Skip to main content
Log in

Aggregation-induced emission and thermally activated delayed fluorescence of 2,6-diaminobenzophenones

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Exploration of novel organic luminophores that exhibit thermally activated delayed fluorescence (TADF) in the aggregated state is very crucial for advance of delayed luminescence-based applications such as time-gated bio-sensing and temperature sensing. We report herein that synthesis, photophysical properties, molecular and crystal structures, and theoretical calculations of 2,6-bis (diarylamino)benzophenones. Absorption spectra in solution and calculations using density functional theory (DFT) method revealed that the optical excitation took place through intramolecular charge-transfer from one diarylamino moiety to an aroyl group. While the benzophenones did not luminesce in solution, the solids of the benzophenones emitted green light with moderate-to-good quantum yields. Thus, the benzophenones exhibit aggregation-induced emission. Based on the lifetime measurement, the green emission of the solids was found to include TADF. The emergence of the TADF is supported by the small energy gap between the excited singlet and triplet states, which was estimated by time-dependent DFT calculations. Thin films of poly(methyl methacrylate) doped by the benzophenones also showed green prompt and delayed fluorescence whose lifetimes were in the order of microseconds. Linear correlation between logarithm value of TADF lifetime and temperature was observed with the benzophenone in powder, suggesting that the benzophenones can serve as molecular thermometers workable under aqueous conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Nature, 2012, 492: 234–238

    Article  CAS  PubMed  Google Scholar 

  2. Nakanotani H, Higuchi T, Furukawa T, Masui K, Morimoto K, Numata M, Tanaka H, Sagara Y, Yasuda T, Adachi C. Nat Commun, 2014, 5: 4016

    Article  CAS  PubMed  Google Scholar 

  3. Zhang Q, Li B, Huang S, Nomura H, Tanaka H, Adachi C. Nat Photon, 2014, 8: 326–332

    Article  CAS  Google Scholar 

  4. Kaji H, Suzuki H, Fukushima T, Shizu K, Suzuki K, Kubo S, Komino T, Oiwa H, Suzuki F, Wakamiya A, Murata Y, Adachi C. Nat Commun, 2015, 6: 8476

    Article  CAS  PubMed  Google Scholar 

  5. Marriott G, Clegg RM, Arndt-Jovin DJ, Jovin TM. Biophys J, 1991, 60: 1374–1387

  6. Carretero AS, Castillo AS, Gutiérrez AF. Crit Rev Anal Chem, 2005, 35: 3–14

    Article  CAS  Google Scholar 

  7. Suhling K. French PMW, Phillips D. Photochem Photobiol Sci, 2005, 4: 13–22

    Article  CAS  PubMed  Google Scholar 

  8. Xiong X, Song F, Wang J, Zhang Y, Xue Y, Sun L, Jiang N, Gao P, Tian L, Peng X. J Am Chem Soc, 2014, 136: 9590–9597

    Article  CAS  PubMed  Google Scholar 

  9. Shimizu M, Hiyama T. Chem Asian J, 2010, 5: 1516–1531

    Article  CAS  PubMed  Google Scholar 

  10. Li Q, Li Z. Adv Sci, 2017, 4: 1600484

    Article  CAS  Google Scholar 

  11. Wong MY, Zysman-Colman E. Adv Mater, 2017, 29: 1605444

    Article  CAS  Google Scholar 

  12. Im Y, Kim M, Cho YJ, Seo JA, Yook KS, Lee JY. Chem Mater, 2017, 29: 1946–1963

    Article  CAS  Google Scholar 

  13. Yang Z, Mao Z, Xie Z, Zhang Y, Liu S, Zhao J, Xu J, Chi Z, Aldred MP. Chem Soc Rev, 2017, 46: 915–1016

    Article  CAS  PubMed  Google Scholar 

  14. Tao Y, Yuan K, Chen T, Xu P, Li H, Chen R, Zheng C, Zhang L, Huang W. Adv Mater, 2014, 26: 7931–7958

    Article  CAS  PubMed  Google Scholar 

  15. Chen B, Sun X, Evans RE, Zhou R, Demas JN, Trindle CO, Zhang G. J Phys Chem A, 2015, 119: 8854–8859

    Article  CAS  PubMed  Google Scholar 

  16. Xu S, Liu T, Mu Y, Wang YF, Chi Z, Lo CC, Liu S, Zhang Y, Lien A, Xu J. Angew Chem Int Ed, 2015, 54: 874–878

    Article  CAS  Google Scholar 

  17. Xie Z, Chen C, Xu S, Li J, Zhang Y, Liu S, Xu J, Chi Z. Angew Chem Int Ed, 2015, 54: 7181–7184

    Article  CAS  Google Scholar 

  18. Gan S, Luo W, He B, Chen L, Nie H, Hu R, Qin A, Zhao Z, Tang BZ. J Mater Chem C, 2016, 4: 3705–3708

    Article  CAS  Google Scholar 

  19. Furue R, Nishimoto T, Park IS, Lee J, Yasuda T. Angew Chem Int Ed, 2016, 55: 7171–7175

    Article  CAS  Google Scholar 

  20. Tsujimoto H, Ha DG, Markopoulos G, Chae HS, Baldo MA, Swager TM. J Am Chem Soc, 2017, 139: 4894–4900

    Article  CAS  PubMed  Google Scholar 

  21. Guo J. Li X-L, Nie H, Luo W, Gan S, Hu S, Hu R, Qin A, Zhao Z, Su S-J, Tang BZ. Adv Funct Mater, 2017, 1606458

    Google Scholar 

  22. Wang T, Wu Z, Sun W, Jin S, Zhang X, Zhou C, Jiang J, Luo Y, Zhang G. J Phys Chem A, 2017, 121: 7183–7190

    Article  CAS  PubMed  Google Scholar 

  23. Guo J, Li XL, Nie H, Luo W, Hu R, Qin A, Zhao Z, Su SJ, Tang BZ. Chem Mater, 2017, 29: 3623–3631

    Article  CAS  Google Scholar 

  24. Shimizu M, Takeda Y, Higashi M, Hiyama T. Angew Chem Int Ed, 2009, 48: 3653–3656

    Article  CAS  Google Scholar 

  25. Shimizu M, Asai Y, Takeda Y, Yamatani A, Hiyama T. Tetrahedron Lett, 2011, 52: 4084–4089

    Article  CAS  Google Scholar 

  26. Shimizu M, Takeda Y, Higashi M, Hiyama T. Chem Asian J, 2011, 6: 2536–2544

    Article  CAS  PubMed  Google Scholar 

  27. Shimizu M, Kaki R, Takeda Y, Hiyama T, Nagai N, Yamagishi H, Furutani H. Angew Chem Int Ed, 2012, 51: 4095–4099

    Article  CAS  Google Scholar 

  28. Shimizu M, Tamagawa T. Eur. Org Chem, 2015, 2015: 291–295

    Article  CAS  Google Scholar 

  29. Shimizu M, Fukui H, Natakani M, Sakaguchi H. Eur. Org Chem, 2016, 2016: 5950–5956

    Article  CAS  Google Scholar 

  30. Shimizu M, Fukui H, Shigitani R. Jnl Chin Chem Soc, 2016, 63: 317–322

    Article  CAS  Google Scholar 

  31. Shimizu M, Kimura A, Sakaguchi H. Eur. Org Chem, 2016, 2016: 467–473

    Article  CAS  Google Scholar 

  32. Shimizu M, Shigitani R, Nakatani M, Kuwabara K, Miyake Y, Tajima K, Sakai H, Hasobe T. J Phys Chem C, 2016, 120: 11631–11639

    Article  CAS  Google Scholar 

  33. Shimizu M, Kinoshita T, Shigitani R, Miyake Y, Tajima K. Mater Chem Front, 2018, 2: 347–354

    Article  CAS  Google Scholar 

  34. Shimizu M, Nakatani M. Eur. Org Chem, 2017, 2017: 4695–4702

    Article  CAS  Google Scholar 

  35. Mei J. Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Chem Rev, 2015, 115: 11718–11940

    Article  CAS  PubMed  Google Scholar 

  36. Mei J, Hong Y. Lam JWY, Qin A, Tang Y, Tang BZ. Adv Mater, 2014, 26: 5429–5479

    Article  CAS  PubMed  Google Scholar 

  37. CCDC 1840378 (for 1b) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, revision D. 01. Wallingford: Gaussian, Inc., 2013

  39. Schrum KF, Williams AM, Haerther SA, Ben-Amotz D. Anal Chem, 1994, 66: 2788–2790

    Article  CAS  Google Scholar 

  40. Fister JC, Rank D, Harris JM. Anal Chem, 1995, 67: 4269–4275

    Article  CAS  Google Scholar 

  41. Uchiyama S. Prasanna de Silva A, Iwai K. J Chem Educ, 2006, 83: 720–727

    Article  CAS  Google Scholar 

  42. Brites CDS, Lima PP, Silva NJO, Millán A, Amaral VS, Palacio F, Carlos LD. Nanoscale, 2012, 4: 4799–4829

    Article  CAS  PubMed  Google Scholar 

  43. McLaurin EJ, Bradshaw LR, Gamelin DR. Chem Mater, 2013, 25: 1283–1292

    Article  CAS  Google Scholar 

  44. Bai T, Gu N. Small, 2016, 12: 4590–4610

    Article  CAS  PubMed  Google Scholar 

  45. Uchiyama S, Gota C, Tsuji T, Inada N. Chem Commun, 2017, 53: 10976–10992

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants-in-Aid for JSPS KAKENHI (15H03795), MEXT KAKENHI 15K13671, the Nagase Science and Technology Foundation, and the Ogasawara Foundation for the Promotion of Science and Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Shimizu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimizu, M., Nakatani, M. & Nishimura, K. Aggregation-induced emission and thermally activated delayed fluorescence of 2,6-diaminobenzophenones. Sci. China Chem. 61, 925–931 (2018). https://doi.org/10.1007/s11426-018-9301-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9301-6

Keywords

Navigation