Skip to main content
Log in

Metric distortion in the geometric Schottky problem

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

The classical Schottky problem is concerned with characterization of Jacobian varieties of compact Riemann surfaces among all abelian varieties, or the identification of the Jacobian locus \(J(\mathcal{M}_g)\) in the moduli space \(\mathcal{A}_g\) of principally polarized abelian varieties as an algebraic subvariety. By viewing \(\mathcal{A}_g\) as a noncompact metric space coming from its structure as a locally symmetric space and \(J(\mathcal{M}_g)\) as a metric subspace, we compare the subspace metric d and the induced length metric ℓ on \(J(\mathcal{M}_g)\). Consequently, we clarify the nature of the metric distortion of the subspace \(J(\mathcal{M}_g)\) and hence settle a problem posed by Farb (2006) on the metric distortion of \(J(\mathcal{M}_g)\) inside \(\mathcal{A}_g\) in a certain sense (see Theorem 1.5 and Corollary 1.6).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baily W. Satake’s compactification of V n. Amer J Math, 1958, 80: 348–364

    Article  MathSciNet  Google Scholar 

  2. Baily W. On the moduli of Jacobian varieties. Ann of Math (2), 1960, 71: 303–314

    Article  MathSciNet  Google Scholar 

  3. Buser P, Sarnak P. On the period matrix of a Riemann surface of large genus. Invent Math, 1994, 117: 27–56

    Article  MathSciNet  Google Scholar 

  4. Donagi R. The Schottky problem. In: Theory of Moduli. Lecture Notes in Mathematics, vol. 1337. Berlin: Springer, 1988, 84–137

    Article  MathSciNet  Google Scholar 

  5. Drutu C, Kapovich M. Geometric Group Theory. With An Appendix by Bogdan Nica. American Mathematical Society Colloquium Publications, 63. Providence: Amer Math Soc, 2018

    MATH  Google Scholar 

  6. Farb B. Some problems on mapping class groups and moduli space. In: Problems on Mapping Class Groups and Related Topics. Proceedings of Symposia in Pure Mathematics, vol. 74. Providence: Amer Math Soc, 2006, 11–55

    Article  MathSciNet  Google Scholar 

  7. Farb B, Masur H. Teichmüller geometry of moduli space, II.M(S) seen from far away. In: Contemporary Mathematics, vol. 510. Providence: Amer Math Soc, 2010, 71–79

    Article  Google Scholar 

  8. Farkas H, Rauch H. Two kinds of theta constants and period relations on a Riemann surface. Proc Natl Acad Sci USA, 1969, 62: 679–686

    Article  MathSciNet  Google Scholar 

  9. Fay J. Theta Functions on Riemann Surfaces. Lecture Notes in Mathematics, vol. 352. Berlin-New York: Springer-Verlag, 1973

    Book  Google Scholar 

  10. Griffths P, Harris J. Principles of Algebraic Geometry. New York: John Wiley & Sons, 1978

    Google Scholar 

  11. Gromov M. Asymptotic invariants of infinite groups. In: Geometric Group Theory, vol. 2. London Mathematical Society Lecture Note Series, vol. 182. Cambridge: Cambridge University Press, 1993, 1–295

    MathSciNet  Google Scholar 

  12. Gromov M. Metric Structures for Riemannian and Non-Riemannian Spaces. Progress in Mathematics, vol. 152. Boston: Birkhäuser, 1999

  13. Grushevsky S. The Schottky problem. In: Current Developments in Algebraic Geometry. Mathematical Sciences Research Institute Publications, vol. 59. Cambridge: Cambridge University Press, 2012, 129–164

    Google Scholar 

  14. Hattori T. Asymptotic geometry of arithmetic quotients of symmetric spaces. Math Z, 1996, 222: 247–27715

    Article  MathSciNet  Google Scholar 

  15. Ji L. The story of Riemann’s moduli space. ICCM Not, 2015, 3: 46–73

    MathSciNet  Google Scholar 

  16. Ji L. Metric Schottky problem and Satake compactifications of moduli spaces. In: Proceedings of the 7th International Congress of Chinese Mathematicians. Beijing-Boston: Higher Education Press-International Press, 2016, 267–302

    Google Scholar 

  17. Ji L, Leuzinger E. The asymptotic Schottky problem. Geom Funct Anal, 2010, 19: 1693–1712

    Article  MathSciNet  Google Scholar 

  18. Ji L, MacPherson R. Geometry of compactifications of locally symmetric spaces. Ann Inst Fourier (Grenoble), 2002, 52: 457–559

    Article  MathSciNet  Google Scholar 

  19. Krichever I, Shiota T. Soliton equations and the Riemann-Schottky problem. In: Handbook of Moduli, vol. II. Advanced Lectures in Mathematics (ALM), vol. 25. Somerville: International Press, 2013, 205–258

    MathSciNet  MATH  Google Scholar 

  20. Leuzinger E. Tits geometry, arithmetic groups, and the proof of a conjecture of Siegel. J Lie Theory, 2004, 14: 317–338

    MathSciNet  MATH  Google Scholar 

  21. Leuzinger E. Reduction theory for mapping class groups and applications to moduli spaces. J Reine Angew Math, 2010, 649: 11–31

    MathSciNet  MATH  Google Scholar 

  22. Lewittes J. Riemann surfaces and the theta function. Acta Math, 1964, 111: 37–61

    Article  MathSciNet  Google Scholar 

  23. Moonen B, Oort F. The Torelli locus and special subvarieties. In: Handbook of Moduli, vol. II. Advanced Lectures in Mathematics (ALM), vol. 25. Somerville: International Press, 2013, 549–594

    MathSciNet  MATH  Google Scholar 

  24. Riemann B. Collected Papers. Translated from the 1892 German edition by Roger Baker, Charles Christenson and Henry Orde. Heber City: Kendrick Press, 2004

    MATH  Google Scholar 

  25. Schottky F. Ueber specielle Abelsche Functionen vierten Ranges. J Reine Angew Math, 1888, 103: 185–203

    MathSciNet  MATH  Google Scholar 

  26. Schottky F. Über die Moduln der Thetafunctionen. Acta Math, 1903, 27: 235–288

    Article  MathSciNet  Google Scholar 

  27. Shiota T. Characterization of Jacobian varieties in terms of soliton equations. Invent Math, 1986, 83: 333–382

    Article  MathSciNet  Google Scholar 

  28. Teichmüller O. Veränderliche Riemannsche Flächen. Deutsche Math, 1944, 7: 344–359. An English translation in “Variable Riemann surfaces.” Translated from the German by Annette-A’Campo-Neuen. IRMA Lect Math Theor Phys, vol. 19. Handbook of Teichmüller Theory, vol. IV. Zürich: Eur Math Soc, 2014, 787-803

    MathSciNet  MATH  Google Scholar 

  29. Wolpert S. The hyperbolic metric and the geometry of the universal curve. J Differential Geom, 1990, 31: 417–472

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Simons Foundation (Grant No. 353785). The author thanks an anonymous referee for his careful reading of this paper and his constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizhen Ji.

Additional information

Dedicated to Professor Lo Yang on the Occasion of His 80th Birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, L. Metric distortion in the geometric Schottky problem. Sci. China Math. 62, 2211–2228 (2019). https://doi.org/10.1007/s11425-019-1598-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-019-1598-y

Keywords

MSC(2010)

Navigation