Skip to main content
Log in

On scaling invariance and type-I singularities for the compressible Navier-Stokes equations

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We find a new scaling invariance of the barotropic compressible Navier-Stokes equations. Then it is shown that type-I singularities of solutions with

$$\mathop {\lim \sup }\limits_{t \nearrow T} |div(t,x)|(T - t) \leqslant \kappa $$

can never happen at time T for all adiabatic number γ > 1. Here κ > 0 does not depend on the initial data. This is achieved by proving the regularity of solutions under

$$\rho (t,x) \leqslant \frac{M}{{{{(T - t)}^\kappa }}},M < \infty .$$

This new scaling invariance also motivates us to construct an explicit type-II blowup solution for γ > 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brézis H, Wainger S. A note on limiting cases of Sobolev embeddings and convolution inequalities. Comm Partial Differential Equations, 1980, 5: 773–789

    MathSciNet  MATH  Google Scholar 

  2. Caffarelli L, Kohn R, Nierenberg L. Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm Pure Appl Math, 1982, 35: 771–831

    MathSciNet  MATH  Google Scholar 

  3. Chemin J-Y. Remarques sur l’sexistence globale pour le systeme de Navier-Stokes incompressible. SIAM J Math Anal, 1992, 23: 20–28

    MathSciNet  MATH  Google Scholar 

  4. Chen C C, Strain R, Tsai T P, et al. Lower bound on the blow-up rate of the axisymmetric Navier-Stokes equations. Int Math Res Not IMRN, 2008, 9, Article ID rnn016

    MATH  Google Scholar 

  5. Chen C C, Strain R, Yau H T, et al. Lower bounds on the blow-up rate of the axisymmetric Navier-Stokes equations, II. Comm Partial Differential Equations, 2009, 34: 203–232

    MathSciNet  MATH  Google Scholar 

  6. Chen Q, Miao C, Zhang Z. Global well-posedness for the compressible Navier-Stokes equations with the highly oscil-lating initial velocity. Comm Pure Appl Math, 2019, in press

    Google Scholar 

  7. Cho Y, Choe H J, Kim H. Unique solvability of the initial boundary value problems for compressible viscous fluid. J Math Pures Appl, 2004, 83: 243–275

    MathSciNet  MATH  Google Scholar 

  8. Choe H J, Kim H. Strong solutions of the Navier-Stokes equations for isentropic compressible fluids. J Differential Equations, 2003, 190: 504–523

    MathSciNet  MATH  Google Scholar 

  9. Danchin R. Global existence in critical spaces for compressible Navier-Stokes equations. Invent Math, 2000, 141: 579–614

    MathSciNet  MATH  Google Scholar 

  10. Desjardins B. Regularity of weak solutions of the compressible isentropic Navier-Stokes equations. Comm Partial Differential Equations, 1997, 22: 977–1008

    MathSciNet  MATH  Google Scholar 

  11. Fan J, Jiang S, Ou Y. A blow-up criterion for the compressible viscous heat-conductive flows. Ann Inst H Poncaré Anal Non Linéaire, 2019, in press

    MATH  Google Scholar 

  12. Feireisl E. Dynamics of viscous compressible fluids. New York: Oxford University Press, 2004

    MATH  Google Scholar 

  13. Feireisl E, Novotny A, Petzeltová H. On the existence of globally defined weak solutions to the Navier-Stokes equations. J Math Fluid Mech, 2001, 3: 358–392

    MathSciNet  MATH  Google Scholar 

  14. Fujita H, Kato T. On the Navier-Stokes initial value problem I. Arch Ration Mech Anal, 1964, 16: 269–315

    MathSciNet  MATH  Google Scholar 

  15. Hoff D. Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data. J Differential Equations, 1995, 120: 215–254

    MathSciNet  MATH  Google Scholar 

  16. Hoff D. Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data. Arch Ration Mech Anal, 1995, 132: 1–14

    MathSciNet  MATH  Google Scholar 

  17. Hoff D. Dynamics of singularity surfaces for compressible, viscous flows in two space dimensions. Comm Pure Appl Math, 2002, 55: 1365–1407

    MathSciNet  MATH  Google Scholar 

  18. Huang X D, Li J, Xin Z P. Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations. Comm Pure Appl Math, 2012, 65: 549–585

    MathSciNet  MATH  Google Scholar 

  19. Huang X D, Li J, Xin Z P. Blowup criterion for viscous baratropic flows with vacuum states. Comm Math Phys, 2011, 301: 23–35

    MathSciNet  MATH  Google Scholar 

  20. Huang X D, Li J, Xin Z P. Serrin-type criterion for the three-dimensional viscous compressible flows. SIAM J Math Anal, 2011, 43: 1872–1886

    MathSciNet  MATH  Google Scholar 

  21. Huang X D, Xin Z P. A blow-up criterion for classical solutions to the compressible Navier-Stokes equations. Sci China Math, 2010, 53: 671–686

    MathSciNet  MATH  Google Scholar 

  22. Huang X D, Xin Z P. On formation of singularity for non-isentropic Navier-Stokes equations without heat-conductivity. ArXiv:1501.06291, 2015

    MATH  Google Scholar 

  23. Itaya N. On the Cauchy problem for the system of fundamental equations describing the movement of compressible viscous fluids. Kodai Math Sem Rep, 1971, 23: 60–120

    MathSciNet  MATH  Google Scholar 

  24. Jiang L, Wang Y. On the blow up criterion to the 2-D compressible Navier-Stokes equations. Czechoslovak Math J, 2010, 60: 195–209

    MathSciNet  MATH  Google Scholar 

  25. Jiang S, Zhang P. Global spherically symmetric solutions of the compressible isentropic Navier-Stokes equations. Comm Math Phys, 2001, 215: 559–581

    MathSciNet  MATH  Google Scholar 

  26. Jiang S, Zhang P. Axisymmetric solutions of the 3-D Navier-Stokes equations for compressible isentropic flows. J Math Pure Appl, 2003, 82: 949–973

    MATH  Google Scholar 

  27. Kato T. Strong Lp solutions of the Navier-Stokes equations in Rm, with applications to weak solutions. Math Z, 1984, 187: 471–480

    MathSciNet  MATH  Google Scholar 

  28. Koch G, Nadirashvili N, Seregin G, et al. Liouville theorems for the Navier-Stokes equations and applications. Acta Math, 2009, 203: 83–105

    MathSciNet  MATH  Google Scholar 

  29. Koch H, Tataru D. Well-posedness for the Navier-Stokes equations. Adv Math, 2001, 157: 22–35

    MathSciNet  MATH  Google Scholar 

  30. Kozono H, Taniuchi Y. Limiting case of the Sobolev inequality in BMO, with application to the Euler equations. Comm Math Phys, 2000, 214: 191–200

    MathSciNet  MATH  Google Scholar 

  31. Lei Z, Du Y, Zhang Q T. Singularities of solutions to compressible Euler equations with vacuum. Math Res Lett, 2013, 20: 41–50

    MathSciNet  MATH  Google Scholar 

  32. Lei Z, Lin F H. Global mild solutions of Navier-Stokes equations. Comm Pure Appl Math, 2011, 64: 1297–1304

    MathSciNet  MATH  Google Scholar 

  33. Lei Z, Zhang Q. A Liouville theorem for the axially-symmetric Navier-Stokes equations. J Funct Anal, 2011, 261: 2323–2345

    MathSciNet  MATH  Google Scholar 

  34. Li H, Wang X, Xin Z. Non-existence of classical solutions with finite energy to the Cauchy problem of the compressible Navier-Stokes equations. Arch Ration Mech Anal, 2018, https://doi.org/10.1007/s00205-018-1328-z

    Google Scholar 

  35. Lions P L. Mathematical Topics in Fluid Mechanics, Vol. 2. Compressible Models. New York: Oxford University Press, 1998

    MATH  Google Scholar 

  36. Luo Z. Global existence of classical solutions to two-dimensional Navier-Stokes equations with Cauchy data containing vacuum. Math Methods Appl Sci, 2014, 37: 1333–1352

    MathSciNet  MATH  Google Scholar 

  37. Matsumura A, Nishida T. The initial value problem for the equations of motion of viscous and heat-conductive gases. J Math Kyoto Univ, 1980, 20: 67–104

    MathSciNet  MATH  Google Scholar 

  38. Matsumura A, Nishida T. The initial boundary value problems for the equations of motion of compressible and heat-conductive fluids. Comm Math Phys, 1983, 89: 445–464

    MathSciNet  MATH  Google Scholar 

  39. Nash J. Le probleme de Cauchy pour les equations differentielles d’un fluide geral. Bull Soc Math France, 1962, 90: 487–497

    MathSciNet  MATH  Google Scholar 

  40. Planchon F. Global strong solutions in Sobolev or Lebesgue spaces to the incompressible Navier-Stokes equations in R3. Ann Inst H Poncaré Anal Non Linéaire, 1996, 13: 319–336

    MATH  Google Scholar 

  41. Serrin J. On the uniqueness of compressible fluid motion. Arch Ration Mech Anal, 1959, 3: 271–288

    MathSciNet  MATH  Google Scholar 

  42. Sideris T C. Formation of singularities in three-dimensional compressible fluids. Comm Math Phys, 1985, 101: 475–485

    MathSciNet  MATH  Google Scholar 

  43. Solonnikov V A. The solvability of the initial-boundary value problem for the equations of motion of a viscous com-pressible fluid. J Sov Math, 1980, 14: 1120–1133

    MATH  Google Scholar 

  44. Sun Y Z, Wang C, Zhang Z F. A Beale-Kato-Majda blow-up criterion for the 3-D compressible Navier-Stokes equations. J Math Pure Appl, 2011, 95: 36–47

    MathSciNet  MATH  Google Scholar 

  45. Wen H, Zhu C. Blow-up criterions of strong solutions to 3D compressible Navier-Stokes equations with vacuum. Adv Math, 2013, 248: 534–572

    MathSciNet  MATH  Google Scholar 

  46. Xin Z P. Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density. Comm Pure Appl Math, 1998, 51: 229–240

    MathSciNet  MATH  Google Scholar 

  47. Xin Z P, Yan W. On blowup of classical solutions to the compressible Navier-Stokes equations. Comm Math Phys, 2013, 321: 529–541

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author was supported by National Natural Science Foundation of China (Grant No. 11725102), National Support Program for Young Top-Notch Talents, and SGST 09DZ2272900 from Shanghai Key Laboratory for Contemporary Applied Mathematics. The second author was supported by Zheng Ge Ru Foundation, Hong Kong RGC Earmarked Research Grants (Grant Nos. CUHK-14305315, CUHK-14300917 and CUHK-14302917), NSFC/RGC Joint Research Scheme Grant (Grant No. N-CUHK 443-14), and a Focus Area Grant from the Chinese University of Hong Kong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhouping Xin.

Additional information

Dedicated to Professor Lo Yang on the Occasion of His 80th Birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, Z., Xin, Z. On scaling invariance and type-I singularities for the compressible Navier-Stokes equations. Sci. China Math. 62, 2271–2286 (2019). https://doi.org/10.1007/s11425-018-9363-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-018-9363-1

Keywords

MSC(2010)

Navigation