Skip to main content
Log in

Epistasis causes outbreeding depression in eucalypt hybrids

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

The genetic architecture underlying species differentiation is essential for understanding the mechanisms of speciation and post-zygotic reproductive barriers which exist between species. We undertook line-cross analysis of multiple hybrid (F1, F2 and backcrosses) and pure-species populations of two diploid eucalypt species from different subseries, Eucalyptus globulus and Eucalyptus nitens, to unravel the genetic architecture of their differentiation. The populations were replicated on two sites and monitored for growth and survival over a 14-year period. The hybrids exhibited severe outbreeding depression which increased with age. Of the composite additive, dominance and epistatic effects estimated, the additive × additive epistatic component was the most important in determining population divergence in both growth and survival. Significant dominance × dominance epistasis was also detected for survival at several ages. While favourable dominance and, in the case of survival, dominance × dominance epistasis could produce novel gene combinations which enhance hybrid fitness, at the population level, these effects were clearly overridden by adverse additive × additive epistasis which appears to be a major driver of overall outbreeding depression in the hybrid populations. The lack of model fit at older ages suggested that even high-order epistatic interactions may potentially have a significant contribution to outbreeding depression in survival. The estimated composite genetic parameters were generally stable across sites. Our results argue that the development of favourable epistasis is a key mechanism underlying the genetic divergence of eucalypt species, and epistasis is an important mechanism underlying the evolution of post-zygotic reproductive barriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Armbruster P, Bradshaw WE, Holzapfel CM (1997) Evolution of the genetic architecture underlying fitness in the pitcher-plant mosquito, Wyeomyia smithii. Evolution 51:451–458

    Article  Google Scholar 

  • Bartlett MS (1947) The use of transformations. Biometrics 3:39–52

    Article  PubMed  CAS  Google Scholar 

  • Bradshaw WE, Holzapfel CM (2000) The evolution of genetic architectures and the divergence of natural populations. In: Wolf JB, Brodie ED, Wade MJ (eds) Epistasis and the evolutionary process. Oxford University Press, New York, pp 245–263

    Google Scholar 

  • Brooker MIH (2000) A new classification of the genus Eucalyptus L Her. (Myrtaceae). Aust Syst Bot 13:79–148

    Article  Google Scholar 

  • Brooker MIH, Kleinig DA (1999) Field guide to eucalypts. Volume 1. South-eastern Australia. Bloomings Books, Hawthorn

    Google Scholar 

  • Burke JM, Arnold ML (2001) Genetics and the fitness of hybrids. Annu Rev Genet 35:31–52

    Article  PubMed  CAS  Google Scholar 

  • Carson HL (1975) The genetics of speciation at the diploid level. Am Nat 109:83–92

    Article  Google Scholar 

  • Costa e Silva J, Hardner C, Tilyard P, Potts BM (2011) The effects of age and environment on the expression of inbreeding depression in Eucalyptus globulus. Heredity 107:50–60

    Article  PubMed  Google Scholar 

  • Coyne JA, Orr AH (2004) Speciation. Sinauer Associates, Sunderland

    Google Scholar 

  • Demuth JP, Wade MJ (2006) Experimental methods for measuring gene interactions. Annu Rev Ecol Evol Syst 37:289–316

    Article  Google Scholar 

  • Demuth JP, Wade MJ (2007) Population differentiation in the beetle Tribolium castaneum. I. Genetic architecture. Evolution 61:494–509

    Article  PubMed  Google Scholar 

  • Dettman JR, Sirjusingh C, Kohn LM, Anderson JB (2007) Incipient speciation by divergent adaptation and antagonistic epistasis in yeast. Nature 447:585–588

    Article  PubMed  CAS  Google Scholar 

  • Dobzhansky T (1936) Studies on hybrid sterility. II. Localization of sterility factors in Drosophila pseudoobscura hybrids. Genetics 21:113–135

    PubMed  CAS  Google Scholar 

  • Edmands S (1999) Heterosis and outbreeding depression in interpopulation crosses spanning a wide range of divergence. Evolution 53:1757–1768

    Article  Google Scholar 

  • Edmands S (2007) Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management. Mol Ecol 16:463–475

    Article  PubMed  Google Scholar 

  • Erickson DL, Fenster CB (2006) Intraspecific hybridization and the recovery of fitness in the native legume Chamaecrista fasciculata. Evolution 60:225–233

    PubMed  Google Scholar 

  • Fenster CB, Galloway LF (2000) Population differentiation in an annual legume: genetic architecture. Evolution 54:1157–1172

    PubMed  CAS  Google Scholar 

  • Fenster CB, Galloway LG, Chao L (1997) Epistasis and its consequences for the evolution of natural populations. Trends Ecol Evol 12:282–286

    Article  PubMed  CAS  Google Scholar 

  • Fishman L, Willis JH (2001) Evidence for Dobzhansky–Muller incompatibilites contributing to the sterility of hybrids between Mimulus guttatus and M. nasutus. Evolution 55:1932–1942

    PubMed  CAS  Google Scholar 

  • Fitzpatrick BM (2008a) Hybrid dysfunction: population genetics and quantitative genetic perspectives. Am Nat 171:491–498

    Article  PubMed  Google Scholar 

  • Fitzpatrick BM (2008b) Dobzhansky–Muller model of hybrid dysfunction supported by poor burst-speed performance in hybrid tiger salamanders. J Evol Biol 21:342–351

    Article  PubMed  CAS  Google Scholar 

  • Freeman JS, Whittock SP, Potts BM, Vaillancourt RE (2009) QTL influencing growth and wood properties in Eucalyptus globulus. Tree Genet Genomes 5:713–722

    Article  Google Scholar 

  • Fritz RS, Hochwender CG, Albrectsen BR, Czesak ME (2006) Fitness and genetic architecture of parent and hybrid willows in common gardens. Evolution 60:1215–1227

    PubMed  Google Scholar 

  • Gilmour AR, Thompson R, Cullis BR (1995) Average information REML. An efficient algorithm for variance parameter estimation in linear mixed models. Biometrics 51:1440–1450

    Article  Google Scholar 

  • Gilmour AR, Gogel BJ, Cullis BR, Thompson R (2006) ASReml user guide release 2.0. VSN International, Hemel Hempstead

    Google Scholar 

  • Goodnight CJ (2000) Quantitative trait loci and gene interaction: the quantitative genetics of metapopulations. Heredity 84:587–598

    Article  PubMed  Google Scholar 

  • Gore PL, Potts BM, Volker PW, Megalos J (1990) Unilateral cross-incompatibility in Eucalyptus: the case of hybridisation between E. globulus and E. nitens. Aust J Bot 38:383–394

    Article  Google Scholar 

  • Griffin AR, Burgess IP, Wolf L (1988) Patterns of natural and manipulated hybridization in the genus Eucalyptus L’Herit.: a review. Aust J Bot 36:41–66

    Article  Google Scholar 

  • Hansen TF (2006) The evolution of genetic architecture. Annu Rev Ecol Evol Syst 37:123–157

    Article  Google Scholar 

  • Hansen TF, Álvarez-Castro JM, Carter AJR, Hermisson J, Wagner GP (2006) Evolution of genetic architecture under directional selection. Evolution 60:1523–1536

    PubMed  Google Scholar 

  • Henderson CR (1984) Applications of linear models in animal breeding. University of Guelph, Guelph

    Google Scholar 

  • Hill WG (1982) Dominance and epistasis as components of heterosis. Zeitschrift für Tierzüchtung und Züchtungsbiologie 99:161–168

    Google Scholar 

  • Hudson CJ, Kullan ARK, Freeman JS, Faria DA, Grattapaglia D, Kilian A, Myburg AA, Potts BM, Vaillancourt RE (2011) High synteny and colinearity among Eucalyptus genomes revealed by high-density comparative genetic mapping. Tree Genet Genom (in press)

  • Kenward MG, Roger JH (1997) The precision of fixed effects estimates from restricted maximum likelihood. Biometrics 53:983–997

    Article  PubMed  CAS  Google Scholar 

  • Koch RM, Dickerson GE, Cundiff LV, Gregory KE (1985) Heterosis retained in advanced generations of crosses among Angus and Hereford cattle. J Anim Sci 60:1117–1132

    PubMed  CAS  Google Scholar 

  • Komender P, Hoeschele I (1989) Use of mixed-model methodology to improve estimation of crossbreeding parameters. Livest Prod Sci 21:101–113

    Article  Google Scholar 

  • Lair KP, Bradshaw WE, Holzapfel CM (1997) Evolutionary divergence of the genetic architecture underlying photoperiodism in the pitcher-plant mosquito, Wyeomyia smithii. Genetics 147:1873–1883

    PubMed  CAS  Google Scholar 

  • Lawrence R, Potts BM, Whitham TG (2003) Relative importance of plant ontogeny, host genetic variation, and leaf age for a common herbivore. Ecology 84:1171–1178

    Article  Google Scholar 

  • Li L, Lu K, Chen Z, Mu T, Hu Z, Li X (2008) Dominance, overdominance and epistasis condition the heterosis in two heterotic rice hybrids. Genetics 180:1725–1742

    Article  PubMed  Google Scholar 

  • Lopez GA, Potts BM, Tilyard PA (2000) F1 hybrid inviability in Eucalyptus: the case of E. ovata × E. globulus. Heredity 85:242–250

    Article  PubMed  Google Scholar 

  • Lynch M (1991) The genetic interpretation of inbreeding depression and outbreeding depression. Evolution 45:622–629

    Article  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland

    Google Scholar 

  • Mather K, Jinks JL (1982) Biometrical genetics. Chapman and Hall, New York

    Google Scholar 

  • Mayr E (1963) Animal species and evolution. Harvard University Press, Cambridge

    Google Scholar 

  • McKinnon GE, Vaillancourt RE, Steane DA, Potts BM (2008) An AFLP marker approach to lower-level systematics in Eucalyptus (Myrtaceae). Am J Bot 95:368–380

    Article  PubMed  CAS  Google Scholar 

  • McKinnon GE, Smith JJ, Potts BM (2010) Recurrent nuclear DNA introgression accompanies chloroplast DNA exchange between two eucalypt species. Mol Ecol 19:1367–1380

    Article  PubMed  CAS  Google Scholar 

  • Muller HJ (1942) Isolating mechanisms, evolution, and temperature. Biol Symp 6:71–125

    Google Scholar 

  • Myburg AA, Vogl C, Griffin AR, Sederoff RR, Whetten RW (2004) Genetics of postzygotic isolation in Eucalyptus: whole-genome analysis of barriers to introgression in a wide interspecific cross of Eucalyptus grandis and E. globulus. Genetics 166:1405–1418

    Article  PubMed  CAS  Google Scholar 

  • Orr HA (1995) The population genetics of speciation: the evolution of hybrid incompatibilities. Genetics 139:1805–1813

    PubMed  CAS  Google Scholar 

  • Orr HA, Irving S (2001) Complex epistasis and the genetic basis of hybrid sterility in the Drosophila pseudoobscura Bogota-USA hybridization. Genetics 158:1089–1100

    PubMed  CAS  Google Scholar 

  • Oudjehih B, Bentouati A (2006) Chromosome numbers of the 59 species of Eucalyptus L’Herit. (Myrtaceae). Caryologia 59:207–212

    Google Scholar 

  • Potts BM, Dungey HS (2004) Interspecific hybridization of Eucalyptus: key issues for breeders and geneticists. New For 27:115–138

    Article  Google Scholar 

  • Potts BM, Volker PW, Tilyard PA, Joyce K (2000) The genetics of hybridisation in the temperate Eucalyptus. In: Dungey HSD, Dieters MJ, Nikles DG (eds) Hybrid breeding and genetics of forest trees. Proceedings of QFRI/CRC-SPF Symposium, Noosa, Queensland, Australia, April 9–14, 2000. Department of Primary Industries, Brisbane, pp 200–211

    Google Scholar 

  • Potts BM, Barbour RC, Hingston A, Vaillancourt RE (2003) Turner review no. 6: genetic pollution of native eucalypt gene pools—identifying the risks. Aust J Bot 51:1–25

    Article  Google Scholar 

  • Rieseberg LH (2001) Chromosomal rearrangements and speciation. Trends Ecol Evol 16:351–358

    Article  PubMed  Google Scholar 

  • Rieseberg LH, Willis JH (2007) Plant speciation. Science 317:910–914

    Article  PubMed  CAS  Google Scholar 

  • Roff DA, Emerson K (2006) Epistasis and dominance: evidence for differential effects in life-history versus morphological traits. Evolution 60:1981–1990

    PubMed  Google Scholar 

  • SAS Institute Inc (2004) SAS/STAT 9.1 user’s guide. SAS Institute, Cary

    Google Scholar 

  • Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611

    Google Scholar 

  • Taylor SJ, Arnold M, Martin NH (2009) The genetic architecture of reproductive isolation in Louisiana irises: hybrid fitness in nature. Evolution 63:2581–2594

    Article  PubMed  Google Scholar 

  • Thumma BR, Southerton SG, Bell JC, Owen JV, Henery ML, Moran GF (2010) Quantitative trait locus (QTL) analysis of wood quality traits in Eucalyptus nitens. Tree Genet Genomes 6:305–317

    Article  Google Scholar 

  • Tiffin P, Olson MS, Moyle LC (2001) Asymmetrical crossing barriers in angiosperms. Proc Royal Soc London B 268:861–867

    Article  CAS  Google Scholar 

  • Tomé M, Tomé JA, Araújo MC, Pereira JS (1994) Intraspecific competition in irrigated and fertilized eucalypt plantations. For Ecol Manag 69:211–218

    Article  Google Scholar 

  • Turelli M, Orr HA (2000) Dominance, epistasis and the genetics of postzygotic isolation. Genetics 154:1663–1679

    PubMed  CAS  Google Scholar 

  • Volker PW, Owen JV, Borralho NMG (1994) Genetic variances and covariances for frost tolerance in Eucalyptus globulus and E. nitens. Silvae Genetica 43:366–372

    Google Scholar 

  • Volker PW, Potts BM, Borralho NMG (2008) Genetic parameters of intra- and inter-specific hybrids of Eucalyptus globulus and E. nitens. Tree Genet Genomes 4:445–460

    Article  Google Scholar 

  • Wegner KM, Berenos C, Schmid-Hempel P (2008) Nonadditive genetic components in resistance of the red flour beetle Tribolium castanaeum against parasite infection. Evolution 62:2381–2392

    Article  PubMed  CAS  Google Scholar 

  • Whitham TG, Bailey JK, Schweitzer JA, Shuster SM, Bangert RK, Leroy CJ, Lonsdorf EV, Allan GJ, DiFazio SP, Potts BM, Fischer DG, Gehring CA, Lindroth RL, Marks JC, Hart SC, Wimp GM, Wooley SC (2006) A framework for community and ecosystem genetics: from genes to ecosystems. Nat Rev Genet 7:510–523

    Article  PubMed  CAS  Google Scholar 

  • Whitlock MC, Phillips PC, Moore FBG, Tonsor SJ (1995) Multiple fitness peaks and epistasis. Annu Rev Ecol Syst 26:601–629

    Article  Google Scholar 

  • Willham RL, Pollak E (1985) Theory of heterosis. J Dairy Sci 68:2411–2417

    Article  Google Scholar 

  • Williams DR, Potts BM, Black PG (1999) Testing single visit pollination procedures for Eucalyptus globulus and E. nitens. Aust For 62:346–352

    Google Scholar 

  • Wright S (1978) Evolution and the genetics of populations, vol 4: variability within and among natural populations. University of Chicago Press, Chicago

    Google Scholar 

  • Wu CI (2001) The genic view of the process of speciation. J Evol Biol 14:851–865

    Article  Google Scholar 

  • Wu CI, Ting CT (2004) Genes and speciation. Nat Rev Genet 5:114–122

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Gunns Ltd (Ridgley) and Norske Skog (Tyenna) for provision of the trial sites. Funding for crossing and trial establishment was provided by the CRC for Temperate Hardwood Forestry. Trial measurements were supported by the CRC for Sustainable Production Forestry as well as an Australian Research Council Linkage grant (LP0884001) partnered by the Southern Tree Breeding Association and SeedEnergy Pty. Ltd. The financial support given by Fundação para a Ciência e Tecnologia (Lisboa, Portugal) through the Ciência 2007 initiative to João Costa e Silva and by the Australian Research Council Discovery grant (DP0986491) to Brad Potts is gratefully acknowledged and provided the opportunity to complete this long-term study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Costa e Silva.

Additional information

Communicated by D. Grattapaglia

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

(PDF 20 kb)

Online Resource 2

(PDF 31 kb)

Online Resource 3

(PDF 27 kb)

Online Resource 4

(PDF 27 kb)

Online Resource 5

(PDF 35 kb)

Online Resource 6

(PDF 35 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa e Silva, J., Potts, B.M. & Tilyard, P. Epistasis causes outbreeding depression in eucalypt hybrids. Tree Genetics & Genomes 8, 249–265 (2012). https://doi.org/10.1007/s11295-011-0437-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-011-0437-8

Keywords

Navigation