Skip to main content

Advertisement

Log in

Factors influencing mercury uptake by leaves of stone pine (Pinus pinea L.) in Almadén (Central Spain)

  • Contaminated sites, waste management and green chemistry: New challenges from monitoring to remediation
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The use of trees for biomonitoring of mercury (Hg) and other atmospheric pollutants is of increasing importance today. Leaves from different species have been the most widely used plant organ for this purpose, but only pine bark, and not leaves, was used to monitor Hg pollution. In Almadén (South Central Spain), the largest cinnabar (HgS) deposits in the world have been mined for over 2000 years to obtain metallic Hg and this activity has caused the widespread dispersion of this toxic element in the local environment. A strip of pine trees, 2750 m in length, adjacent and to the South of the mining town has been studied in order to evaluate pine tree needles as monitors for Hg contamination in this heavily polluted area. The study involved the collection of pine tree leaves from several discrete sites along the strip, as well as samples from other nearby locations, together with soil samples and monitoring of atmospheric Hg in the area during both the day and night. Leaves and soils were analyzed for total Hg concentration by means of atomic absorption spectrometry; the leachable fraction of soil Hg was also analyzed by the CV-AFS technique. The results indicate that soils from the investigated area were not directly affected by mining related pollution, with low total Hg levels (3–280 mg kg−1) found in comparison with the nearby Almadén metallurgical precinct and very low leachable Hg contents (0.27–59.65 mg kg−1) were found. Moreover, pine tree needles have a low uptake capacity, with lower THg levels (0.03–6.68 mg kg−1) when compared to those of olive trees in Almadén. However, pine needles do show significant variability with regard to the distance from the source. Gaseous Hg exhibits a similar pattern, with higher levels close to the source, especially during night time (225 ng m−3). A multiple linear regression analysis (MLRA) revealed that gaseous Hg in the nocturnal period is the prime factor that influences the amount of Hg uptake by pine tree needles. This finding makes pine needles a promising candidate to biomonitor gaseous Hg on a local or regional scale worldwide. Almadén pine tree needles have been exposed to a number of different Hg sources, including the primary one, namely the old mine dump, and secondary sources such as polluted roads or illegal urban residual waste. The secondary sources cause some minor discrepancies in the model established by the MRLA. The biomonitoring capacity of pine needles needs to be evaluated in areas far from the source. The process involved in gaseous Hg uptake by pine needles appears more likely to involve sorption in the external part of the needle than uptake through stomas, thus making this process strongly dependent on high atmospheric Hg concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • AEMET-IM (2011) Iberian Climate Atlas. AEMET & IM. Madrid. Available at: http://www.aemet.es/documentos/es/divulgacion/publicaciones/Atlas-climatologico/Atlas.pdf. Access 23 Jan 2017)

  • Blackwell BD, Driscoll CT, Maxwell JA, Holsen TM (2014) Changing climate alters inputs and pathways of mercury deposition to forested ecosystems. Biogeochemistry 119(1):215–228

    Article  CAS  Google Scholar 

  • Blackwell BD, Driscoll CT (2015) Using foliar and forest floor mercury concentrations to assess spatial patterns of mercury deposition. Environ Pollut 202:126–134

    Article  CAS  Google Scholar 

  • Berzas-Nevado JJ, García-Bermejo LF, Rodríguez Martín-Doimeadios RC (2003) Distribution of mercury in the aquatic environment at Almadén, Spain. Environ Pollut 122(2):261–271

    Article  CAS  Google Scholar 

  • Bueno PC, Bellido E, Rubí JAM, Jiménez-Ballesta R (2009) Concentration and spatial variability of mercury and other heavy metals in surface soil samples of periurban waste mine tailing along a transect in the Almadén mining district (Spain). Environ Geol 56(5):815–824

    Article  CAS  Google Scholar 

  • Chiarantini L, Rimondi V, Benvenuti M, Beutel MW, Costagliola P, Gonnelli C, Lattanzi P, Paolieri M (2016) Black pine (Pinus nigra) barks as biomonitors of airborne mercury pollution. Sci Total Environ 569-570:105–113

    Article  CAS  Google Scholar 

  • Esbrí JM, Bernaus A, Ávila M, Kocman D, García-Noguero EM, Guerrero B, Gaona X, Álvarez R, Perez-Gonzalez G, Valiente M, Higueras P, Horvat M, Loredo J (2010) XANES speciation of mercury in three mining districts—Almadén, Asturias (Spain), Idria (Slovenia). J Synchrotron Radiat 17(2):179–186

    Article  CAS  Google Scholar 

  • Esbrí JM, López-Berdonces MA, Fernández-Calderón S, Higueras P, Díez S (2015) Atmospheric mercury pollution around a chlor-alkali plant in Flix (NE Spain): an integrated analysis. Environ Sci Pollut Res 22(7):4842–4850

    Article  CAS  Google Scholar 

  • Esbrí JM, Martínez-Coronado A, Higueras P (2016) Temporal variations in gaseous elemental mercury at a contaminated site: main factors affecting nocturnal maxima in daily cycles. Atmos Environ 125:8–14

    Article  CAS  Google Scholar 

  • Fu X, Zhu W, Zhang H, Sommar J, Yu B, Yang X, Wang X, Lin CJ, Feng X (2016) Depletion of atmospheric gaseous elemental mercury by plant uptake at Mt. Changbai, Northeast China. Atmos Chem Phys 16(20):12861–12873

    Article  CAS  Google Scholar 

  • García-Sansegundo J, Lorenzo-Alvarez S, Ortega E (1987) Mapa Geologico Nacional a escala 1:50 000, sheet 808 (Almadén), Instituto Geológico y Minero de España, Madrid, 64 pp

  • Gray JE, Hines ME, Higueras PL, Adatto I, Lasorsa BK (2004) Mercury speciation and microbial transformations in mine wastes, stream sediments, and surface waters at the Almadén Mining District, Spain. Environ Sci Technol 38(16):4285–4292

    Article  CAS  Google Scholar 

  • Higueras P, Amorós JA, Esbrí JM, García-Navarro FJ, de los Reyes CP, Moreno G (2012) Time and space variations in mercury and other trace element contents in olive tree leaves from the Almadén Hg-mining district. J Geochem Explor 123:143–151

    Article  CAS  Google Scholar 

  • Higueras P, Esbrí JM, Oyarzun R, Llanos W, Martínez-Coronado A, Lillo J, López-Berdonces MA, García-Noguero EM (2013) Industrial and natural sources of gaseous elemental mercury in the Almadén District (Spain): an updated report on this issue after the cease of mining and metallurgical activities in 2003 and major land reclamation works. Environ Res 125:197–208

    Article  CAS  Google Scholar 

  • Higueras P, Oyarzun R, Kotnik J, Esbrí JM, Martínez-Coronado A, Horvat M, López-Berdonces MA, Llanos W, Vaselli O, Nisi B, Mashyanov N, Ryzov V, Spiric Z, Panichev N, McCrindle R, Feng XB, Fu XW, Lillo J, Loredo J, García ME, Alfonso P, Villegas K, Palacios S, Oyarzún J, Maturana H, Contreras F, Adams M, Ribeiro-Guevara S, Niecenski LF, Giammanco S, Huremović J (2014) A compilation of field surveys on gaseous elemental mercury (GEM) from contrasting environmental settings in Europe, South America, South Africa, and China: separating fads from facts. Environ Geochem Health 36:713–734

    Article  CAS  Google Scholar 

  • Higueras PL, Amorós JÁ, Esbrí JM, Pérez-de-los-Reyes C, López-Berdonces MA, García-Navarro FJ (2016) Mercury transfer from soil to olive trees. A comparison of three different contaminated sites. Environ Sci Pollut Res 23(7):6055–6061

    Article  CAS  Google Scholar 

  • INE (2016) Estadística del Padrón Continuo a 1 de Enero de 2015. Available in http://www.ine.es/jaxi/Datos.htm?path=/t20/e245/p05/a2015/l0/&file=00013006.px. Accessed 23 Nov 2016)

  • Llanos W, Kocman D, Higueras P, Horvat M (2011) Mercury emissions and dispersion models from soils contaminated by cinnabar mining and metallurgy. J Environ Monit 13:3460–3468

    Article  CAS  Google Scholar 

  • Lindberg SE, Jackson DR, Huckabee JW, Janzen SA, Levin MJ, Lund JR (1979) Atmospheric emission and plant uptake of mercury from agricultural soils near the Almaden mercury mine. J Environ Qual 8:572–578

    Article  CAS  Google Scholar 

  • Matin G, Kargar N, Buyukisik HB (2016) Bio-monitoring of cadmium, lead, arsenic and mercury in industrial districts of Izmir, Turkey by using honey bees, propolis and pine tree leaves. Ecol Eng 90:331–335

    Article  Google Scholar 

  • Millán R, Gamarra R, Schmid T, Sierra MJ, Quejido AJ, Sánchez DM, Cardona AI, Fernández M, Vera R (2006) Mercury content in vegetation and soils of the Almadén mining area (Spain). Sci Total Environ 368:79–87

    Article  CAS  Google Scholar 

  • Molina JA, Oyarzun R, Esbrí JM, Higueras P (2006) Mercury accumulation in soils and plants in the Almadén mining district, Spain: one of the most contaminated sites on earth. Environ Geochem Health 28(5):487–498

    Article  CAS  Google Scholar 

  • Palero FJ, Martin-Izard A, Prieto MZ, Mansilla-Plaza L (2015) Geological context and plumbotectonic evolution of the giant Almadén mercury deposit. Ore Geol Rev 64(1):71–88

    Article  Google Scholar 

  • Rodríguez JH, Wannaz ED, Salazar MJ, Pignata ML, Fangmeier A, Franzaring J (2012) Accumulation of polycyclic aromatic hydrocarbons and heavy metals in the tree foliage of Eucalyptus rostrata, Pinus radiata and Populus hybridus in the vicinity of a large aluminium smelter in Argentina. Atmos Environ 55:35–42

    Article  CAS  Google Scholar 

  • Saupé F (1990) Geology of the Almaden mercury deposit, province of Ciudad Real, Spain. Econ Geol 85:482–510

    Article  Google Scholar 

  • Serbula SM, Kalinovic TS, Ilic AA, Kalinovic JV, Steharnik MM (2013) Assessment of airborne heavy metal pollution using Pinus spp. and Tilia spp. Aerosol Air Qual Res 13:563–573

    Article  CAS  Google Scholar 

  • Stamenkovic J, Gustin MS, Arnone JA, Johnson DW, Larsen JD, Verburg PSJ (2008) Atmospheric mercury exchange with a tallgrass prairie ecosystem housed in mesocosms. Sci Total Environ 406(1–2):227–238

    Article  CAS  Google Scholar 

  • Stamenkovic J, Gustin MS (2009) Nonstomatal versus stomatal uptake of atmospheric mercury. Environ Sci Technol 43(5):1367–1372

    Article  CAS  Google Scholar 

  • Tejero J, Higueras P, Esbrí JM, Garrido I, Oyarzun R, Español S (2015) An estimation of mercury concentrations in the local atmosphere of Almadén (Ciudad Real Province, South-Central Spain) during the 20th century. Environ Sci Pollut Res 22:4833–4841

    Article  CAS  Google Scholar 

  • USEPA (1994) Method 1312, synthetic precipitation leaching procedure. Available on http://www.caslab.com/EPA-Methods/PDF/EPA-Method-1312.pdf. Accessed 29 Nov 2016)

Download references

Acknowledgments

We thank Dr. Neil Thompson for revising the English style of the manuscript.

Funding

This work was funded by the Spanish Ministry of Economy and Competitiveness (Project CGL2015-67644-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Higueras.

Additional information

Responsible editor: Elena Maestri

Electronic supplementary material

Table S1

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barquero, J.I., Rojas, S., Esbrí, J.M. et al. Factors influencing mercury uptake by leaves of stone pine (Pinus pinea L.) in Almadén (Central Spain). Environ Sci Pollut Res 26, 3129–3137 (2019). https://doi.org/10.1007/s11356-017-0446-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0446-8

Keywords

Navigation