. 2009. The global methane cycle: Recent advances in understanding the microbial processes involved. Environ Microbiol Rep, 1: 285–292

    Google Scholar 

  • Cynar F J, Yayanos A A. 1991. Enrichment and characterization of a methanogenic bacterium from the oxic upper layer of the ocean. Curr Microbiol, 23: 89–96

    Google Scholar 

  • Damm E, Helmke E, Thoms S, Schauer U, Nöthig E, Bakker K, Kiene R P. 2010. Methane production in aerobic oligotrophic surface water in the central Arctic Ocean. Biogeosciences, 7: 1099–1108

    Google Scholar 

  • Damm E, Kiene R P, Schwarz J, Falck E, Dieckmann G. 2008. Methane cycling in Arctic shelf water and its relationship with phytoplankton biomass and DMSP. Mar Chem, 109: 45–59

    Google Scholar 

  • Damm E, Thoms S, Beszczynska-Möller A, Nöthig E M, Kattner G. 2015. Methane excess production in oxygen-rich polar water and a model of cellular conditions for this paradox. Polar Sci, 9: 327–334

    Google Scholar 

  • Dang H Y, Chen C T A. 2017. Ecological energetic perspectives on responses of nitrogen-transforming chemolithoautotrophic microbiota to changes in the marine environment. Front Microbiol, 8: 1246

    Google Scholar 

  • Dang H Y, Lovell C R. 2016. Microbial surface colonization and biofilm development in marine environments. Microbiol Mol Biol Rev, 80: 91–138

    Google Scholar 

  • Dang H Y, Luan X W, Chen R P, Zhang X X, Guo L Z, Klotz M G. 2010. Diversity, abundance and distribution of amoA-encoding archaea in deep-sea methane seep sediments of the Okhotsk Sea. Fems Microbiol Ecol, 72: 370–385

    Google Scholar 

  • Dang H Y, Luan X W, Zhao J Y, Li J. 2009. Diverse and novel nifH and nifH-like gene sequences in the deep-sea methane seep sediments of the Okhotsk Sea. Appl Environ Microbiol, 75: 2238–2245

    Google Scholar 

  • Dang H Y, Zhou H X, Yang J Y, Ge H M, Jiao N Z, Luan X W, Zhang C L, Klotz M G. 2013. Thaumarchaeotal signature gene distribution in sediments of the northern South China Sea: An indicator of the metabolic intersection of the marine carbon, nitrogen, and phosphorus cycles? Appl Environ Microbiol, 79: 2137–2147

    Google Scholar 

  • Dang H, Jiao N. 2014. Perspectives on the microbial carbon pump with special reference to microbial respiration and ecosystem efficiency in large estuarine systems. Biogeosciences, 11: 3887–3898

    Google Scholar 

  • de Angelis M A, Lee C. 1994. Methane production during zooplankton grazing on marine phytoplankton. Limnol Oceanogr, 39: 1298–1308

    Google Scholar 

  • Dedysh S N, Ricke P, Liesack W. 2004. NifH and NifD phylogenies: An evolutionary basis for understanding nitrogen fixation capabilities of methanotrophic bacteria. Microbiology, 150: 1301–1313

    Google Scholar 

  • Dekas A E, Poretsky R S, Orphan V J. 2009. Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia. Science, 326: 422–426

    Google Scholar 

  • del Valle D, Karl D. 2014. Aerobic production of methane from dissolved water-column methylphosphonate and sinking particles in the North Pacific Subtropical Gyre. Aquat Microb Ecol, 73: 93–105

    Google Scholar 

  • DeVries T, Holzer M, Primeau F. 2017. Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning. Nature, 542: 215–218

    Google Scholar 

  • Dickens G R. 2011. Down the Rabbit Hole: Toward appropriate discussion of methane release from gas hydrate systems during the Paleocene-Eocene thermal maximum and other past hyperthermal events. Clim Past, 7: 831–846

    Google Scholar 

  • Dickens G R, Castillo M M, Walker J C G. 1997. A blast of gas in the latest Paleocene: Simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology, 25: 259–262

    Google Scholar 

  • Dickens G R, O’Neil J R, Rea D K, Owen R M. 1995. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography, 10: 965–971

    Google Scholar 

  • Dickinson R E, Cicerone R J. 1986. Future global warming from atmospheric trace gases. Nature, 319: 109–115

    Google Scholar 

  • DiSpirito A A, Semrau J D, Murrell J C, Gallagher W H, Dennison C, Vuilleumier S. 2016. Methanobactin and the link between copper and bacterial methane oxidation. Microbiol Mol Biol Rev, 80: 387–409

    Google Scholar 

  • Ditchfield A, Wilson S, Hart M, Purdy K, Green D, Hatton A. 2012. Identification of putative methylotrophic and hydrogenotrophic methanogens within sedimenting material and copepod faecal pellets. Aquat Microb Ecol, 67: 151–160

    Google Scholar 

  • Dlugokencky E J, Nisbet E G, Fisher R, Lowry D. 2011. Global atmospheric methane: Budget, changes and dangers. Philos Trans R Soc AMath Phys Eng Sci, 369: 2058–2072

    Google Scholar 

  • Dyhrman S T, Benitez-Nelson C R, Orchard E D, Haley S T, Pellechia P J. 2009. A microbial source of phosphonates in oligotrophic marine systems. Nat Geosci, 2: 696–699

    Google Scholar 

  • Dziewit L, Pyzik A, Romaniuk K, Sobczak A, Szczesny P, Lipinski L, Bartosik D, Drewniak L. 2015. Novel molecular markers for the detection of methanogens and phylogenetic analyses of methanogenic communities. Front Microbiol, 6: 694

    Google Scholar 

  • Embley R W, Chadwick W W, Baker E T, Butterfield D A, Resing J A, de Ronde C E J, Tunnicliffe V, Lupton J E, Juniper S K, Rubin K H, Stern R J, Lebon G T, Nakamura K I, Merle S G, Hein J R, Wiens D A, Tamura Y. 2006. Long-term eruptive activity at a submarine arc volcano. Nature, 441: 494–497

    Google Scholar 

  • Etminan M, Myhre G, Highwood E J, Shine K P. 2016. Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing. Geophys Res Lett, 43: 12,614–12,623

    Google Scholar 

  • Evans P N, Parks D H, Chadwick G L, Robbins S J, Orphan V J, Golding S D, Tyson G W. 2015. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science, 350: 434–438

    Google Scholar 

  • Farías L, Sanzana K, Sanhueza-Guevara S, Yevenes M A. 2017. Dissolved methane distribution in the Reloncaví Fjord and adjacent marine system during austral winter (41°–43°S). Estuar Coast, 40: 1592–1606

    Google Scholar 

  • Fernández-Carrera A, Rogers K L, Weber S C, Chanton J P, Montoya J P. 2016. Deep Water Horizon oil and methane carbon entered the food web in the Gulf of Mexico. Limnol Oceanogr, 61: S387–S400

    Google Scholar 

  • Ferry J G, Lessner D J. 2008. Methanogenesis in marine sediments. Ann New York Acad Sci, 1125: 147–157

    Google Scholar 

  • Finster K, Tanimoto Y, Bak F. 1992. Fermentation of methanethiol and dimethylsulfide by a newly isolated methanogenic bacterium. Arch Microbiol, 157: 425–430

    Google Scholar 

  • Fischer D, Mogollón J M, Strasser M, Pape T, Bohrmann G, Fekete N, Spiess V, Kasten S. 2013. Subduction zone earthquake as potential trigger of submarine hydrocarbon seepage. Nat Geosci, 6: 647–651

    Google Scholar 

  • Florez-Leiva L, Damm E, Farías L. 2013. Methane production induced by dimethylsulfide in surface water of an upwelling ecosystem. Prog Oceanogr, 112–113: 38–48

    Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey D W, Haywood J, Lean J, Lowe D C, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Dorland R V. 2007. Changes in atmospheric constituents and in radiative forcing. Chapter 2. In: Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor M M, Miller H L, eds. Climate Change 2007—The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press

    Google Scholar 

  • Friedrich M W. 2005. Methyl-coenzyme M reductase genes: Unique functional markers for methanogenic and anaerobic methane-oxidizing Archaea. Methods Enzymol, 397: 428–442

    Google Scholar 

  • Frondel M, Oertel K, Rubbelke D. 2002. The domino effect in climate change. Int J Environ Poll, 17: 201–210

    Google Scholar 

  • Fu H, Metcalf W W. 2015. Genetic basis for metabolism of methylated sulfur compounds in Methanosarcina species. J Bacteriol, 197: 1515–1524

    Google Scholar 

  • Garcia J L, Patel B K C, Ollivier B. 2000. Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea. Anaerobe, 6: 205–226

    Google Scholar 

  • Geersen J, Scholz F, Linke P, Schmidt M, Lange D, Behrmann J H, Völker D, Hensen C. 2016. Fault zone controlled seafloor methane seepage in the rupture area of the 2010 Maule earthquake, Central Chile. Geochem Geophys Geosyst, 17: 4802–4813

    Google Scholar 

  • Geissler W H, Gebhardt A C, Gross F, Wollenburg J, Jensen L, Schmidt-Aursch M C, Krastel S, Elger J, Osti G. 2016. Arctic megaslide at presumed rest. Sci Rep, 6: 38529

    Google Scholar 

  • Gilly W F, Beman J M, Litvin S Y, Robison B H. 2013. Oceanographic and biological effects of shoaling of the oxygen minimum zone. Annu Rev Mar Sci, 5: 393–420

    Google Scholar 

  • Glasby G P. 2003. Potential impact on climate of the exploitation of methane hydrate deposits offshore. Mar Pet Geol, 20: 163–175

    Google Scholar 

  • Ghosh A, Patra P K, Ishijima K, Umezawa T, Ito A, Etheridge D M, Sugawara S, Kawamura K, Miller J B, Dlugokencky E J, Krummel P B, Fraser P J, Steele L P, Langenfelds R L, Trudinger C M, White J W C, Vaughn B, Saeki T, Aoki S, Nakazawa T. 2015. Variations in global methane sources and sinks during 1910–2010. Atmos Chem Phys, 15: 2595–2612

    Google Scholar 

  • Glass J B, Orphan V J. 2012. Trace metal requirements for microbial enzymes involved in the production and consumption of methane and nitrous oxide. Front Microbio, 3: 61

    Google Scholar 

  • Greening C, Ahmed F H, Mohamed A E, Lee B M, Pandey G, Warden A C, Scott C, Oakeshott J G, Taylor M C, Jackson C J. 2016. Physiology, Biochemistry, and Applications of F420- and Fo-Dependent Redox Reactions. Microbiol Mol Biol Rev, 80: 451–493

    Google Scholar 

  • Gruber N. 2011. Warming up, turning sour, losing breath: Ocean biogeochemistry under global change. Philos Trans R Soc A-Math Phys Eng Sci, 369: 1980–1996

    Google Scholar 

  • Gutjahr M, Ridgwell A, Sexton P F, Anagnostou E, Pearson P N, Pälike H, Norris R D, Thomas E, Foster G L. 2017. Very large release of mostly volcanic carbon during the Palaeocene-Eocene Thermal Maximum. Nature, 548: 573–577

    Google Scholar 

  • Hamdan L J, Wickland K P. 2016. Methane emissions from oceans, coasts, and freshwater habitats: New perspectives and feedbacks on climate. Limnol Oceanogr, 61: S3–S12

    Google Scholar 

  • Handwerger A L, Rempel A W, Skarbek R M. 2017. Submarine landslides triggered by destabilization of high-saturation hydrate anomalies. Geochem Geophys Geosyst, 18: 2429–2445

    Google Scholar 

  • Hansen J, Kharecha P, Sato M, Masson-Delmotte V, Ackerman F, Beerling D J, Hearty P J, Hoegh-Guldberg O, Hsu S L, Parmesan C, Rockstrom J, Rohling E J, Sachs J, Smith P, Steffen K, Van Susteren L, von Schuckmann K, Zachos J C. 2013. Assessing “dangerous climate change”: Required reduction of carbon emissions to protect young people, future generations and nature. Plos One, 8: e81648

    Google Scholar 

  • Hansen J, Sato M, Kharecha P, Russell G, Lea D W, Siddall M. 2007. Climate change and trace gases. Philos Trans R Soc A-Math Phys Eng Sci, 365: 1925–1954

    Google Scholar 

  • Hesselbo S P, Gröcke D R, Jenkyns H C, Bjerrum C J, Farrimond P, Morgans Bell H S, Green O R. 2000. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature, 406: 392–395

    Google Scholar 

  • Hester K C, Brewer P G. 2009. Clathrate hydrates in nature. Annu Rev Mar Sci, 1: 303–327

    Google Scholar 

  • Higgins J A, Schrag D P. 2006. Beyond methane: Towards a theory for the Paleocene-Eocene Thermal Maximum. Earth Planet Sci Lett, 245: 523–537

    Google Scholar 

  • Holmes M E, Sansone F J, Rust T M, Popp B N. 2000. Methane production, consumption, and air-sea exchange in the open ocean: An evaluation based on carbon isotopic ratios. Glob Biogeochem Cycle, 14: 1–10

    Google Scholar 

  • Horsman G P, Zechel D L. 2017. Phosphonate biochemistry. Chem Rev, 117: 5704–5783

    Google Scholar 

  • Hove-Jensen B, Zechel D L, Jochimsen B. 2014. Utilization of glyphosate as phosphate source: Biochemistry and genetics of bacterial carbonphosphorus lyase. Microbiol Mol Biol Rev, 78: 176–197

    Google Scholar 

  • Hunter S J, Goldobin D S, Haywood A M, Ridgwell A, Rees J G. 2013. Sensitivity of the global submarine hydrate inventory to scenarios of future climate change. Earth Planet Sci Lett, 367: 105–115

    Google Scholar 

  • Iino T, Tamaki H, Tamazawa S, Ueno Y, Ohkuma M, Suzuki K, Igarashi Y, Haruta S. 2013. Candidatus Methanogranum caenicola: A novel methanogen from the anaerobic digested sludge, and proposal of Methanomassiliicoccaceae fam. nov. and Methanomassiliicoccales ord. nov., for a methanogenic lineage of the class Thermoplasmata. Microb Environ, 28: 244–250

    Google Scholar 

  • Isaksen I S A, Gauss M, Myhre G, Walter Anthony K M, Ruppel C. 2011. Strong atmospheric chemistry feedback to climate warming from Arctic methane emissions. Glob Biogeochem Cycle, 25: GB2002

    Google Scholar 

  • Jablonski S, Rodowicz P, Lukaszewicz M. 2015. Methanogenic archaea database containing physiological and biochemical characteristics. Int J Systatic Evolary Microbiol, 65: 1360–1368

    Google Scholar 

  • James R H, Bousquet P, Bussmann I, Haeckel M, Kipfer R, Leifer I, Niemann H, Ostrovsky I, Piskozub J, Rehder G, Treude T, Vielstädte L, Greinert J. 2016. Effects of climate change on methane emissions from seafloor sediments in the Arctic Ocean: A review. Limnol Oceanogr, 61: S283–S299

    Google Scholar 

  • Jarrell K F. 1985. Extreme oxygen sensitivity in methanogenic archaebacteria. BioScience, 35: 298–302

    Google Scholar 

  • Jiao N, Robinson C, Azam F, Thomas H, Baltar F, Dang H, Hardman-Mountford N J, Johnson M, Kirchman D L, Koch B P, Legendre L, Li C, Liu J, Luo T, Luo Y W, Mitra A, Romanou A, Tang K, Wang X, Zhang C, Zhang R. 2014. Mechanisms of microbial carbon sequestration in the ocean-future research directions. Biogeosciences, 11: 5285–5306

    Google Scholar 

  • Kallistova A Y, Merkel A Y, Tarnovetskii I Y, Pimenov N V. 2017. Methane formation and oxidation by prokaryotes. Microbiology, 86: 671–691

    Google Scholar 

  • Karl D M, Beversdorf L, Björkman K M, Church M J, Martinez A, Delong E F. 2008. Aerobic production of methane in the sea. Nat Geosci, 1: 473–478

    Google Scholar 

  • Karl D M, Tilbrook B D. 1994. Production and transport of methane in oceanic particulate organic matter. Nature, 368: 732–734

    Google Scholar 

  • Karol’ I L, Kiselev A A, Genikhovich E L, Chicherin S S. 2013. Reduction of short-lived atmospheric pollutant emissions as an alternative strategy for climate-change moderation. Izv Atmos Ocean Phys, 49: 461–478

    Google Scholar 

  • Karthikeyan O P, Chidambarampadmavathy K, Cirés S, Heimann K. 2015. Review of sustainable methane mitigation and biopolymer production. Critical Rev Environ Sci Tech, 45: 1579–1610

    Google Scholar 

  • Katz M E, Pak D K, Dickens G R, Miller K G. 1999. The source and fate of massive carbon input during the latest Paleocene Thermal Maximum. Science, 286: 1531–1533

    Google Scholar 

  • Kennedy M, Mrofka D, von der Borch C. 2008. Snowball Earth termination by destabilization of equatorial permafrost methane clathrate. Nature, 453: 642–645

    Google Scholar 

  • Kennett J P, Cannariato K G, Hendy I L, Behl R J. 2003. Methane hydrates in Quaternary climate change: The clathrate gun hypothesis. AGU, Washington D C. 217

    Google Scholar 

  • Khadem A F, Pol A, Jetten M S M, Op den Camp H J M. 2010. Nitrogen fixation by the verrucomicrobial methanotroph ‘Methylacidiphilum fumariolicum’ SolV. Microbiology, 156: 1052–1059

    Google Scholar 

  • Kiene R P, Oremland R S, Catena A, Miller L G, Capone D G. 1986. Metabolism of reduced methylated sulfur compounds in anaerobic sediments and by a pure culture of an estuarine methanogen. Appl Environ Microbiol, 52: 1037–1045

    Google Scholar 

  • Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell J G, Dlugokencky E J, Bergamaschi P, Bergmann D, Blake D R, Bruhwiler L, Cameron-Smith P, Castaldi S, Chevallier F, Feng L, Fraser A, Heimann M, Hodson E L, Houweling S, Josse B, Fraser P J, Krummel P B, Lamarque J F, Langenfelds R L, Le Quéré C, Naik V, O’Doherty S, Palmer P I, Pison I, Plummer D, Poulter B, Prinn R G, Rigby M, Ringeval B, Santini M, Schmidt M, Shindell D T, Simpson I J, Spahni R, Steele L P, Strode S A, Sudo K, Szopa S, van der Werf G R, Voulgarakis A, van Weele M, Weiss R F, Williams J E, Zeng G. 2013. Three decades of global methane sources and sinks. Nat Geosci, 6: 813–823

    Google Scholar 

  • Knittel K, Boetius A. 2009. Anaerobic oxidation of methane: Progress with an unknown process. Annu Rev Microbiol, 63: 311–334

    Google Scholar 

  • Kretschmer K, Biastoch A, Rüpke L, Burwicz E. 2015. Modeling the fate of methane hydrates under global warming. Glob Biogeochem Cycle, 29: 610–625

    Google Scholar 

  • Krishnakumar A M, Sliwa D, Endrizzi J A, Boyd E S, Ensign S A, Peters J W. 2008. Getting a handle on the role of coenzyme M in alkene metabolism. Microbiol Mol Biol Rev, 72: 445–456

    Google Scholar 

  • Krüger M, Treude T, Wolters H, Nauhaus K, Boetius A. 2005. Microbial methane turnover in different marine habitats. Palaeogeogr Palaeoclimatol Palaeoecol, 227: 6–17

    Google Scholar 

  • Krumhardt K M, Lovenduski N S, Iglesias-Rodriguez M D, Kleypas J A. 2017. Coccolithophore growth and calcification in a changing ocean. Prog Oceanogr, 159: 276–295

    Google Scholar 

  • Kudela R M, Seeyave S, Cochlan W P. 2010. The role of nutrients in regulation and promotion of harmful algal blooms in upwelling systems. Prog Oceanogr, 85: 122–135

    Google Scholar 

  • Kvenvolden K A. 1988. Methane hydrates and global climate. Glob Biogeochem Cycle, 2: 221–229

    Google Scholar 

  • Lambert G, Schmidt S. 1993. Reevaluation of the oceanic flux of methane: Uncertainties and long term variations. Chemosphere, 26: 579–589

    Google Scholar 

  • Lamontagne R A, Swinnerton J W, Linnenbom V J. 1971. Nonequilibrium of carbon monoxide and methane at the air-sea interface. J Geophys Res, 76: 5117–5121

    Google Scholar 

  • Leifer I, Luyendyk B P, Boles J, Clark J F. 2006. Natural marine seepage blowout: Contribution to atmospheric methane. Glob Biogeochem Cycle, 20: GB3008

    Google Scholar 

  • Lenhart K, Klintzsch T, Langer G, Nehrke G, Bunge M, Schnell S, Keppler F. 2016. Evidence for methane production by the marine algae Emiliania huxleyi. Biogeosciences, 13: 3163–3174

    Google Scholar 

  • Levin L A, Le Bris N. 2015. The deep ocean under climate change. Science, 350: 766–768

    Google Scholar 

  • Liu Y, Whitman W B. 2008. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann New York Acad Sci, 1125: 171–189

    Google Scholar 

  • Lloyd K. 2015. Beyond known methanogens. Science, 350: 384

    Google Scholar 

  • Lomans B P, Maas R, Luderer R, Op den Camp H J, Pol A, van der Drift C, Vogels G D. 1999. Isolation and characterization of Methanomethylovorans hollandica gen. nov., sp. nov., isolated from freshwater sediment, a methylotrophic methanogen able to grow on dimethyl sulfide and methanethiol. Appl Environ Microbiol, 65: 3641–3650

    Google Scholar 

  • Loulergue L, Schilt A, Spahni R, Masson-Delmotte V, Blunier T, Lemieux B, Barnola J M, Raynaud D, Stocker T F, Chappellaz J. 2008. Orbital and millennial-scale features of atmospheric CH4 over the past 800000 years. Nature, 453: 383–386

    Google Scholar 

  • Lyimo T J, Pol A, Op den Camp H J, Harhangi H R, Vogels G D. 2000. Methanosarcina semesiae sp. nov., a dimethylsulfide-utilizing methanogen from mangrove sediment. Int J Systatic Evolary Microbiol, 50: 171–178

    Google Scholar 

  • Lyu Z, Lu Y. 2018. Metabolic shift at the class level sheds light on adaptation of methanogens to oxidative environments. ISME J, 12: 411–423

    Google Scholar 

  • MacCracken M C. 2008. Prospects for future climate change and the reasons for early action. J Air Waste Manage, 58: 735–786

    Google Scholar 

  • MacDougall A H, Knutti R. 2016. Enhancement of non-CO2 radiative forcing via intensified carbon cycle feedbacks. Geophys Res Lett, 43: 5833–5840

    Google Scholar 

  • McKinley G A, Pilcher D J, Fay A R, Lindsay K, Long M C, Lovenduski N S. 2016. Timescales for detection of trends in the ocean carbon sink. Nature, 530: 469–472

    Google Scholar 

  • Marín-Moreno H, Giustiniani M, Tinivella U, Piñero E. 2016. The challenges of quantifying the carbon stored in Arctic marine gas hydrate. Mar Pet Geol, 71: 76–82

    Google Scholar 

  • Marín-Moreno H, Minshull T A, Westbrook G K, Sinha B, Sarkar S. 2013. The response of methane hydrate beneath the seabed offshore Svalbard to ocean warming during the next three centuries. Geophys Res Lett, 40: 5159–5163

    Google Scholar 

  • Martínez A, Ventouras L A, Wilson S T, Karl D M, DeLong E F. 2013. Metatranscriptomic and functional metagenomic analysis of methylphosphonate utilization by marine bacteria. Front Microbiol, 4: 340

    Google Scholar 

  • Marty D G, Nival P, Yoon W D. 1997. Methanoarchaea associated with sinking particles and zooplankton collected in the Northeastern tropical Atlantic. Oceanol Acta, 20: 863–869

    Google Scholar 

  • Maslin M, Owen M, Betts R, Day S, Dunkley Jones T, Ridgwell A. 2010. Gas hydrates: Past and future geohazard? Philos Trans R Soc A-Math Phys Eng Sci, 368: 2369–2393

    Google Scholar 

  • Maslin M, Owen M, Day S, Long D. 2004. Linking continental-slope failures and climate change: Testing the clathrate gun hypothesis. Geology, 32: 53–56

    Google Scholar 

  • Masson D G, Harbitz C B, Wynn R B, Pedersen G, Løvholt F. 2006. Submarine landslides: Processes, triggers and hazard prediction. Philos Trans R Soc A-Math Phys Eng Sci, 364: 2009–2039

    Google Scholar 

  • Masuda S, Awaji T, Sugiura N, Matthews J P, Toyoda T, Kawai Y, Doi T, Kouketsu S, Igarashi H, Katsumata K, Uchida H, Kawano T, Fukasawa M. 2010. Simulated rapid warming of abyssal North Pacific waters. Science, 329: 319–322

    Google Scholar 

  • Matthews E. 1994. Assessment of methane sources and their uncertainties. Pure Appl Chem, 66: 154–162

    Google Scholar 

  • McNeall D, Halloran P R, Good P, Betts R A. 2011. Analyzing abrupt and nonlinear climate changes and their impacts. WIREs Clim Change, 2: 663–686

    Google Scholar 

  • Mestdagh T, Poort J, De Batist M. 2017. The sensitivity of gas hydrate reservoirs to climate change: Perspectives from a new combined model for permafrost-related and marine settings. Earth-Sci Rev, 169: 104–131

    Google Scholar 

  • Metcalf W W, Griffin B M, Cicchillo R M, Gao J, Janga S C, Cooke H A, Circello B T, Evans B S, Martens-Habbena W, Stahl D A, van der Donk W A. 2012. Synthesis of methylphosphonic acid by marine microbes: A source for methane in the aerobic ocean. Science, 337: 1104–1107

    Google Scholar 

  • Mondav R, Woodcroft B J, Kim E H, McCalley C K, Hodgkins S B, Crill P M, Chanton J, Hurst G B, VerBerkmoes N C, Saleska S R, Hugenholtz P, Rich V I, Tyson G W. 2014. Discovery of a novel methanogen prevalent in thawing permafrost. Nat Commun, 5: 3212

    Google Scholar 

  • Montzka S A, Dlugokencky E J, Butler J H. 2011. Non-CO2 greenhouse gases and climate change. Nature, 476: 43–50

    Google Scholar 

  • Mora C, Wei C L, Rollo A, Amaro T, Baco A R, Billett D, Bopp L, Chen Q, Collier M, Danovaro R, Gooday A J, Grupe B M, Halloran P R, Ingels J, Jones D O B, Levin L A, Nakano H, Norling K, Ramirez-Llodra E, Rex M, Ruhl H A, Smith C R, Sweetman A K, Thurber A R, Tjiputra J F, Usseglio P, Watling L, Wu T, Yasuhara M. 2013. Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century. Plos Biol, 11: e1001682

    Google Scholar 

  • Naqvi S W A, Bange H W, Farías L, Monteiro P M S, Scranton M I, Zhang J. 2010. Marine hypoxia/anoxia as a source of CH4 and N2O. Biogeosciences, 7: 2159–2190

    Google Scholar 

  • Navid D. 1989. The international law of migratory species: The Ramsar convention. Nat Res J, 29: 1001–1016

    Google Scholar 

  • Nobu M K, Narihiro T, Kuroda K, Mei R, Liu W T. 2016. Chasing the elusive Euryarchaeota class WSA2: Genomes reveal a uniquely fastidious methyl-reducing methanogen. ISME J, 10: 2478–2487

    Google Scholar 

  • Norris R D, Röhl U. 1999. Carbon cycling and chronology of climate warming during the Palaeocene/Eocene transition. Nature, 401: 775–778

    Google Scholar 

  • Obzhirov A I. 2013. Gas component increase during seismo-tectonics and the role of gas in earthquake origination (Okhotsk Sea). Russ J Pac Geol, 32: 86–89

    Google Scholar 

  • Offre P, Spang A, Schleper C. 2013. Archaea in biogeochemical cycles. Annu Rev Microbiol, 67: 437–457

    Google Scholar 

  • Orcutt B N, LaRowe D E, Biddle J F, Colwell F S, Glazer B T, Reese B K, Kirkpatrick J B, Lapham L L, Mills H J, Sylvan J B, Wankel S D, Wheat C G. 2013. Microbial activity in the marine deep biosphere: Progress and prospects. Front Microbiol, 4: 189

    Google Scholar 

  • Oremland R S. 1979. Methanogenic activity in plankton samples and fish intestines A mechanism for in situ methanogenesis in oceanic surface waters. Limnol Oceanogr, 24: 1136–1141

    Google Scholar 

  • Oremland R S, Kiene R P, Mathrani I, Whiticar M J, Boone D R. 1989. Description of an estuarine methylotrophic methanogen which grows on dimethyl sulfide. Appl Environ Microbiol, 55: 994–1002

    Google Scholar 

  • Ortiz-Llorente M J, Alvarez-Cobelas M. 2012. Comparison of biogenic methane emissions from unmanaged estuaries, lakes, oceans, rivers and wetlands. Atmos Environ, 59: 328–337

    Google Scholar 

  • Paulo L M, Ramiro-Garcia J, van Mourik S, Stams A J M, Sousa D Z. 2017. Effect of nickel and cobalt on methanogenic enrichment cultures and role of biogenic sulfide in metal toxicity attenuation. Front Microbiol, 8: 1341

    Google Scholar 

  • Pernthaler A, Dekas A E, Titus Brown C, Goffredi S K, Embaye T, Orphan V J. 2008. Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics. Proc Natl Acad Sci USA, 105: 7052–7057

    Google Scholar 

  • Phrampus B J, Hornbach M J. 2012. Recent changes to the Gulf Stream causing widespread gas hydrate destabilization. Nature, 490: 527–530

    Google Scholar 

  • Poehlein A, Daniel R, Seedorf H. 2017. The draft genome of the non-hostassociated Methanobrevibacter arboriphilus strain DH1 encodes a large repertoire of adhesin-like proteins. Archaea, 2017: 1–9

    Google Scholar 

  • Pohlman J W, Greinert J, Ruppel C, Silyakova A, Vielstädte L, Casso M, Mienert J, Bünz S. 2017. Enhanced CO2 uptake at a shallow Arctic Ocean seep field overwhelms the positive warming potential of emitted methane. Proc Natl Acad Sci USA, 114: 5355–5360

    Google Scholar 

  • Prather M J, Holmes C D. 2017. Overexplaining or underexplaining methane’s role in climate change. Proc Natl Acad Sci USA, 114: 5324–5326

    Google Scholar 

  • Purwantini E, Torto-Alalibo T, Lomax J, Setubal J Ã C, Tyler B M, Mukhopadhyay B. 2014. Genetic resources for methane production from biomass described with the Gene Ontology. Front Microbiol, 5: 634

    Google Scholar 

  • Rakowski C V, Magen C, Bosman S, Rogers K L, Gillies L E, Chanton J P, Mason O U. 2015. Methane and microbial dynamics in the Gulf of Mexico water column. Front Mar Sci, 2: 69

    Google Scholar 

  • Rasmussen R A, Khalil M A K. 1981. Atmospheric methane (CH4): Trends and seasonal cycles. J Geophys Res, 86: 9826–9832

    Google Scholar 

  • Ravishankara A R, Daniel J S, Portmann R W. 2009. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science, 326: 123–125

    Google Scholar 

  • Reagan M T, Moridis G J. 2007. Oceanic gas hydrate instability and dissociation under climate change scenarios. Geophys Res Lett, 34: L22709

    Google Scholar 

  • Reagan M T, Moridis G J. 2008. Dynamic response of oceanic hydrate deposits to ocean temperature change. J Geophys Res, 113: C12023

    Google Scholar 

  • Reeburgh W S. 2007. Oceanic methane biogeochemistry. Chem Rev, 107: 486–513

    Google Scholar 

  • Repeta D J, Ferrón S, Sosa O A, Johnson C G, Repeta L D, Acker M, DeLong E F, Karl D M. 2016. Marine methane paradox explained by bacterial degradation of dissolved organic matter. Nat Geosci, 9: 884–887

    Google Scholar 

  • Rhee T S, Kettle A J, Andreae M O. 2009. Methane and nitrous oxide emissions from the ocean: A reassessment using basin-wide observations in the Atlantic. J Geophys Res, 114: D12304

    Google Scholar 

  • Ruppel C D, Kessler J D. 2017. The interaction of climate change and methane hydrates. Rev Geophys, 55: 126–168

    Google Scholar 

  • Sabine C L, Feely R A, Gruber N, Key R M, Lee K, Bullister J L, Wan-ninkhof R, Wong C S, Wallace D W R, Tilbrook B, Millero F J, Peng T H, Kozyr A, Ono T, Rios A F. 2004. The oceanic sink for anthropogenic CO2. Science, 305: 367–371

    Google Scholar 

  • Sakai S, Imachi H, Hanada S, Ohashi A, Harada H, Kamagata Y. 2008. Methanocella paludicola gen. nov., sp. nov., a methane-producing archaeon, the first isolate of the lineage ‘Rice Cluster I’, and proposal of the new archaeal order Methanocellales ord. nov. Int J Systatic Evolary Microbiol, 58: 929–936

    Google Scholar 

  • Sansone F J, Popp B N, Gasc A, Graham A W, Rust T M. 2001. Highly elevated methane in the eastern tropical North Pacific and associated isotopically enriched fluxes to the atmosphere. Geophys Res Lett, 28: 4567–4570

    Google Scholar 

  • Sasakawa M, Tsunogai U, Kameyama S, Nakagawa F, Nojiri Y, Tsuda A. 2008. Carbon isotopic characterization for the origin of excess methane in subsurface seawater. J Geophys Res, 113: C03012

    Google Scholar 

  • Schäfer G, Engelhard M, Müller V. 1999. Bioenergetics of the Archaea. Microbiol Mol Biol Rev, 63: 570–620

    Google Scholar 

  • Schink B. 1997. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev, 61: 262–280

    Google Scholar 

  • Schleuning M, Fründ J, Schweiger O, Welk E, Albrecht J, Albrecht M, Beil M, Benadi G, Blüthgen N, Bruelheide H, Böhning-Gaese K, Dehling D M, Dormann C F, Exeler N, Farwig N, Harpke A, Hickler T, Kratochwil A, Kuhlmann M, Kühn I, Michez D, Mudri-Stojnic S, Plein M, Rasmont P, Schwabe A, Settele J, Vujic A, Weiner C N, Wiemers M, Hof C. 2016. Ecological networks are more sensitive to plant than to animal extinction under climate change. Nat Commun, 7: 13965

    Google Scholar 

  • Schmale O, Wäge J, Mohrholz V, Wasmund N, Gräwe U, Rehder G, Labrenz M, Loick-Wilde N. 2018. The contribution of zooplankton to methane supersaturation in the oxygenated upper waters of the central Baltic Sea. Limnol Oceanogr, 63: 412–430

    Google Scholar 

  • Scranton M I, Brewer P G. 1977. Occurrence of methane in the nearsurface waters of the western subtropical North-Atlantic. Deep Sea Res, 24: 127–138

    Google Scholar 

  • Sela-Adler M, Ronen Z, Herut B, Antler G, Vigderovich H, Eckert W, Sivan O. 2017. Co-existence of methanogenesis and sulfate reduction with common substrates in sulfate-rich estuarine sediments. Front Microbiol, 8: 766

    Google Scholar 

  • Semrau J D, DiSpirito A A, Gu W, Yoon S. 2018. Metals and methanotrophy. Appl Environ Microbiol, 84: e02289–17

    Google Scholar 

  • Shakhova N, Semiletov I, Salyuk A, Yusupov V, Kosmach D, Gustafsson O. 2010. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf. Science, 327: 1246–1250

    Google Scholar 

  • Shepherd J G, Brewer P G, Oschlies A, Watson A J. 2017. Ocean ventilation and deoxygenation in a warming world: Introduction and overview. Philos Trans R Soc A-Math Phys Eng Sci, 375: 20170240

    Google Scholar 

  • Showstack R. 2013. Carbon Dioxide Tops 400 ppm at Mauna Loa. Hawaii: Eos Trans AGU, 94: 192

    Google Scholar 

  • Sieburth J N, Johnson P, Macario A, Conway de Macario E. 1993. C1 bacteria in the water column of Chesapeake Bay USA. II. The dominant O2- and H2S-tolerant methylotrophic methanogens, coenriched with their oxidative and sulphate reducing bacterial consorts, are all new immunotypes and probably include new taxa. Mar Ecol Prog Ser, 95: 81–89

    Google Scholar 

  • Solomon S, Daniel J S, Sanford T J, Murphy D M, Plattner G K, Knutti R, Friedlingstein P. 2010. Persistence of climate changes due to a range of greenhouse gases. Proc Natl Acad Sci USA, 107: 18354–18359

    Google Scholar 

  • Solomon S, Plattner G K, Knutti R, Friedlingstein P. 2009. Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci USA, 106: 1704–1709

    Google Scholar 

  • Sonnemann G R, Grygalashvyly M. 2014. Global annual methane emission rate derived from its current atmospheric mixing ratio and estimated lifetime. Ann Geophys, 32: 277–283

    Google Scholar 

  • Sorokin D Y, Makarova K S, Abbas B, Ferrer M, Golyshin P N, Galinski E A, Ciordia S, Mena M C, Merkel A Y, Wolf Y I, van Loosdrecht M C M, Koonin E V. 2017. Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis. Nat Microbiol, 2: 17081

    Google Scholar 

  • Sosa O A, Repeta D J, Ferrón S, Bryant J A, Mende D R, Karl D M, DeLong E F. 2017. Isolation and characterization of bacteria that degrade phosphonates in marine dissolved organic matter. Front Microbiol, 8: 1786

    Google Scholar 

  • Sowers T. 2006. Late Quaternary atmospheric CH4 isotope record suggests marine clathrates are stable. Science, 311: 838–840

    Google Scholar 

  • Stranne C, O’Regan M, Jakobsson M. 2017. Modeling fracture propagation and seafloor gas release during seafloor warming-induced hydrate dissociation. Geophys Res Lett, 44: 8510–8519

    Google Scholar 

  • Svensen H, Planke S, Malthe-Sørenssen A, Jamtveit B, Myklebust R, Rasmussen Eidem T, Rey S S. 2004. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature, 429: 542–545

    Google Scholar 

  • Sydeman W J, García-Reyes M, Schoeman D S, Rykaczewski R R, Thompson S A, Black B A, Bograd S J. 2014. Climate change and wind intensification in coastal upwelling ecosystems. Science, 345: 77–80

    Google Scholar 

  • Tallant T C, Krzycki J A. 1997. Methylthiol:coenzyme M methyltransferase from Methanosarcina barkeri, an enzyme of methanogenesis from dimethylsulfide and methylmercaptopropionate. J Bacteriol, 179: 6902–6911

    Google Scholar 

  • Tallant T C, Paul L, Krzycki J A. 2001. The MtsA subunit of the methylthiol: coenzyme M methyltransferase of Methanosarcina barkeri catalyses both half-reactions of corrinoid-dependent dimethylsulfide: Coenzyme M methyl transfer. J Biol Chem, 276: 4485–4493

    Google Scholar 

  • Teikari J E, Fewer D P, Shrestha R, Hou S, Leikoski N, Mäkelä M, Simojoki A, Hess W R, Sivonen K. 2018. Strains of the toxic and bloomforming Nodularia spumigena (cyanobacteria) can degrade methylphosphonate and release methane. ISME J, 12: 1619–1630

    Google Scholar 

  • Thatcher K E, Westbrook G K, Sarkar S, Minshull T A. 2013. Methane release from warming-induced hydrate dissociation in the West Svalbard continental margin: Timing, rates, and geological controls. J Geophys Res-Solid Earth, 118: 22–38

    Google Scholar 

  • Tholen A, Pester M, Brune A. 2007. Simultaneous methanogenesis and oxygen reduction by Methanobrevibacter cuticularis at low oxygen fluxes. Fems Microbiol Ecol, 62: 303–312

    Google Scholar 

  • Tilbrook B D, Karl D M. 1995. Methane sources, distributions and sinks from California coastal waters to the oligotrophic North Pacific gyre. Mar Chem, 49: 51–64

    Google Scholar 

  • Tseng H C, Chen C T A, Borges A V, Del Valls T A, Chang Y C. 2017. Methane in the South China Sea and the Western Philippine Sea. Cont Shelf Res, 135: 23–34

    Google Scholar 

  • Tsunogai U, Maegawa K, Sato S, Komatsu D D, Nakagawa F, Toki T, Ashi J. 2012. Coseimic massive methane release from a submarine mud volcano. Earth Planet Sci Lett, 341–344: 79–85

    Google Scholar 

  • Tsuruta A, Aalto T, Backman L, Hakkarainen J, van der Laan-Luijkx I T, Krol M C, Spahni R, Houweling S, Laine M, Dlugokencky E, Gomez-Pelaez A J, van der Schoot M, Langenfelds R, Ellul R, Arduini J, Apadula F, Gerbig C, Feist D G, Kivi R, Yoshida Y, Peters W. 2017. Global methane emission estimates for 2000–2012 from CarbonTracker Europe-CH4 v1.0. Geosci Model Dev, 10: 1261–1289

    Google Scholar 

  • Upstill-Goddard R C, Barnes J. 2016. Methane emissions from UK estuaries: Re-evaluating the estuarine source of tropospheric methane from Europe. Mar Chem, 180: 14–23

    Google Scholar 

  • Valentine D L. 2011. Emerging topics in marine methane biogeochemistry. Annu Rev Mar Sci, 3: 147–171

    Google Scholar 

  • van der Maarel M J E C, Hansen T A. 1997. Dimethylsulfoniopropionate in anoxic intertidal sediments: A precursor of methanogenesis via dimethyl sulfide, methanethiol, and methiolpropionate. Mar Geol, 137: 5–12

    Google Scholar 

  • Van Mooy B A S, Krupke A, Dyhrman S T, Fredricks H F, Frischkorn K R, Ossolinski J E, Repeta D J, Rouco M, Seewald J D, Sylva S P. 2015. Major role of planktonic phosphate reduction in the marine phosphorus redox cycle. Science, 348: 783–785

    Google Scholar 

  • Vanwonterghem I, Evans P N, Parks D H, Jensen P D, Woodcroft B J, Hugenholtz P, Tyson G W. 2016. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat Microbiol, 1: 16170

    Google Scholar 

  • Vizza C, West W E, Jones S E, Hart J A, Lamberti G A. 2017. Regulators of coastal wetland methane production and responses to simulated global change. Biogeosciences, 14: 431–446

    Google Scholar 

  • Vojvoda J, Lamy D, Sintes E, Garcia J, Turk V, Herndl G. 2014. Seasonal variation in marine-snow-associated and ambient-water prokaryotic communities in the northern Adriatic Sea. Aquat Microb Ecol, 73: 211–224

    Google Scholar 

  • Wang D, Gouhier T C, Menge B A, Ganguly A R. 2015. Intensification and spatial homogenization of coastal upwelling under climate change. Nature, 518: 390–394

    Google Scholar 

  • Wang J, Yuan J, Liu D, Xiang J, Ding W, Jiang X. 2016. Research progresses on methanogenesis pathway and methanogens in coastal wetlands. Chin J Appl Ecol, 27: 993–1001

    Google Scholar 

  • Weller D I, Law C S, Marriner A, Nodder S D, Chang F H, Stephens J A, Wilhelm S W, Boyd P W, Sutton P J H. 2013. Temporal variation of dissolved methane in a subtropical mesoscale eddy during a phytoplankton bloom in the southwest Pacific Ocean. Prog Oceanogr, 116: 193–206

    Google Scholar 

  • Welsh D T. 2000. Ecological significance of compatible solute accumulation by micro-organisms: From single cells to global climate. Fems Microbiol Rev, 24: 263–290

    Google Scholar 

  • Welte C, Deppenmeier U. 2014. Bioenergetics and anaerobic respiratory chains of aceticlastic methanogens. Biochim Biophysica Acta, 1837: 1130–1147

    Google Scholar 

  • Wen X, Yang S, Horn F, Winkel M, Wagner D, Liebner S. 2017. Global biogeographic analysis of methanogenic archaea identifies communityshaping environmental factors of natural environments. Front Microbiol, 8: 1339

    Google Scholar 

  • Wilson S T, Ferrón S, Karl D M. 2017. Interannual variability of methane and nitrous oxide in the North Pacific Subtropical Gyre. Geophys Res Lett, 44: 9885–9892

    Google Scholar 

  • Wright J J, Konwar K M, Hallam S J. 2012. Microbial ecology of expanding oxygen minimum zones. Nat Rev Micro, 10: 381–394

    Google Scholar 

  • Wuebbles D J, Hayhoe K. 2002. Atmospheric methane and global change. Earth-Sci Rev, 57: 177–210

    Google Scholar 

  • Xiao K Q, Beulig F, Kjeldsen K U, Jørgensen B B, Risgaard-Petersen N. 2017. Concurrent methane production and oxidation in surface sediment from Aarhus Bay, Denmark. Front Microbiol, 8: 1198

    Google Scholar 

  • Xiao L, Xie B, Liu J, Zhang H, Han G, Wang O, Liu F. 2017. Stimulation of long-term ammonium nitrogen deposition on methanogenesis by Methanocellaceae in a coastal wetland. Sci Total Environ, 595: 337–343

    Google Scholar 

  • Yvon-Durocher G, Allen A P, Bastviken D, Conrad R, Gudasz C, St-Pierre A, Thanh-Duc N, del Giorgio P A. 2014. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature, 507: 488–491

    Google Scholar 

  • Zeebe R E, Ridgwell A, Zachos J C. 2016. Anthropogenic carbon release rate unprecedented during the past 66 million years. Nat Geosci, 9: 325–329

    Google Scholar 

  • Zehnder A J B, Wuhrmann K. 1977. Physiology of a Methanobacterium strain AZ. Arch Microbiol, 111: 199–205

    Google Scholar 

  • Zhang B, Tian H, Lu C, Chen G, Pan S, Anderson C, Poulter B. 2017. Methane emissions from global wetlands: An assessment of the uncertainty associated with various wetland extent data sets. Atmos Environ, 165: 310–321

    Google Scholar 

  • Zhang G L, Zhang J, Kang Y B, Liu S M. 2004. Distributions and fluxes of methane in the East China Sea and the Yellow Sea in spring. J Geophys Res, 109: C07011

    Google Scholar 

  • Zhang G L, Zhang J, Liu S, Ren J, Xu J, Zhang F. 2008. Methane in the Changjiang (Yangtze River) Estuary and its adjacent marine area: Riverine input, sediment release and atmospheric fluxes. Biogeochemistry, 91: 71–84

    Google Scholar 

  • Zhang Y, Zhai W D. 2015. Shallow-ocean methane leakage and degassing to the atmosphere: Triggered by offshore oil-gas and methane hydrate explorations. Front Mar Sci, 2: 34

    Google Scholar 

  • Zhou H Y, Yin X J, Yang Q H, Wang H, Wu Z J, Bao S X. 2009. Distribution, source and flux of methane in the western Pearl River Estuary and northern South China Sea. Mar Chem, 117: 21–31

    Google Scholar 

  • Zickfeld K, Solomon S, Gilford D M. 2017. Centuries of thermal sea-level rise due to anthropogenic emissions of short-lived greenhouse gases. Proc Natl Acad Sci USA, 114: 657–662

    Google Scholar 

  • Zindler C, Bracher A, Marandino C A, Taylor B, Torrecilla E, Kock A, Bange H W. 2013. Sulphur compounds, methane, and phytoplankton: Interactions along a north-south transit in the western Pacific Ocean. Biogeosciences, 10: 3297–3311

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2016YFA0601303), the Chinese State Oceanic Administration (SOA) (Grant No. GASI-03-01-02-05), the National Natural Science Foundation of China (Grant Nos. 41676122, 91328209 & 91428308), and the China National Offshore Oil Corporation (Grant Nos. CNOOC-KJ125FZDXM00TJ001-2014 & CNOOC-KJ125FZDXM00ZJ001-2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyue Dang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, H., Li, J. Climate tipping-point potential and paradoxical production of methane in a changing ocean. Sci. China Earth Sci. 61, 1714–1727 (2018). https://doi.org/10.1007/s11430-017-9265-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-017-9265-y

Keywords

Navigation