Skip to main content
Log in

Comparison of luminescent properties of helicene-like bibenzothiophenes with o-carborane and 5,6-dicarba-nido-decaborane

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

This article describes comparison of the anchoring effect on electronic properties of the helicene-like bibenzothiophene between o-carborane and 5,6-dicarba-nido-decaborane. The o-carborane and nido-decaborane-fused bibenzothiophenes were simultaneously obtained in the same reaction and successfully isolated. Initially, the X-ray single crystal analysis revealed that the helicene-like distorted structure was realized in the nido-decaborane-fused bibenzothiophene. From optical measurements in the solution state, distinct different characteristics depending on the type of anchors were observed. It was summarized that the absorption and luminescent properties originated from weak π-conjugation at the bibenzothiophene moiety in the o-carborane-fused compound were obtained, whereas robust π-conjugation and significant emission from the intramolecular charge transfer state were detected from the nido-decaborane-fused compound. These data can be explained by the theoretical results that π-conjugation was restrictedly developed within the bibenzothiophene moiety in frontier orbitals of the o-carborane-fused compound. In contrast, π-conjugation can be constructed even through the distorted bibenzothiophene because of the nido-decaborane unit. Moreover, the intramolecular charge transfer state should be realized because of electronic interaction involving the nido-decaborane unit in the excited state. Furthermore, it was demonstrated that the nido-decaborane-fused compound possessed solid-state emission and mechanochromic luminescent properties. The π-conjugation on the distorted structure supported by the nido-decaborane anchor should play a significant role in suppressing aggregation-caused quenching followed by presenting solid-state emission with stimuli responsiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chujo Y, Tanaka K. Bull Chem Soc Jpn, 2015, 88: 633–643

    Article  CAS  Google Scholar 

  2. Tanaka K, Chujo Y. NPG Asia Mater, 2015, 7: e223

    Article  CAS  Google Scholar 

  3. Gon M, Tanaka K, Chujo Y. Polym J, 2018, 50: 109–126

    Article  CAS  Google Scholar 

  4. Naito H, Nishino K, Morisaki Y, Tanaka K, Chujo Y. Angew Chem Int Ed, 2017, 56: 254–259

    Article  CAS  Google Scholar 

  5. Nishino K, Yamamoto H, Tanaka K, Chujo Y. Asian J Org Chem, 2017, 6: 1818–1822

    Article  CAS  Google Scholar 

  6. Nishino K, Uemura K, Gon M, Tanaka K, Chujo Y. Molecules, 2017, 22: 2009–2018

    Article  CAS  PubMed Central  Google Scholar 

  7. Nishino K, Uemura K, Tanaka K, Chujo Y. New J Chem, 2018, 42: 4210–4214

    Article  CAS  Google Scholar 

  8. Mori H, Nishino K, Wada K, Morisaki Y, Tanaka K, Chujo Y. Mater Chem Front, 2018, 2: 573–579

    Article  CAS  Google Scholar 

  9. Naito H, Uemura K, Morisaki Y, Tanaka K, Chujo Y. Eur J Org Chem, 2018, 2018: 1885–1890

    Article  CAS  Google Scholar 

  10. Naito H, Nishino K, Morisaki Y, Tanaka K, Chujo Y. Chem Asian J, 2017, 12: 2134–2138

    Article  CAS  PubMed  Google Scholar 

  11. Nishino K, Hashimoto K, Tanaka K, Morisaki Y, Chujo Y. Tetrahedron Lett, 2016, 57: 2025–2028

    Article  CAS  Google Scholar 

  12. Cho YJ, Kim SY, Cho M, Han WS, Son HJ, Cho DW, Kang SO. Phys Chem Chem Phys, 2016, 18: 9702–9708

    Article  CAS  PubMed  Google Scholar 

  13. Kim SY, Cho YJ, Jin GF, Han WS, Son HJ, Cho DW, Kang SO. Phys Chem Chem Phys, 2015, 17: 15679–15682

    Article  CAS  PubMed  Google Scholar 

  14. Wang Z, Jiang P, Wang T, Moxey GJ, Cifuentes MP, Zhang C, Humphrey MG. Phys Chem Chem Phys, 2016, 18: 15719–15726

    Article  CAS  PubMed  Google Scholar 

  15. Kwon S, Wee KR, Cho YJ, Kang SO. Chem Eur J, 2014, 20: 5953–5960

    Article  CAS  PubMed  Google Scholar 

  16. Nishino K, Yamamoto H, Tanaka K, Chujo Y. Org Lett, 2016, 18: 4064–4067

    Article  CAS  PubMed  Google Scholar 

  17. Naito H, Nishino K, Morisaki Y, Tanaka K, Chujo Y. J Mater Chem C, 2017, 5: 10047–10054

    Article  CAS  Google Scholar 

  18. Tanaka K, Nishino K, Ito S, Yamane H, Suenaga K, Hashimoto K, Chujo Y. Faraday Discuss, 2017, 196: 31–42

    Article  CAS  PubMed  Google Scholar 

  19. Huang PY, Chen LH, Chen YY, Chang WJ, Wang JJ, Lii KH, Yan JY, Ho JC, Lee CC, Kim C, Chen MC. Chem Eur J, 2013, 19: 3721–3728

    Article  CAS  PubMed  Google Scholar 

  20. Štıbr B, Teixidor F, Viñas C, Fusek J. J Organomet Chem, 1998, 550: 125–130

    Article  Google Scholar 

  21. Stíbr B, Hermánek S, Janousek Z, Plzák Z, Dolanský J, Plesek J. Polyhedron, 1982, 1: 822–824

    Article  Google Scholar 

  22. Rietz RR, Schaeffer R. J Am Chem Soc, 1973, 95: 6254–6262

    Article  CAS  Google Scholar 

  23. Lawrence SH, Wermer JR, Boocock SK, Banks MA, Keller PC, Shore SG. Inorg Chem, 1986, 25: 367–372

    Article  CAS  Google Scholar 

  24. Jung CW, Hawthorne MF. J Am Chem Soc, 1980, 102: 3024–3032

    Article  CAS  Google Scholar 

  25. Barker GK, Garcia MP, Green M, Pain GN, Stone FGA, Jones SKR, Welch AJ. J Chem Soc Chem Commun, 1981, 652

    Google Scholar 

  26. Šubrtová V, Línek A, Hašek J. Acta Crystlogr B Struct Crystlogr Cryst Chem, 1982, 38: 3147–3149

    Article  Google Scholar 

  27. Barker GK, Godfrey NR, Green M, Parge HE, Stone FGA, Welch AJ. J Chem Soc Chem Commun, 1983, 277–279

    Google Scholar 

  28. Barker GK, Green M, Stone FGA, Wolsey WC, Welch AJ. J Chem Soc Dalton Trans, 1983, 2063–2069

    Google Scholar 

  29. Bown M, Grüner Bı, Štıbr B, Fontaine XLR, Thornton-Pett M, Kennedy JD. J Organomet Chem, 2000, 614-615: 269–282

    Article  CAS  Google Scholar 

  30. Pisareva IV, Dolgushin FM, Tok OL, Konoplev VE, Suponitsky KY, Yanovsky AI, Chizhevsky IT. Organometallics, 2001, 20: 4216–4220

    Article  CAS  Google Scholar 

  31. Štíbr B, Holub J, Bakardjiev M, Hnyk D, Tok OL, Milius W, Wrackmeyer B. Eur J Inorg Chem, 2002, 2002: 2320–2326

    Article  Google Scholar 

  32. Balagurova EV, Pisareva IV, Smol’yakov AF, Dolgushin FM, Godovikov IA, Chizhevsky IT. Inorg Chem, 2016, 55: 11193–11200

    Article  CAS  PubMed  Google Scholar 

  33. Bakardjiev M, Holub J, Stíbr B, Císarová I. Dalton Trans, 2010, 39: 4186–4190

    Article  CAS  PubMed  Google Scholar 

  34. Štíbr B. J Organomet Chem, 2015, 798: 30–35

    Article  CAS  Google Scholar 

  35. Bakardjiev M, Štíbr B, Holub J, Padělková Z, Růžička A. Organometallics, 2015, 34: 450–454

    Article  CAS  Google Scholar 

  36. Tok OL, Bakardjiev M, Štíbr B, Hnyk D, Holub J, Padělková Z, Růžička A. Inorg Chem, 2016, 55: 8839–8843

    Article  CAS  PubMed  Google Scholar 

  37. Hani R, Geanangel RA. Polyhedron, 1982, 1: 824–826

    Article  Google Scholar 

  38. Powley SL, Rosair GM, Welch AJ. Dalton Trans, 2016, 45: 11742–11752

    Article  CAS  PubMed  Google Scholar 

  39. Oyama H, Nakano K, Harada T, Kuroda R, Naito M, Nobusawa K, Nozaki K. Org Lett, 2013, 15: 2104–2107

    Article  CAS  PubMed  Google Scholar 

  40. Matsuno T, Koyama Y, Hiroto S, Kumar J, Kawai T, Shinokubo H. Chem Commun, 2015, 51: 4607–4610

    Article  CAS  Google Scholar 

  41. Schleyer PR, Maerker C, Dransfeld A, Jiao H, van E.kema Hommes NJR. J Am Chem Soc, 1996, 118: 6317–6318

    Article  CAS  Google Scholar 

  42. Schleyer PR, Manoharan M, Wang ZX, Kiran B, Jiao H, Puchta R, van E.kema Hommes NJR. Org Lett, 2001, 3: 2465–2468

    Article  CAS  Google Scholar 

  43. Nishino K, Morisaki Y, Tanaka K, Chujo Y. New J Chem, 2017, 41: 10550–10554

    Article  CAS  Google Scholar 

  44. Yoshii R, Suenaga K, Tanaka K, Chujo Y. Chem Eur J, 2015, 21: 7231–7237

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Konica Minolta Science and Technology Foundation (for K.T.) and a Grant-in-Aid for Scientific Research on Innovative Areas “New Polymeric Materials Based on Element-Blocks (No.2401)” (JP24102013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kazuo Tanaka or Yoshiki Chujo.

Electronic supplementary material

11426_2018_9258_MOESM1_ESM.pdf

Comparison of Luminescent Properties of Helicene-Like Bibenzothiophenes with o-Carborane and 5,6-Dicarba-nido-Decaborane

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishino, K., Hashimoto, K., Tanaka, K. et al. Comparison of luminescent properties of helicene-like bibenzothiophenes with o-carborane and 5,6-dicarba-nido-decaborane. Sci. China Chem. 61, 940–946 (2018). https://doi.org/10.1007/s11426-018-9258-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9258-y

Keywords

Navigation