Skip to main content
Log in

Sulfur metabolism by marine heterotrophic bacteria involved in sulfur cycling in the ocean

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Sulfur cycling in the biosphere is tightly interwoven with the cycling of carbon and nitrogen, through various biological and geochemical processes. Marine microorganisms, due to their high abundance, diverse metabolic activities, and tremendous adaptation potential, play an essential role in the functioning of global biogeochemical cycles and linking sulfur transformation to the cycling of carbon and nitrogen. Currently many coastal regions are severely stressed by hypoxic or anoxic conditions, leading to the accumulation of toxic sulfide. A number of recent studies have demonstrated that dissimilatory sulfur oxidation by heterotrophic bacteria can protect marine ecosystems from sulfide toxicity. Sulfur-oxidizing bacteria have evolved diverse phylogenetic and metabolic characteristics to fill an array of ecological niches in various marine habitats. Here, we review the recent findings on the microbial communities that are involved in the oxidation of inorganic sulfur compounds and address how the two elements of sulfur and carbon are interlinked and influence the ecology and biogeochemistry in the ocean. Delineating the metabolic enzymes and pathways of sulfur-oxidizing bacteria not only provides an insight into the microbial sulfur metabolism, but also helps us understand the effects of changing environmental conditions on marine sulfur cycling and reinforces the close connection between sulfur and carbon cycling in the ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bamford V A, Bruno S, Rasmussen T, Appia-Ayme C, Cheesman M R, Berks B C, Hemmings A M. 2002. Structural basis for the oxidation of thiosulfate by a sulfur cycle enzyme. Embo J, 21: 5599–5610

    Article  Google Scholar 

  • Bao P, Li G X, Sun G X, Xu Y Y, Meharg A A, Zhu Y G. 2018. The role of sulfate-reducing prokaryotes in the coupling of element biogeochemical cycling. Sci Total Environ, 613–614: 398–408

    Google Scholar 

  • Bardischewsky F, Quentmeier A, Rother D, Hellwig P, Kostka S, Friedrich C G. 2005. Sulfur dehydrogenase of Paracoccus pantotrophus: The heme-2 domain of the molybdoprotein cytochrome c complex is dispensable for catalytic activity. Biochemistry, 44: 7024–7034

    Article  Google Scholar 

  • Barton L L, Fardeau M L, Fauque G D. 2014. Hydrogen sulfide: A toxic gas produced by dissimilatory sulfate and sulfur reduction and consumed by microbial oxidation. Met Ions Life Sci, 14: 237–277

    Article  Google Scholar 

  • Barton L L, Fauque G D. 2009. Biochemistry, physiology and biotechnology of sulfate-reducing bacteria. Adv Appl Microbiol, 68: 41–98

    Article  Google Scholar 

  • Boden R, Borodina E, Wood A P, Kelly D P, Murrell J C, Scha fer H. 2011. Purification and characterization of dimethylsulfide monooxygenase from hyphomicrobium sulfonivorans. J Bacteriol, 193: 1250–1258

    Article  Google Scholar 

  • Bowles M W, Mogollón J M, Kasten S, Zabel M, Hinrichs K U. 2014. Global rates of marine sulfate reduction and implications for sub-seafloor metabolic activities. Science, 344: 889–891

    Article  Google Scholar 

  • Brinkhoff T, Giebel H A, Simon M. 2008. Diversity, ecology, and genomics of the Roseobacter clade: A short overview. Arch Microbiol, 189: 531–539

    Article  Google Scholar 

  • Brito J A, Sousa F L, Stelter M, Bandeiras T M, Vonrhein C, Teixeira M, Pereira M M, Archer M. 2009. Structural and functional insights into sulfide: Quinone oxidoreductase. Biochemistry, 48: 5613–5622

    Article  Google Scholar 

  • Brüser T, Lens P N L, Truper H G. 2000. The biological sulfur cycle. In: Lens P N L, Pol L, eds. Environmental Technologies to Treat Sulfur Pollution. London: IWA Publishing

  • Bullock H A, Luo H, Whitman W B. 2017. Evolution of dimethylsulfoniopropionate metabolism in marine phytoplankton and bacteria. Front Microbiol, 8: e0127288

    Google Scholar 

  • Curson A R J, Todd J D, Sullivan M J, Johnston A W B. 2011. Catabolism of dimethylsulphoniopropionate: Microorganisms, enzymes and genes. Nat Rev Microbiol, 9: 849–859

    Article  Google Scholar 

  • Diaz R J, Rosenberg R. 2008. Spreading dead zones and consequences for marine ecosystems. Science, 321: 926–929

    Article  Google Scholar 

  • Dolata M M, Van Beeumen J J, Ambler R P, Meyer T E, Cusanovich M A. 1993. Nucleotide sequence of the heme subunit of flavocytochrome c from the purple phototrophic bacterium, Chromatium vinosum. A 2.6-kilobase pair DNA fragment contains two multiheme cytochromes, a flavoprotein, and a homolog of human ankyrin. J Biol Chem, 268: 14426–14431

    Google Scholar 

  • Durham B P, Sharma S, Luo H, Smith C B, Amin S A, Bender S J, Dearth S P, Van Mooy B A S, Campagna S R, Kujawinski E B, Armbrust E V, Moran M A. 2015. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc Natl Acad Sci USA, 112: 453–457

    Article  Google Scholar 

  • Epel B, Schäfer K O, Quentmeier A, Friedrich C, Lubitz W. 2005. Multifrequency EPR analysis of the dimanganese cluster of the putative sulfate thiohydrolase SoxB of Paracoccus pantotrophus. J Biol Inorg Chem, 10: 636–642

    Article  Google Scholar 

  • Friedrich C G, Bardischewsky F, Rother D, Quentmeier A, Fischer J. 2005. Prokaryotic sulfur oxidation. Curr Opin Microbiol, 8: 253–259

    Article  Google Scholar 

  • Friedrich C G, Rother D, Bardischewsky F, Quentmeier A, Fischer J. 2001. Oxidation of reduced inorganic sulfur compounds by bacteria: Emergence of a common mechanism? Appl Environ Microbiol, 67: 2873–2882

    Article  Google Scholar 

  • Frigaard N U, Dahl C. 2009. Sulfur metabolism in phototrophic sulfur bacteria. Adv Microb Physiol, 54: 103–200

    Article  Google Scholar 

  • González J M, Covert J S, Whitman W B, Henriksen J R, Mayer F, Scharf B, Schmitt R, Buchan A, Fuhrman J A, Kiene R P, Moran M A. 2003. Silicibacter pomeroyi sp. nov. and Roseovarius nubinhibens sp. nov., dimethylsulfoniopropionate-demethylating bacteria from marine environments. Int J Syst Evol Microbiol, 53: 1261–1269

    Article  Google Scholar 

  • González J M, Kiene R P, Moran M A. 1999. Transformation of sulfur compounds by an abundant lineage of marine bacteria in the α-Subclass of the class proteobacteria. Appl Environ Microbiol, 65: 3810–3819

    Google Scholar 

  • González J M, Moran M A. 1997. Numerical dominance of a group of marine bacteria in the alpha-subclass of the class Proteobacteria in coastal seawater. Appl Environ Microbiol, 63: 4237–4242

    Google Scholar 

  • Gregersen L H, Bryant D A, Frigaard N U. 2011. Mechanisms and evolution of oxidative sulfur metabolism in green sulfur bacteria. Front Microbiol, 2: 116

    Article  Google Scholar 

  • Griesbeck C, Schütz M, Schödl T, Bathe S, Nausch L, Mederer N, Vielreicher M, Hauska G. 2002. Mechanism of sulfide-quinone reductase investigated using site-directed mutagenesis and sulfur analysis. Biochemistry, 41: 11552–11565

    Article  Google Scholar 

  • Grote J, Jost G, Labrenz M, Herndl G J, Jürgens K. 2008. Epsilonproteo-bacteria represent the major portion of chemoautotrophic bacteria in sulfidic waters of pelagic redoxclines of the Baltic and Black Seas. Appl Environ Microbiol, 74: 7546–7551

    Article  Google Scholar 

  • Howard E C, Sun S, Biers E J, Moran M A. 2008. Abundant and diverse bacteria involved in DMSP degradation in marine surface waters. Environ Microbiol, 10: 2397–2410

    Article  Google Scholar 

  • Jiao N, Herndl G J, Hansell D A, Benner R, Kattner G, Wilhelm S W, Kirchman D L, Weinbauer M G, Luo T, Chen F, Azam F. 2010. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean. Nat Rev Microbiol, 8: 593–599

    Article  Google Scholar 

  • Jiao N, Robinson C, Azam F, Thomas H, Baltar F, Dang H, Hardman-Mountford N J, Johnson M, Kirchman D L, Koch B P, Legendre L, Li C, Liu J, Luo T, Luo Y W, Mitra A, Romanou A, Tang K, Wang X, Zhang C, Zhang R. 2014. Mechanisms of microbial carbon sequestration in the ocean—Future research directions. Biogeosciences, 11: 5285–5306

    Article  Google Scholar 

  • Jørgensen B B. 1982. Mineralization of organic matter in the sea bed—The role of sulphate reduction. Nature, 296: 643–645

    Article  Google Scholar 

  • Jørgensen B B. 2010. Big sulfur bacteria. Isme J, 4: 1083–1084

    Article  Google Scholar 

  • Jørgensen B B, Nelson D C. 2004. Sulfide oxidation in marine sediments: Geochemistry meets microbiology. Geol Soc Am Spec Pap, 379: 63–81

    Google Scholar 

  • Kai F, Liesack W, Bo T. 1998. Elemental sulfur and thiosulfate disproportionation by Desulfocapsa sulfoexigens sp. nov. a new anaerobic bacterium isolated from marine surface sediment. Appl Environ Microbiol, 64: 119–125

    Google Scholar 

  • Kappler U, Bennett B, Rethmeier J, Schwarz G, Deutzmann R, McEwan A G, Dahl C. 2000. Sulfite:Cytochromec oxidoreductase fromThiobacillus novellus. J Biol Chem, 275: 13202–13212

    Article  Google Scholar 

  • Kappler U, Maher M J. 2013. The bacterial SoxAX cytochromes. Cell Mol Life Sci, 70: 977–992

    Article  Google Scholar 

  • Kappler U, Schäfer H. 2014. Transformations of dimethyl sulfide. In: The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment. Springer Netherlands. 279–313

    Google Scholar 

  • Kim H G, Doronina N V, Trotsenko Y A, Kim S W. 2007. Methylophaga aminisulfidivorans sp. nov., a restricted facultatively methylotrophic marine bacterium. Int J Syst Evol Microbiol, 57: 2096–2101

    Article  Google Scholar 

  • Lavik G, Stührmann T, Brüchert V, Van der Plas A, Mohrholz V, Lam P, Mussmann M, Fuchs B M, Amann R, Lass U, Kuypers M M M. 2009. Detoxification of sulphidic African shelf waters by blooming chemolithotrophs. Nature, 457: 581–584

    Article  Google Scholar 

  • Legendre L, Rivkin R B, Jiao N. 2018. Advanced experimental approaches to marine water-column biogeochemical processes. Ices J Mar Sci, 75: 30–42

    Article  Google Scholar 

  • Leloup J, Fossing H, Kohls K, Holmkvist L, Borowski C, Jørgensen B B. 2009. Sulfate-reducing bacteria in marine sediment (Aarhus Bay, Denmark): Abundance and diversity related to geochemical zonation. Environ Microbiol, 11: 1278–1291

    Article  Google Scholar 

  • Lenk S. 2011. Molecular ecology of key organisms in sulfur and carbon cycling in marine sediments. Dissertation for Doctoral Degree. Bremen: Max Planck Institute for Marine Microbiology

    Google Scholar 

  • Lenk S, Arnds J, Zerjatke K, Musat N, Amann R, Mussmann M. 2011. Novel groups of Gammaproteobacteria catalyse sulfur oxidation and carbon fixation in a coastal, intertidal sediment. Environ Microbiol, 13: 758–774

    Article  Google Scholar 

  • Lenk S, Moraru C, Hahnke S, Arnds J, Richter M, Kube M, Reinhardt R, Brinkhoff T, Harder J, Amann R, Mußmann M. 2012. Roseobacter clade bacteria are abundant in coastal sediments and encode a novel combination of sulfur oxidation genes. Isme J, 6: 2178–2187

    Article  Google Scholar 

  • Li C, Cheng M, Algeo T J, Xie S C. 2015. A theoretical prediction of chemical zonation in early oceans (>520 Ma). Sci China Earth Sci, 58: 1901–1909

    Article  Google Scholar 

  • Li H, Li J, Lü C, Xia Y, Xin Y, Liu H, Xun L, Liu H. 2017. FisR activates σ54-dependent transcription of sulfide-oxidizing genes in Cupriavidus pinatubonensis JMP134. Mol Microbiol, 105: 373–384

    Article  Google Scholar 

  • Lidbury I, Kröber E, Zhang Z, Zhu Y, Murrell J C, Chen Y, Schäfer H. 2016. A mechanism for bacterial transformation of dimethyl sulfide to dimethyl sulfoxide: A missing link in the marine organic sulfur cycle. Environ Microbiol, 18: 2754–2766

    Article  Google Scholar 

  • Lin X, Wakeham S G, Putnam I F, Astor Y M, Scranton M I, Chistoserdov A Y, Taylor G T. 2006. Comparison of vertical distributions of prokaryotic assemblages in the anoxic Cariaco Basin and Black Sea by use of fluorescence in situ hybridization. Appl Environ Microbiol, 72: 2679–2690

    Article  Google Scholar 

  • Liu H, Xin Y, Xun L. 2014. Distribution, diversity, and activities of sulfur dioxygenases in heterotrophic bacteria. Appl Environ Microbiol, 80: 1799–1806

    Article  Google Scholar 

  • Luther G W, Findlay A J, MacDonald D J, Owings S M, Hanson T E, Beinart R A, Girguis P R. 2011. Thermodynamics and kinetics of sulfide oxidation by oxygen: A look at inorganically controlled reactions and biologically mediated processes in the environment. Front Microbio, 2: 62

    Article  Google Scholar 

  • Lü C, Xia Y, Liu D, Zhao R, Gao R, Liu H, Xun L. 2017. Cupriavidus necator H16 uses flavocytochrome c-sulfide dehydrogenase to oxidize self-produced and added sulfide. Appl Environ Microbiol, 83: e01610–17

    Google Scholar 

  • Mangold S, Valdés J, Holmes D S, Dopson M. 2011. Sulfur metabolism in the extreme acidophile Acidithiobacillus caldus. Front Microbiol, 2: 17

    Article  Google Scholar 

  • Marcia M, Ermler U, Peng G, Michel H. 2010. A new structure-based classification of sulfide: quinone oxidoreductases. Proteins, 78: 1073–1083

    Article  Google Scholar 

  • Moran M A, Belas R, Schell M A, González J M, Sun F, Sun S, Binder B J, Edmonds J, Ye W, Orcutt B, Howard E C, Meile C, Palefsky W, Goesmann A, Ren Q, Paulsen I, Ulrich L E, Thompson L S, Saunders E, Buchan A. 2007. Ecological genomics of marine Roseobacters. Appl Environ Microbiol, 73: 4559–4569

    Article  Google Scholar 

  • Moran M A, González J M, Kiene R P. 2003. Linking a bacterial taxon to sulfur cycling in the sea: Studies of the marine Roseobacter group. Geomicrobiol J, 20: 375–388

    Article  Google Scholar 

  • Mussmann M, Schulz H N, Strotmann B, Kjaer T, Nielsen L P, Rossello-Mora R A, Amann R I, Jorgensen B B. 2003. Phylogeny and distribution of nitrate-storing Beggiatoa spp. in coastal marine sediments. Environ Microbiol, 5: 523–533

    Article  Google Scholar 

  • Ogawa T, Furusawa T, Shiga M, Seo D, Sakurai H, Inoue K. 2010. Biochemical studies of a soxF-encoded monomeric flavoprotein purified from the green sulfur bacterium Chlorobaculum tepidum that Stimulates in Vitro thiosulfate oxidation. Biosci Biotech Biochem, 74: 771–780

    Article  Google Scholar 

  • Pokorna D, Zabranska J. 2015. Sulfur-oxidizing bacteria in environmental technology. Biotech Adv, 33: 1246–1259

    Article  Google Scholar 

  • Preisler A, de Beer D, Lichtschlag A, Lavik G, Boetius A, Jørgensen B B. 2007. Biological and chemical sulfide oxidation in a Beggiatoa inhabited marine sediment. Isme J, 1: 341–353

    Article  Google Scholar 

  • Quentmeier A, Friedrich C G. 2001. The cysteine residue of the SoxY protein as the active site of protein-bound sulfur oxidation of Paracoccus pantotrophus GB17. Febs Lett, 503: 168–172

    Article  Google Scholar 

  • Quentmeier A, Hellwig P, Bardischewsky F, Grelle G, Kraft R, Friedrich C G. 2003. Sulfur oxidation in Paracoccus pantotrophus: Interaction of the sulfur-binding protein SoxYZ with the dimanganese SoxB protein. Biochem Biophys Res Commun, 312: 1011–1018

    Article  Google Scholar 

  • Quentmeier A, Kraft R, Kostka S, Klockenkämper R, Friedrich C G. 2000. Characterization of a new type of sulfite dehydrogenase from Paracoccus pantotrophus GB17. Arch Microbiol, 173: 117–125

    Article  Google Scholar 

  • Reinartz M, Tschäpe J, Brüser T, Trüper H G, Dahl C. 1998. Sulfide oxidation in the phototrophic sulfur bacterium Chromatium vinosum. Archives Microbiol, 170: 59–68

    Article  Google Scholar 

  • Schäfer H. 2007. Isolation of Methylophaga spp. from marine dimethylsulfide-degrading enrichment cultures and identification of polypeptides induced during growth on dimethylsulfide. Appl Environ Microbiol, 73: 2580–2591

    Article  Google Scholar 

  • Schulz H N, Jørgensen B B. 2001. Big bacteria. Annu Rev Microbiol, 55: 105–137

    Article  Google Scholar 

  • Schütz M, Maldener I, Griesbeck C, Hauska G. 1999. Sulfide-quinone reductase from Rhodobacter capsulatus: Requirement for growth, periplasmic localization, and extension of gene sequence analysis. J Bacteriol, 181: 6516–6523

    Google Scholar 

  • Schütz M, Shahak Y, Padan E, Hauska G. 1997. Sulfide-quinone reductase from Rhodobacter capsulatus. Purification, cloning, and expression. J Biol Chem, 272: 9890–9894

    Article  Google Scholar 

  • Selman M, Greenhalgh S, Diaz R, Sugg, Z. 2008. Eutrophication and hypoxia in coastal areas: A global assessment of the state of knowledge. J Am Geriatr Soc, 51: 1305–1317

    Google Scholar 

  • Sievert S, Kiene R, Schulz-Vogt H. 2007. The sulfur cycle. Oceanography, 20: 117–123

    Article  Google Scholar 

  • Sorokin D Y, Tourova T P, Muyzer G. 2005. Citreicella thiooxidans gen. nov., sp. nov., a novel lithoheterotrophic sulfur-oxidizing bacterium from the Black Sea. Syst Appl Microbiol, 28: 679–687

    Article  Google Scholar 

  • Thamdrup B, Finster K, Hansen J W, Bak F. 1993. Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese. Appl Environ Microbiol, 59: 101–108

    Google Scholar 

  • Verté F, Kostanjevecki V, De Smet L, Meyer T E, Cusanovich M A, Van Beeumen J J. 2002. Identification of a thiosulfate utilization gene cluster from the green phototrophic bacterium Chlorobium limicola. Biochemistry, 41: 2932–2945

    Article  Google Scholar 

  • Wagner-Döbler I, Biebl H. 2006. Environmental Biology of the marine Roseobacter lineage. Annu Rev Microbiol, 60: 255–280

    Article  Google Scholar 

  • Walsh D A, Zaikova E, Howes C G, Song Y C, Wright J J, Tringe S G, Tortell P D, Hallam S J. 2009. Metagenome of a versatile chemolithoautotroph from expanding oceanic dead zones. Science, 326: 578–582

    Article  Google Scholar 

  • Wasmund K, Mußmann M, Loy A. 2017. The life sulfuric: Microbial ecology of sulfur cycling in marine sediments. Environ Microbol Rep, 9: 323–344

    Article  Google Scholar 

  • Winkel M, de Beer D, Lavik G, Peplies J, Mußmann M. 2014. Close association of active nitrifiers with Beggiatoa mats covering deep-sea hydrothermal sediments. Environ Microbiol, 16: 1612–1626

    Article  Google Scholar 

  • Xia Y, Lü C, Hou N, Xin Y, Liu J, Liu H, Xun L. 2017. Sulfide production and oxidation by heterotrophic bacteria under aerobic conditions. Isme J, 11: 2754–2766

    Article  Google Scholar 

  • Xie S C, Chen J F, Wang F P, Xun L Y, Tang K, Zhai W D, Liu J H, Ma W T. 2017. Mechanisms of carbon storage and the coupled carbon, nitrogen and sulfur cycles in regional seas in response to global change. Sci China Earth Sci, 60: 1010–1014

    Article  Google Scholar 

  • Xin Y, Liu H, Cui F, Liu H, Xun L. 2016. Recombinant Escherichia coli with sulfide:quinone oxidoreductase and persulfide dioxygenase rapidly oxidises sulfide to sulfite and thiosulfate via a new pathway. Environ Microbiol, 18: 5123–5136

    Article  Google Scholar 

  • Zaikova E, Walsh D A, Stilwell C P, Mohn W W, Tortell P D, Hallam S J. 2009. Microbial community dynamics in a seasonally anoxic fjord: Saanich Inlet, British Columbia. Environ Microbiol, 12: 172–191

    Article  Google Scholar 

  • Zeyer J, Eicher P, Wakeham S G, Schwarzenbach R P. 1987. Oxidation of dimethyl sulfide to dimethyl sulfoxide by phototrophic purple bacteria. Appl Environ Microbiol, 53: 2026–2032

    Google Scholar 

  • Zhang L, Kuniyoshi I, Hirai M, Shoda M. 1991. Oxidation of dimethyl sulfide by Pseudomonas acidovorans DMR-11 isolated from peat biofilter. Biotechnol Lett, 13: 223–228

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2016YFA0601103), the National Natural Science Foundation of China (Grant No. 41606134) and the Fundamental Research Funds of Shandong University as well.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihua Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Liu, J., Liu, H. et al. Sulfur metabolism by marine heterotrophic bacteria involved in sulfur cycling in the ocean. Sci. China Earth Sci. 61, 1369–1378 (2018). https://doi.org/10.1007/s11430-017-9234-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-017-9234-x

Keywords

Navigation