Skip to main content
Log in

Degradative fate of 3-chlorocarbazole and 3,6-dichlorocarbazole in soil

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Background, aim, and scope

3-Chlorocarbazole and 3,6-dichlorocarbazole were isolated from Bavarian soils. The stereospecific formation of the isomers of these chlorinated carbazols can be explained by quantum mechanical calculations using the DFT method. It was shown that chlorination of carbazole and 3-chlorocarbazole respectively is preferred via the sigma-complexes 3-chlorocarbazole and 3,6-dichlorocarbazole as the most stable products. The dioxin-like toxicological potential of 3,6-dichlorocarbazole, determined by the Micro-EROD Test, is in the range of some picogram TCDD equivalents per milligram carbazole. The degradative fate of 3-chlorocarbazole and 3,6-dichlorocarbazole was analysed within a long-term study (57 days) in soil.

Materials and methods

The soil was extracted by ASE (accelerated solvent extraction) and a further clean-up procedure with column chromatography and chromatography with C18-SPE stationary phases. Quantification of 3-chlorocarbazole and 3,6-dichlorocarbazole was performed employing the isotope-dilution method. The samples were measured with high-resolution GC/MS.

Results

The degradation (ln(c/c0) vs. time with best-fit line) showed in almost every storage condition a very small degradation (slopes (h−1) in −10−4 range). However, the decay for the controls were two to three times (−28°C) and six times (with sodium azide) higher, than the decrease of 3-chlorocarbazole and 3,6-dichlorocarbazole in the samples of environmental conditions.

Discussion

Especially because of the toxicological potential of 3-chlorocarbazole and 3,6-dichlorocarbazole the proven degradative fate is of large interest. The results show that the analysed carbazoles are not readily degradable in this time period.

Conclusions

The expected results of exponential decay behaviour could not be proven.

Recommendation and perspectives

Longer-lasting studies are expected to reveal more accurate half-lives, although it has been shown here, that the compounds are not readily degradable in their native soil environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

A horizon:

Soil horizon; top soil

ASE:

Accelerated solvent extraction

Au:

Energy in atomic units; 1au = 627.51 kcal/mol

B horizon:

Soil horizon, first horizon after top soil

CHC:

Chlorinated hydrocarbons

CIS:

Cold injection system

DFT:

(Standard) density functional theory

E:

Enthalpy [au]

E rel :

Relative energy [kcal/mol]

EI:

Electron ionisation

EROD:

7-Ethoxyresorufin-O-deethylase

FW:

Fresh weight

GC/MS:

Gas chromatography and mass spectrometry

Go-Ah:

24–39 cm Transfer horizon: mineral top soil horizon with accumulation of organic substances and groundwater-swayed mineral soil horizon, oxidative circumstances

OCP:

Organochlorinated pesticides

PAH:

Polycyclic aromatic hydrocarbons

PCDD/F:

Polychlorinated dibenzo-p-dioxin and dibenzofuran

PCT:

Pentachlorotoluene

PSE:

Potential energy surface

PTFE:

Polytetrafluoroethylene

SIM:

Selective ion monitoring

SPE:

Solid phase extraction

STD:

Standard deviation

TCDD:

2,3,7,8-Tetrachlorodibenzodioxine

TE:

Toxicity equivalent

References

  • Ben-Daniel R, De Visser SP, Shaig S, Neumann R (2003) J Am Chem Soc 125:12116–12117

    Article  CAS  Google Scholar 

  • Bonesi SM, Erra-Balsells R (1997) J Heterocycl Chem 34:877–889

    Article  CAS  Google Scholar 

  • Bonesi SM, Ponce MA, Erra-Balsells R (2005) J Heterocycl Chem 42:867–875

    Article  CAS  Google Scholar 

  • Bowyer PM, Iles DH, Ledwith A (1971) J Chem So C Org 2775

  • Chen HJ, Hakka LE, Hinman RL, Kresge AJ, Whipple EB (1971) J Am Chem Soc 93:5102–5107

    Google Scholar 

  • Donato MT, Gomez-Lechon MJ, Castell JV (1993) Anal Biochem 213:29–33

    Article  CAS  Google Scholar 

  • Foresman JB, Frisch A (1996) Exploring chemistry with electronic structure methods second edition. Gaussian Inc, Pittsburgh

    Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajiama T, Hona Y, Kitao K, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pompelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman J, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzales C, Pople JA (2004) Gaussian 03 (Revision C.02). Gaussian, Inc, Wallingford

    Google Scholar 

  • Gribble GW (1998) Acc Chem Res 31:141–152

    Article  CAS  Google Scholar 

  • Gribble GW (2003) Chemosphere 52:289–297

    Article  CAS  Google Scholar 

  • Gribble W (2004) ‘Natural organohalogens’ science dossier euro chlor. Dartmouth College, Hanover, New Hampshire

    Google Scholar 

  • Kronimus A, Schwarzbauer J, Dsikowitzky L, Heim S, Littke R (2004) Water Res 38:3473–3484

    Article  CAS  Google Scholar 

  • Moskalev NV, Sirotkina EE, Ogorodnikov VD (1985) Chem Heterocycl Compd 21(5):542–543

    Article  Google Scholar 

  • Ohashi M, Tsujimoto K, Yonezawa T (1970a) J Chem Soc. D Chem Commun 1089-1099

  • Ohashi M, Tsujimoto K, Yoshino A, Yonezawa T (1970b) Org Mass Spectrom 4:203–210

    Article  CAS  Google Scholar 

  • Plant SGP, Powell J F (1947) J Chem Soc 937–939

  • Reischl A, Joneck M, Dumler-Gradl R (2005) UWSF-Z- Umweltchem Ökotox 17:197–200

    Article  CAS  Google Scholar 

  • Schwirzer SMG, Hofmaier AM, Kettrup A, Nerdinger PE, Schramm K-W, Thoma H, Wegenke M, Wiebel FJ (1998) Ecotoxicol Environ Saf 41:77–82

    Article  CAS  Google Scholar 

  • Shekhirev YP, Lopatinskii VP, Sutyagin VM, Tuzovskaya SA (1983) Chem Heterocycl Compd 19(11):1192–1197

    Article  Google Scholar 

  • Smith MB, March J (2006) Advanced organic chemistry, reactions, mechanisms, and structure, 6th edn. Wiley, New York

    Book  Google Scholar 

  • Takasuga T, Takemori H, Yamamoto T, Higashino K, Sasaki Y, Weber R (2009) Organohalogen Compd 71:2239

    Google Scholar 

  • Taylor R (1990) Electrophilic aromatic substitution. Wiley, New York

    Google Scholar 

  • Tröbs L (2009) ‘The degradative fate of 3,6-dichlorocarbazole in soils’, Bachelor Thesis, Institut für Ökologische Chemie des Helmholtz Zentrum München, Lehrstuhl für Analytische Chemie der Technischen Universität München – Department Chemie – Institut für Wasserchemie und Chemische Balneologie

  • Tsujimoto K, Ohashi M, Yonezawa T (1972) Bull Chem Soc Jpn 45:515–519

    Article  CAS  Google Scholar 

  • Wang J, Bi Y, Pfister G, Henkelmann B, Zhu K, Schramm K-W (2009) Chemosphere 75:1119–1127

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Werner Schramm.

Additional information

Responsible editor: Ake Bergman

This publication is dedicated to Prof. Sandermann on the occasion of his death on August 18th, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tröbs, L., Henkelmann, B., Lenoir, D. et al. Degradative fate of 3-chlorocarbazole and 3,6-dichlorocarbazole in soil. Environ Sci Pollut Res 18, 547–555 (2011). https://doi.org/10.1007/s11356-010-0393-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-010-0393-0

Keywords

Navigation