Skip to main content

Advertisement

Log in

Curcumin attenuates nephrotoxicity induced by zinc oxide nanoparticles in rats

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Curcumin (Cur) effects on renal injury induced by zinc oxide nanoparticles (NZnO) in rats were investigated. NZnO at a dose of 50 mg/kg for 14 days was administered to rats as intoxicated group. In protection group, Cur at a dose of 200 mg/kg was administered for 7 days prior to NZnO treatment and followed by concomitant administration of NZnO for 14 days. Plasma concentrations of uric acid, creatinine (Cr), and blood urea nitrogen (BUN) were detected to evaluate renal injury. Malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GPx) levels were determined for evaluation oxidative stress. TUNEL staining and histological changes were also performed. Administration of NZnO caused a significant elevation in the uric acid, Cr, and BUN levels. Oxidative stress was increased in the kidney by NZnO through enhancing MDA contents and reducing activities of SOD and GPx enzymes. According to histological examinations, treatment with NZnO caused proximal tubule damages, which was accompanied by the accumulation of red blood cells, infiltration of inflammatory cells, and reducing glomerular diameters. Significant increase was observed in the apoptotic index of the renal tubules in NZnO-treated rats. In present work, pretreatment of Cur reduced the histological changes, decreased biomarker levels, attenuated apoptotic index, and ameliorated oxidative stress by decreasing the MDA contents and increasing the activities of SOD and GPx enzymes. These findings indicate that Cur effectively protects against NZnO-induced nephrotoxicity in the rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ak T, Gülçin I (2008) Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact 174(1):27–37

    Article  CAS  Google Scholar 

  • Alidadi H, Khorsandi L, Shiran M (2018) Effects of quercetin on tubular cell apoptosis and kidney damage in rats induced by titanium dioxide nanoparticles. Malays J Med Sci 25(2):72–81

    Google Scholar 

  • Almansour MI, Alferah MA, Shraideh ZA, Jarrar BM (2017) Zinc oxide nanoparticles hepatotoxicity: histological and histochemical study. Environ Toxicol Pharmacol 51:124–130

    Article  CAS  Google Scholar 

  • Bisht S, Bhakta G, Mitra S, Maitra A (2005) pDNA loaded calcium phosphate nanoparticles: highly efficient non-viral vector for gene delivery. Int J Pharm 288(1):157–168

    Article  CAS  Google Scholar 

  • Borm PJA, Kreyling W (2004) Toxicological hazards of inhaled nanoparticles-potential implications for drug delivery. J Nanosci Nanotechnol 4(5):521–531

    Article  CAS  Google Scholar 

  • Buyuklu M, Kandemir FM, Ozkaraca M, Set T, Bakirci EM, Topal E (2014) Protective effect of curcumin against contrast induced nephropathy in rat kidney: what is happening to oxidative stress, inflammation, autophagy and apoptosis? Eur Rev Med Pharmacol Sci 18(4):461–470

    CAS  Google Scholar 

  • Chang MC, Chan CP, Wang YJ, Lee PH, Chen LI, Tsai YL, Lin BR, Wang YL, Jeng JH (2007) Induction of necrosis and apoptosis to KB cancer cells by sanguinarine is associated with reactive oxygen species production and mitochondrial membrane depolarization. Toxicol Appl Pharmacol 218:143–151

    Article  CAS  Google Scholar 

  • Chien CC, Yan YH, Juan HT, Cheng TJ, Liao JB, Lee HP, Wang JS (2017) Sustained renal inflammation following 2 weeks of inhalation of occupationally relevant levels of zinc oxide nanoparticles in Sprague Dawley rats. J Toxicol Pathol 30(4):307–314

    Article  Google Scholar 

  • Cho WS, Kang BC, Lee JK, Jeong J, Che JH (2013) Seok SH (2013) comparative absorption, distribution, and excretion of titanium dioxide and zinc oxide nanoparticles after repeated oral administration. Part Fibre Toxicol 10:9

    Article  CAS  Google Scholar 

  • De R, Kundu P, Swarnakar S, Ramamurthy T, Chowdhury A, Nair GB, Mukhopadhyay AK (2009) Antimicrobial activity of curcumin against helicobacter pylori isolates from India and during infections in mice. Antimicrob Agents Chemother 53(4):1592–1597

    Article  CAS  Google Scholar 

  • Edwards RL, Luis PB, Varuzza PV, Joseph AI, Presley SH, Chaturvedi R, Schneider C (2017) The anti-inflammatory activity of curcumin is mediated by its oxidative metabolites. J Biol Chem 292(52):21243–21252

    Article  CAS  Google Scholar 

  • El-Maddawy ZK, El-Sayed YS (2018) Comparative analysis of the protective effects of curcumin and N-acetyl cysteine against paracetamol-induced hepatic, renal, and testicular toxicity in Wistar rats. Environ Sci Pollut Res Int 25(4):3468–3479

    Article  CAS  Google Scholar 

  • El-Zawahry BH, Abu El Kheir EM (2007) The protective effect of curcumin against gentamicin-induced renal dysfunction and oxidative stress in male albino rats. Egypt J Hosp Med 29:546–556

    CAS  Google Scholar 

  • Farombi EO, Shrotriya S, Na HK, Kim SH, Surh YJ (2008) Curcumin attenuates dimethylnitrosamine-induced liver injury in rats through Nrf2-mediated induction of heme oxygenase-1. Food Chem Toxicol 46(4):1279–1287

    Article  CAS  Google Scholar 

  • Fialkow L, Wang Y, Downey GP (2007) Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function. Free Radic Biol Med 42(2):153–164

    Article  CAS  Google Scholar 

  • Guan R, Kang T, Lu F, Zhang Z, Shen H, Liu M (2012) Cytotoxicity, oxidative stress, and genotoxicity in human hepatocyte and embryonic kidney cells exposed to ZnO nanoparticles. Nanoscale Res Lett 7(1):1–7

    Article  Google Scholar 

  • Han Z, Yan Q, Ge W, Liu ZG, Gurunathan S, De Felici M, Shen W, Zhang XF (2016) Cytotoxic effects of ZnO nanoparticles on mouse testicular cells. Int J Nanomedicine 11:5187–5203

    Article  CAS  Google Scholar 

  • He L, Peng X, Zhu J, Liu G, Chen X, Tang C, Liu H, Liu F, Peng Y (2015) Protective effects of curcumin on acute gentamicin-induced nephrotoxicity in rats. Can J Physiol Pharmacol 93(4):275–282. https://doi.org/10.1139/cjpp-2014-0459

    Article  CAS  Google Scholar 

  • John S, Marpu S, Li J, Omary M, Hu Z, Fujita Y, Neogi A (2010) Hybrid zinc oxide nanoparticles for biophotonics. J Nanosci Nanotechnol 10(3):1707–1712

    Article  CAS  Google Scholar 

  • Jones EA, Shahed A, Shoskes DA (2000) Modulation of apoptotic and inflammatory genes by bioflavonoids and angiotensin II inhibition in ureteral obstruction. Urology 56(2):346–351

    Article  CAS  Google Scholar 

  • Khan S, Vala JA, Nabi SU, Gupta G, Kumar D, Telang AG, Malik JK (2012) Protective effect of curcumin against arsenic-induced apoptosis in murine splenocytes in vitro. J Immunotoxicol 9(2):148–159

    Article  CAS  Google Scholar 

  • Kim KS, Lim HJ, Lim JS, Son JY, Lee J, Lee BM, Chang SC, Kim HS (2018) Curcumin ameliorates cadmium-induced nephrotoxicity in Sprague-Dawley rats. Food Chem Toxicol 114:34–40

    Article  CAS  Google Scholar 

  • Khazaei Koohpar Z, Entezari M, Movafagh A, Hashemi M (2015) Anticancer activity of curcumin on human breast adenocarcinoma: role of mcl-1gene. Iran J Cancer Prev 8(3):e2331

    Article  Google Scholar 

  • Khorsandi LS, Hashemitabar M, Orazizadeh M, Albughobeish N (2008) Dexamethasone effects on fas ligand expression in mouse testicular germ cells. Pak J Biol Sci 11(18):2231–2236

    Article  CAS  Google Scholar 

  • Kuhad A, Pilkhwal S, Sharma S, Tirkey N, Chopra K (2007) Effect of curcumin on inflammation and oxidative stress in cisplatin-induced experimental nephrotoxicity. J Agric Food Chem 55(25):10150–10155

    Article  CAS  Google Scholar 

  • Lin YF, Chiu IJ, Cheng FY, Lee YH, Wang YJ, Hsu YH (2016) Chiu HW (2016) the role of hypoxia-inducible factor-1α in zinc oxide nanoparticle-induced nephrotoxicity in vitro and in vivo. Part Fibre Toxicol 13:52. https://doi.org/10.1186/s12989-016-0163-3

    Article  CAS  Google Scholar 

  • Liu FH, Ni WJ, Wang GK, Zhang JJ (2016) Protective role of curcumin on renal ischemia reperfusion injury via attenuating the inflammatory mediators and Caspase-3. Cell Mol Biol (Noisy-le-grand) 62(11):95–99

    Google Scholar 

  • Mahgoub E, Kumaraswamy SM, Kader KH, Venkataraman B, Ojha S, Adeghate E, Rajesh M (2017) Genipin attenuates cisplatin-induced nephrotoxicity by counteracting oxidative stress, inflammation, and apoptosis. Biomed Pharmacother 93:1083–1097

    Article  CAS  Google Scholar 

  • Marisa I, Matozzo V, Munari M, Binelli A, Parolini M, Martucci A, Franceschinis E, Brianese N, Marin MG (2016) In vivo exposure of the marine clam Ruditapes philippinarum to zinc oxide nanoparticles: responses in gills, digestive gland and haemolymph. Environ Sci Pollut Res Int 23(15):15275–15293

    Article  CAS  Google Scholar 

  • Moridian M, Khorsandi L, Talebi AR (2015) Morphometric and stereological assessment of the effects of zinc oxide nanoparticles on the mouse testicular tissue. Bratisl Lek Listy 116(5):321–325

    CAS  Google Scholar 

  • Morsy MA, Ibrahim SA, Amin EF, Kame MY, Rifaai RA, Hassan MK (2013) Curcumin ameliorates methotrexate-induced nephrotoxicity in rats. Adv Pharmacol Sci 2013:1–7. https://doi.org/10.1155/2013/387071

    Article  CAS  Google Scholar 

  • Mozaffari Z, Parivar K, Hayati Roodbari N, Irani S (2015) Histopathological evaluation of the toxic effects of zinc oxide (ZnO) nanoparticles on testicular tissue of NMRI adult mice. Adv Stud Biol 7(6):275–291

    Article  Google Scholar 

  • Nohynek GJ, Jr L, Ribaud C, Roberts MS (2007) Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. CRC Crit Rev Toxicol 37(3):251–277

    Article  CAS  Google Scholar 

  • Noori A, Karimi F, Fatahian S, Yazdani F (2014) Effects of zinc oxide nanoparticles on renal function in mice. Int J Biosci 5(9):140–146

    Article  Google Scholar 

  • Pari L, Murugan P (2007) Antihyperlipidemic effect of curcumin and tetrahydrocurcumin in experimental type 2 diabetic rats. Ren Fail 29(7):881–889

    Article  CAS  Google Scholar 

  • Park S, Lee YK, Jung M, Kim KH, Chung N, Ahn E-K, Lim Y, Lee KH (2007) Cellular toxicity of various inhalable metal nanoparticles on human alveolar epithelial cells. Inhal Toxicol 19(S1):59–65

    Article  CAS  Google Scholar 

  • Sha J, Sui B, Su X, Meng O, Zhang C (2016) Alteration of oxidative stress and inflammatory cytokines induces apoptosis in diabetic nephropathy. 16(5):7715–7723

  • Sharma V, Singh P, Pandey AK, Dhawan A (2012) Induction of oxidative stress, DNA damage and apoptosis in mouse liver after sub-acute oral exposure to zinc oxide nanoparticles. Mutat Res 45(1–2):84–91

    Article  Google Scholar 

  • Tankhiwale R, Bajpai SK (2012) Preparation, characterization and antibacterial applications of ZnO-nanoparticles coated polyethylene films for food packaging. Colloids Surf B Biointerfaces 90:16–20

    Article  CAS  Google Scholar 

  • Topcu-Tarladacalisir Y, Sapmaz-Metin M, Karaca T (2016) Curcumin counteracts cisplatin-induced nephrotoxicity by preventing renal tubular cell apoptosis. Ren Fail 38(10):1741–1748

    Article  CAS  Google Scholar 

  • Ueki M, Ueno M, Morishita J, Maekawa N (2013) Curcumin ameliorates cisplatin-induced nephrotoxicity by inhibiting renal inflammation in mice. J Biosci Bioeng 115(5):547–551. https://doi.org/10.1016/j.jbiosc.2012.11.007

    Article  CAS  Google Scholar 

  • Venkatesan N, Punithavathi D, Arumugam V (2000) Curcumin prevents adriamycin nephrotoxicity in rats. Br J Pharmacol 129(2):231–234

    Article  CAS  Google Scholar 

  • Wang C, Lu J, Zhou L, Li J, Xu J, Li W, Zhang L, Zhong X, Wang T (2016) Effects of long-term exposure to zinc oxide nanoparticles on development, zinc metabolism and biodistribution of minerals (Zn, Fe, cu, Mn) in mice. PLoS One 11(10):e0164434. https://doi.org/10.1371/journal.pone.0164434

    Article  CAS  Google Scholar 

  • Wiking L, Larsen T, Sehested J (2008) Transfer of dietary zinc and fat to milk-evaluation of milk fat quality, milk fat precursors, and mastitis indicators. J Dairy Sci 91(4):1544–1551

    Article  CAS  Google Scholar 

  • Wu J, Pan X, Fu H, Zheng Y, Dai Y, Yin Y, Chen Q, Hao Q, Bao D, Hou D (2017) Effect of curcumin on glycerol-induced acute kidney injury in rats. Sci Rep 7(1):10114. https://doi.org/10.1038/s41598-017-10693-4.

    Article  Google Scholar 

  • Xiao L, Liu C, Chen X, Yang Z (2016) Zinc oxide nanoparticles induce renal toxicity through reactive oxygen species. Food Chem Toxicol 90:76–83

    Article  CAS  Google Scholar 

  • Yan G, Huang Y, Bu Q, Lv L, Deng P, Zhou J, Wang Y, Yang Y, Liu Q, Cen X, Zhao Y (2012) Zinc oxide nanoparticles cause nephrotoxicity and kidney metabolism alterations in rats. J Environ Sci Health A 47(4):577–588

    Article  CAS  Google Scholar 

  • Yousef MI, Omar SAM, El-Guendi MI, Abdelmegid LA (2010) Potential protective effects of quercetin and curcumin on paracetamol-induced histological changes, oxidative stress, impaired liver and kidney functions and haematotoxicity in rat. Food Chem Toxicol 48(11):3246–3261

    Article  CAS  Google Scholar 

  • Zhu HC, Cao RL (2012) The relationship between serum levels of uric acid and prognosis of infection in critically ill patients. World J Emerg Med 3(3):186–190

    Article  CAS  Google Scholar 

Download references

Funding

This paper was supported by a grant (94s105) from the student research committee council of the Ahvaz Jundishapur University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Layasadat Khorsandi.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidai-Moghadam, A., Khorsandi, L. & Jozi, Z. Curcumin attenuates nephrotoxicity induced by zinc oxide nanoparticles in rats. Environ Sci Pollut Res 26, 179–187 (2019). https://doi.org/10.1007/s11356-018-3514-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3514-9

Keywords

Navigation