Skip to main content

Advertisement

Log in

Mechanisms of action of plant growth promoting bacteria

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The idea of eliminating the use of fertilizers which are sometimes environmentally unsafe is slowly becoming a reality because of the emergence of microorganisms that can serve the same purpose or even do better. Depletion of soil nutrients through leaching into the waterways and causing contamination are some of the negative effects of these chemical fertilizers that prompted the need for suitable alternatives. This brings us to the idea of using microbes that can be developed for use as biological fertilizers (biofertilizers). They are environmentally friendly as they are natural living organisms. They increase crop yield and production and, in addition, in developing countries, they are less expensive compared to chemical fertilizers. These biofertilizers are typically called plant growth-promoting bacteria (PGPB). In addition to PGPB, some fungi have also been demonstrated to promote plant growth. Apart from improving crop yields, some biofertilizers also control various plant pathogens. The objective of worldwide sustainable agriculture is much more likely to be achieved through the widespread use of biofertilizers rather than chemically synthesized fertilizers. However, to realize this objective it is essential that the many mechanisms employed by PGPB first be thoroughly understood thereby allowing workers to fully harness the potentials of these microbes. The present state of our knowledge regarding the fundamental mechanisms employed by PGPB is discussed herein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abedon ST, García P, Mullany P, Aminov R (2017) Editorial: phage therapy: past, present and future. Front Microbiol 8:981

    Article  Google Scholar 

  • Abeles F, Morgan P, Saltveit M Jr (1992) Ethylene in plant biology, 2nd edn. Academic Press, New York

    Google Scholar 

  • Abo-Elyousr KAM, Hashem M, Ali EH (2009) Integrated control of cotton root rot disease by mixing fungal biocontrol agents and resistance inducers. Crop Prot 28:295–301

    Article  CAS  Google Scholar 

  • Adams M, Mortenson L, Chen J (1981) Hydrogenase. Biochim Biophys Acta 594:105–176

    Article  Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    Article  CAS  Google Scholar 

  • Aida M et al (2004) The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119:109–120

    Article  CAS  Google Scholar 

  • Ali B, Sabri AN, Hasnain S (2010) Rhizobacterial potential to alter auxin content and growth of Vigna radiata (L.). World J Microbiol Biotechnol 26:1379–1384

    Article  CAS  Google Scholar 

  • Ali S, Charles TC, Glick BR (2014) Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol Biochem 80:160–167

    Article  CAS  Google Scholar 

  • Alori ET, Glick BR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8:971

    Article  Google Scholar 

  • Álvarez B, Biosca EG (2017) Bacteriophage-based bacterial wilt biocontrol for an environmentally sustainable agriculture. Front Plant Sci 8:1218

    Article  Google Scholar 

  • Aragón IM, Pérez-Martínez I, Moreno-Pérez A, Cerezo M, Ramos C (2014) New insights into the role of indole-3-acetic acid in the virulence of Pseudomonas savastanoi pv. savastanoi. FEMS Microbiol Lett 356:184–192

    Article  CAS  Google Scholar 

  • Arkhipova T, Veselov S, Melentiev A, Martynenko E, Kudoyarova G (2005) Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant Soil 272:201–209

    Article  CAS  Google Scholar 

  • Baas P, Mohan JE, Markewitz D, Knoepp JD (2014) Assessing heterogeneity in soil nitrogen cycling: a plot-scale approach. Soil Sci Soc Am J 78:237–247

    Article  Google Scholar 

  • Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32:1559–1570

    Article  CAS  Google Scholar 

  • Bae JY, Wu J, Lee HJ, Jo EJ, Murugaiyan S, Chung E, Lee S-W (2012) Biocontrol potential of a lytic bacteriophage PE204 against bacterial wilt of tomato. J Microbiol Biotechnol 22:1613–1620

    Article  Google Scholar 

  • Balogh B, Jones JB, Iriarte F, Momol M (2010) Phage therapy for plant disease control. Curr Pharm Biotechnol 11:48–57

    Article  CAS  Google Scholar 

  • Banerjee MR, Yesmin L, Vessey JK, Rai M (2005) Plant-growth-promoting rhizobacteria as biofertilizers and biopesticides. Handbook of microbial biofertilizers. Food Products Press, New York, pp. 137–181

    Google Scholar 

  • Barahona E, Navazo A, Martínez-Granero F, Zea-Bonilla T, Pérez-Jiménez RM, Martín M, Rivilla R (2011) Pseudomonas fluorescens F113 mutant with enhanced competitive colonization ability and improved biocontrol activity against fungal root pathogens. Appl Environ Microbiol 77:5412–5419

    Article  CAS  Google Scholar 

  • Barnawal D, Bharti N, Maji D, Chanotiya CS, Kalra A (2012) 1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing rhizobacteria protect Ocimum sanctum plants during waterlogging stress via reduced ethylene generation. Plant Physiol Biochem 58:227–235

    Article  CAS  Google Scholar 

  • Bielach A et al (2012) Spatiotemporal regulation of lateral root organogenesis in Arabidopsis by cytokinin. Plant Cell 24:3967–3981

    Article  CAS  Google Scholar 

  • Bleecker AB, Estelle MA, Somerville C, Kende H (1988) Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241:1086–1090

    Article  CAS  Google Scholar 

  • Boulé J, Sholberg P, Lehman S, O’gorman D, Svircev A (2011) Isolation and characterization of eight bacteriophages infecting Erwinia amylovora and their potential as biological control agents in British Columbia, Canada. Can J Plant Pathol 33:308–317

    Article  Google Scholar 

  • Broek AV, Gysegom P, Ona O, Hendrickx N, Prinsen E, Van Impe J, Vanderleyden J (2005) Transcriptional analysis of the Azospirillum brasilense indole-3-pyruvate decarboxylase gene and identification of a cis-acting sequence involved in auxin responsive expression. Mol Plant Microbe Interact 18:311–323

    Article  CAS  Google Scholar 

  • Brunoud G et al (2012) A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature 482:103

    Article  CAS  Google Scholar 

  • Buttimer C, McAuliffe O, Ross RP, Hill C, O’Mahony J, Coffey A (2017) Bacteriophages and bacterial plant diseases. Front Microbiol 8

  • Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41

    Article  CAS  Google Scholar 

  • Carvalhais LC, Dennis PG, Badri DV, Kidd BN, Vivanco JM, Schenk PM (2015) Linking jasmonic acid signaling, root exudates, and rhizosphere microbiomes. Mol Plant Microbe Interact 28:1049–1058

    Article  CAS  Google Scholar 

  • Chan K-G et al (2011) Characterization of N-acylhomoserine lactone-degrading bacteria associated with the Zingiber officinale (ginger) rhizosphere: co-existence of quorum quenching and quorum sensing in Acinetobacter and Burkholderia. BMC Microbiol 11:51

    Article  CAS  Google Scholar 

  • Chang W-T, Chen Y-C, Jao C-L (2007) Antifungal activity and enhancement of plant growth by Bacillus cereus grown on shellfish chitin wastes. Bioresour Technol 98:1224–1230

    Article  CAS  Google Scholar 

  • Chang L, Ramireddy E, Schmülling T (2013) Lateral root formation and growth of Arabidopsis is redundantly regulated by cytokinin metabolism and signalling genes. J Exp Bot 64:5021–5032

    Article  CAS  Google Scholar 

  • Chen C, Bélanger RR, Benhamou N, Paulitz TC (1999) Role of salicylic acid in systemic resistance induced by Pseudomonas spp. against Pythium aphanidermatum in cucumber roots. Eur J Plant Pathol 105:477–486

    Article  CAS  Google Scholar 

  • Cheng X, Ruyter-Spira C, Bouwmeester H (2013) The interaction between strigolactones and other plant hormones in the regulation of plant development. Front Plant Sci 4:199

    Article  Google Scholar 

  • Chernin L, Ismailov Z, Haran S, Chet I (1995) Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogens. Appl Environ Microbiol 61:1720–1726

    CAS  Google Scholar 

  • Coons GH (1925) The transmissible lytic principle (bacteriophage) in relation to plant pathogens. Phytopathol 28:357–370

    Google Scholar 

  • Cornforth DM et al (2014) Combinatorial quorum sensing allows bacteria to resolve their social and physical environment. Proc Natl Acad Sci USA 111:4280–4284

    Article  CAS  Google Scholar 

  • Couillerot O, Prigent-Combaret C, Caballero-Mellado J, Moënne-Loccoz Y (2009) Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens. Lett Appl Microbiol 48:505–512

    Article  CAS  Google Scholar 

  • DalCorso G, Manara A, Furini A (2013) An overview of heavy metal challenge in plants: from roots to shoots. Metallomics 5:1117–1132

    Article  CAS  Google Scholar 

  • Das K, Prasanna R, Saxena AK (2017) Rhizobia: a potential biocontrol agent for soilborne fungal pathogens. Folia Microbiol. doi:10.1007/s12223-017-0513-z

    Google Scholar 

  • de Jesus Sousa JA, Olivares FL (2016) Plant growth promotion by streptomycetes: ecophysiology, mechanisms and applications. Chem Biol Technol Agric 3:24

    Article  Google Scholar 

  • De Rybel B, Mähönen AP, Helariutta Y, Weijers D (2016) Plant vascular development: from early specification to differentiation. Nat Rev Mol Cell Biol 17:30

    Article  CAS  Google Scholar 

  • Deka H, Deka S, Baruah C (2015) Plant growth promoting rhizobacteria for value addition: mechanism of action. In: Plant-growth-promoting rhizobacteria (pgpr) and medicinal plants. Springer, New York, pp 305–321

    Google Scholar 

  • Dodd IC, Zinovkina NY, Safronova VI, Belimov AA (2010) Rhizobacterial mediation of plant hormone status. Ann Appl Biol 157:361–379

    Article  CAS  Google Scholar 

  • Doss J, Culbertson K, Hahn D, Camacho J, Barekzi N (2017) A review of phage therapy against bacterial pathogens of aquatic and terrestrial organisms. Viruses 9:50

    Article  Google Scholar 

  • Duca D, Lorv J, Patten C, Rose D, Glick B (2014) Microbial indole-3-acetic acid and plant growth. Anton Van Leeuwenhoek 106:85–125

    Article  CAS  Google Scholar 

  • Elad Y, Chet I (1987) Possible role of competition for nutrients in biocontrol of Pythium damping-off by bacteria. Phytopathol 77:190–195

    Article  Google Scholar 

  • Frampton RA, Pitman AR, Fineran PC (2012) Advances in bacteriophage-mediated control of plant pathogens. Int J Microbiol 2012:326452

    Article  Google Scholar 

  • Frampton RA, Taylor C, Moreno AVH, Visnovsky SB, Petty NK, Pitman AR, Fineran PC (2014) Identification of bacteriophages for biocontrol of the kiwifruit canker phytopathogen Pseudomonas syringae pv. actinidiae. Appl Environ Microbiol 80:2216–2228

    Article  CAS  Google Scholar 

  • Friedrich N, Hagedorn M, Soldati-Favre D, Soldati T (2012) Prison break: pathogens’ strategies to egress from host cells. Microbiol Mol Biol Rev 76:707–720

    Article  CAS  Google Scholar 

  • Fujiwara A, Fujisawa M, Hamasaki R, Kawasaki T, Fujie M, Yamada T (2011) Biocontrol of Ralstonia solanacearum by treatment with lytic bacteriophages. Appl Environ Microbiol 77:4155–4162

    Article  CAS  Google Scholar 

  • Gage DJ (2004) Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev 68:280–300

    Article  CAS  Google Scholar 

  • Gamalero E, Glick BR (2015) Bacterial modulation of plant ethylene levels. Plant Physiol 169:13

    Article  CAS  Google Scholar 

  • Ganz T (2013) Systemic iron homeostasis. Physiol Rev 93:1721–1741

    Article  CAS  Google Scholar 

  • Geddes BA, Ryu M-H, Mus F, Costas AG, Peters JW, Voigt CA, Poole P (2015) Use of plant colonizing bacteria as chassis for transfer of N 2-fixation to cereals. Curr Opin Biotechnol 32:216–222

    Article  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  Google Scholar 

  • Glick BR (2015a) Biocontrol mechanisms. In: Beneficial plant-bacterial interactions. Springer, New York, pp 123–157

    Google Scholar 

  • Glick BR (2015b) Modulating phytohormone levels. In: beneficial plant-bacterial interactions. Springer International Publishing, Cham, pp 65–96

    Google Scholar 

  • Glick BR (2015c) Resource acquisition. In: Beneficial plant-bacterial interactions. Springer, New York, pp 29–63

    Google Scholar 

  • Glick BR, Bashan Y (1997) Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnol Adv 15:353–378

    Article  CAS  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. In: New perspectives and approaches in plant growth-promoting rhizobacteria research. Springer, New York, pp 329–339

    Chapter  Google Scholar 

  • Gortari MC, Hours RA (2008) Fungal chitinases and their biological role in the antagonism onto nematode eggs: a review. Mycol Prog 7:221–238

    Article  Google Scholar 

  • Goswami D, Thakker JN, Dhandhukia PC, Tejada Moral M (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric 2:1127500

    Google Scholar 

  • Grieneisen VA, Xu J, Marée AF, Hogeweg P, Scheres B (2007) Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 449:1008

    Article  CAS  Google Scholar 

  • Grobelak A, Napora A, Kacprzak M (2015) Using plant growth-promoting rhizobacteria (PGPR) to improve plant growth. Ecol Eng 84:22–28

    Article  Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 7:096–102

    Google Scholar 

  • Gupta S, Seth R, Sharma A (2016) Plant growth-promoting rhizobacteria play a role as phytostimulators for sustainable agriculture. In: Choudhary DK, Varma A, Tuteja N (eds) Plant-microbe interaction: an approach to sustainable agriculture. Springer, Singapore, pp 475–493

    Chapter  Google Scholar 

  • Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153

    Article  CAS  Google Scholar 

  • Halfeld-Vieira BA, Vieira JR Jr, Romeiro RS, Silva HSA, Mc BP (2006) Induction of systemic resistance in tomato by autochthonus phylloplane resident Bacillus cereus. Pesq Agropec Bras 41:1247–1252

    Article  Google Scholar 

  • Hedden P, Thomas SG (2012) Gibberellin biosynthesis and its regulation. Biochem J 444:11–25

    Article  CAS  Google Scholar 

  • Heimpel GE, Mills NJ (2017) Biological control: ecology and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Huang J et al (2016) Acyl-homoserine lactone-based quorum sensing and quorum quenching hold promise to determine the performance of biological wastewater treatments: an overview. Chemosphere 157:137–151

    Article  CAS  Google Scholar 

  • Husson E et al (2017) The effect of room temperature ionic liquids on the selective biocatalytic hydrolysis of chitin via sequential or simultaneous strategies. Green Chem. doi:10.1039/C7GC01471F

    Google Scholar 

  • Innerebner G, Knief C, Vorholt JA (2011) Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl Environ Microbiol 77:3202–3210

    Article  CAS  Google Scholar 

  • Ioio RD et al (2008) A genetic framework for the control of cell division and differentiation in the root meristem. Science 322:1380–1384

    Article  CAS  Google Scholar 

  • Iriarte F, Balogh B, Momol M, Smith L, Wilson M, Jones J (2007) Factors affecting survival of bacteriophage on tomato leaf surfaces. Appl Environ Microbiol 73:1704–1711

    Article  CAS  Google Scholar 

  • Jones J, Jackson L, Balogh B, Obradovic A, Iriarte F, Momol M (2007) Bacteriophages for plant disease control. Annu Rev Phytopathol 45:245–262

    Article  CAS  Google Scholar 

  • Khan AL, Waqas M, Hussain J, Al-Harrasi A, Hamayun M, Lee I-J (2015) Phytohormones enabled endophytic fungal symbiosis improve aluminum phytoextraction in tolerant Solanum lycopersicum: an examples of Penicillium janthinellum LK5 and comparison with exogenous GA 3. J Hazard Mater 295:70–78

    Article  CAS  Google Scholar 

  • Khosro M (2012) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. Resour Environ 2:80–85

    Google Scholar 

  • Kim J-S, Lee J, Lee C-h, Woo SY, Kang H, Seo S-G, Kim S-H (2015) Activation of pathogenesis-related genes by the hizobacterium, Bacillus sp. JS, which induces systemic resistance in tobacco plants. Plant Pathol J 31:195–201

    Article  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886

    Article  CAS  Google Scholar 

  • Koby S, Schickler H, Ilan C, Oppenheim AB (1994) The chitinase encoding Tn7-based chiA gene endows Pseudomonas fluorescens with the capacity to control plant pathogens in soil. Gene 147:81–83

    Article  CAS  Google Scholar 

  • Korasick DA, Enders TA, Strader LC (2013) Auxin biosynthesis and storage forms. J Exp Bot 64:2541–2555

    Article  CAS  Google Scholar 

  • Kotila J, Coons G (1925) Investigations on the blackleg disease of potato. Michigan Agr Exper Sta Tech Bull 67

  • Kowsari M, Zamani M, Motallebi M (2016) Overexpression of chimeric chitinase 42 enhanced antifungal activity of Trichoderma harzianum against Fusarium graminearum. Mycol Iran 3:15–23

    Google Scholar 

  • Kumar A, Bahadur I, Maurya B, Raghuwanshi R, Meena V, Singh D, Dixit J (2015) Does a plant growth promoting rhizobacteria enhance agricultural sustainability. J Pure Appl Microbiol 9:715–724

    Google Scholar 

  • Laschat S, Bilitewski U, Blodgett J, Duhme-Klair A-K, Dallavalle S, Routledge A, Schobert R (2017) Chemical and biological aspects of nutritional immunity-perspectives for new anti-infectives targeting iron uptake systems. Angew Chem Int Ed

  • Limon MC, Pintor-Toro JA, Benítez T (1999) Increased antifungal activity of Trichoderma harzianum transformants that overexpress a 33-kDa chitinase. Phytopathol 89:254–261

    Article  CAS  Google Scholar 

  • Lucas JA, García-Cristobal J, Bonilla A, Ramos B, Gutierrez-Mañero J (2014) Beneficial rhizobacteria from rice rhizosphere confers high protection against biotic and abiotic stress inducing systemic resistance in rice seedlings. Plant Physiol Biochem 82:44–53

    Article  CAS  Google Scholar 

  • Lucy M, Reed E, Glick B (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86:1–25

    Article  CAS  Google Scholar 

  • Marhavý P et al (2011) Cytokinin modulates endocytic trafficking of PIN1 auxin efflux carrier to control plant organogenesis. Dev Cell 21:796–804

    Article  CAS  Google Scholar 

  • Marhavý P et al (2014) Cytokinin controls polarity of PIN1-dependent auxin transport during lateral root organogenesis. Curr Biol 24:1031–1037

    Article  CAS  Google Scholar 

  • Martínez C, Espinosa-Ruiz A, Prat S (2016) Gibberellins and plant vegetative growth. Annu Plant Rev 49:285–322

    Google Scholar 

  • Miller CO, Skoog F, Okumura FS, Von Saltza MH, Strong F (1955) Structure and synthesis of kinetin1. J Ame Chem Soc 77:2662–2663

    Article  CAS  Google Scholar 

  • Minguet EG, Alabadí D, Blázquez MA (2014) Gibberellin implication in plant growth and stress responses. In: Tran L-SP, Pal S (eds) Phytohormones: a window to metabolism, signaling and biotechnological applications. Springer, New York, pp 119–161

    Chapter  Google Scholar 

  • Moore E (1926) D’Herelle’s bacteriophage in relation to plant parasites. S Afr J Sci 23:306

    Google Scholar 

  • Moubayidin L et al (2013) Spatial coordination between stem cell activity and cell differentiation in the root meristem. Dev Cell 26:405–415

    Article  CAS  Google Scholar 

  • Nandi M, Selin C, Brawerman G, Fernando WGD, de Kievit T (2017) Hydrogen cyanide, which contributes to Pseudomonas chlororaphis strain PA23 biocontrol, is upregulated in the presence of glycine. Biol Control 108:47–54

    Article  CAS  Google Scholar 

  • Nelson SK, Steber CM (2016) Gibberellin hormone signal perception: down-regulating DELLA repressors of plant growth and development. Annu Plant Rev 49:153–188

    CAS  Google Scholar 

  • O’Brien PA (2017) Biological control of plant diseases. Aust Plant Pathol 44:1–12

    Article  CAS  Google Scholar 

  • Oldroyd GE, Dixon R (2014) Biotechnological solutions to the nitrogen problem. Curr Opin Biotechnol 26:19–24

    Article  CAS  Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    Article  CAS  Google Scholar 

  • Pei R, Lamas-Samanamud GR (2014) Inhibition of biofilm formation by T7 bacteriophages producing quorum-quenching enzymes. Appl Environ Microbiol 80:5340–5348

    Article  CAS  Google Scholar 

  • Peitl DC, Araujo FA, Gonçalves RM, Santiago DC, Sumida CH, Balbi-Peña MI (2017) Biological control of tomato bacterial spot by saprobe fungi from semi-arid areas of northeastern Brazil Semina. Ciências Agrárias 38:1251–1263

    Article  Google Scholar 

  • Peix A, Mateos P, Rodriguez-Barrueco C, Martinez-Molina E, Velazquez E (2001) Growth promotion of common bean (Phaseolus vulgaris L.) by a strain of Burkholderia cepacia under growth chamber conditions. Soil Biol Biochem 33:1927–1935

    Article  CAS  Google Scholar 

  • Pérez-Montaño F et al (2014) Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res 169:325–336

    Article  Google Scholar 

  • Petrášek J, Friml J (2009) Auxin transport routes in plant development. Development 136:2675–2688

    Article  CAS  Google Scholar 

  • Pieterse CM et al (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571–1580

    Article  CAS  Google Scholar 

  • Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    Article  CAS  Google Scholar 

  • Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375

    Article  CAS  Google Scholar 

  • Porcel R, Zamarreño ÁM, García-Mina JM, Aroca R (2014) Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants. BMC Plant Biol 14:36

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Mazzola M (2012) Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu Rev Phytopathol 50:403–424

    Article  CAS  Google Scholar 

  • Radzki W, Gutierrez Mañero FJ, Algar E, Lucas García JA, García-Villaraco A, Ramos Solano B (2013) Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Van Leeuwenhoek 104:321–330

    Article  CAS  Google Scholar 

  • Ramette A, Moënne-Loccoz Y, Défago G (2006) Genetic diversity and biocontrol potential of fluorescent pseudomonads producing phloroglucinols and hydrogen cyanide from Swiss soils naturally suppressive or conducive to Thielaviopsis basicola-mediated black root rot of tobacco. FEMS Microbiol Ecol 55:369–381

    Article  CAS  Google Scholar 

  • Reed M, Glick BR (2013) Applications of plant growth-promoting bacteria for plant and soil systems. Appl Microb Eng CT:181–229

    Article  Google Scholar 

  • Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  Google Scholar 

  • Saha R, Saha N, Donofrio RS, Bestervelt LL (2013) Microbial siderophores: a mini review. J Basic Microbiol 53:303–317

    Article  Google Scholar 

  • Saha M, Sarkar S, Sarkar B, Sharma BK, Bhattacharjee S, Tribedi P (2016) Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res 23:3984–3999

    Article  CAS  Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21:1–30

    Google Scholar 

  • Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57:431–449

    Article  CAS  Google Scholar 

  • Sandy M, Butler A (2009) Microbial iron acquisition: marine and terrestrial siderophores. Chem Rev 109:4580–4595

    Article  CAS  Google Scholar 

  • Santoyo G, Moreno-Hagelsieb G, del Carmen Orozco-Mosqueda M, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99

    Article  CAS  Google Scholar 

  • Schäfer M, Brütting C, Meza-Canales ID, Großkinsky DK, Vankova R, Baldwin IT, Meldau S (2015) The role of cis-zeatin-type cytokinins in plant growth regulation and mediating responses to environmental interactions. J Exp Bot 66:4873–4884

    Article  CAS  Google Scholar 

  • Schaller GE, Bishopp A, Kieber JJ (2015) The yin-yang of hormones: cytokinin and auxin interactions in plant development. Plant Cell 27:44–63

    Article  CAS  Google Scholar 

  • Sharma A, Johri BN (2003) Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiol Res 158:243–248

    Article  CAS  Google Scholar 

  • Sharma S, Kumar V, Tripathi RB (2017) Isolation of phosphate solubilizing microorganism (PSMs) from soil. J Microbiol Biotechnol Res 1:90–95

    Google Scholar 

  • Shen X, Hu H, Peng H, Wang W, Zhang X (2013) Comparative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas. BMC Genomics 14:1471–2164

    Google Scholar 

  • Siddiqui IA, Shaukat SS, Sheikh IH, Khan A (2006) Role of cyanide production by Pseudomonas fluorescens CHA0 in the suppression of root-knot nematode, Meloidogyne javanica in tomato. World J Microbiol Biotechnol 22:641–650

    Article  CAS  Google Scholar 

  • Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3:a001438

    Article  CAS  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007a) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  CAS  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007b) Indole-3-acetic acid in microbial and microorganism plant signaling. FEMS Microbiol Rev 31:425–448

    Article  CAS  Google Scholar 

  • Toklikishvili N et al (2010) Inhibitory effect of ACC deaminase-producing bacteria on crown gall formation in tomato plants infected by Agrobacterium tumefaciens or Agrobacterium vitis. Plant Pathol 59:1023–1030

    Article  Google Scholar 

  • Ton J, Van Pelt JA, Van Loon LC, Pieterse CM (2002) Differential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis. Mol Plant Microbe Interact 15:27–34

    Article  CAS  Google Scholar 

  • Turan M, Kıtır N, Alkaya Ü, Günes A, Tüfenkçi Ş, Yıldırım E, Nikerel E (2016) Making soil more accessible to plants: the case of plant growth promoting rhizobacteria. Plant growth. InTech, Rijeka. doi:10.5772/64826

    Google Scholar 

  • Vaddepalli P, Fulton L, Wieland J, Wassmer K, Schaeffer M, Ranf S, Schneitz K (2017) The cell wall-localized atypical β-1, 3 glucanase ZERZAUST controls tissue morphogenesis in Arabidopsis thaliana. Development 152231

  • Van Peer R, Schippers B (1992) Lipopolysaccharides of plant-growth promoting Pseudomonas sp. strain WCS417r induce resistance in carnation to Fusarium wilt. Neth J Plant Pathol 98:129–139

    Article  Google Scholar 

  • Van Loon L, Bakker P, Pieterse C (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  Google Scholar 

  • van Loon LC, Rep M, Pieterse CM (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  CAS  Google Scholar 

  • Walters DR, Ratsep J, Havis ND (2013) Controlling crop diseases using induced resistance: challenges for the future. J Exp Bot 64:1263–1280

    Article  CAS  Google Scholar 

  • Wang G-L, Que F, Xu Z-S, Wang F, Xiong A-S (2015) Exogenous gibberellin altered morphology, anatomic and transcriptional regulatory networks of hormones in carrot root and shoot. BMC plant biol 15:290

    Article  CAS  Google Scholar 

  • Weller DM, Mavrodi DV, van Pelt JA, Pieterse CM, van Loon LC, Bakker PA (2012) Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2, 4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology 102:403–412

    Article  CAS  Google Scholar 

  • Xu J, Li X-L, Luo L (2012) Effects of engineered Sinorhizobium meliloti on cytokinin synthesis and tolerance of alfalfa to extreme drought stress. Appl Environ Microbiol 78:8056–8061

    Article  CAS  Google Scholar 

  • Yedidia I, Benhamou N, Chet I (1999) Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Appl Environ Microbiol 65:1061–1070

    CAS  Google Scholar 

  • Yi H-S, Yang JW, Ryu C-M (2013) ISR meets SAR outside: additive action of the endophyte Bacillus pumilus INR7 and the chemical inducer, benzothiadiazole, on induced resistance against bacterial spot in field-grown pepper. Front Plant Sci 4:122

    Article  Google Scholar 

  • Yim W, Seshadri S, Kim K, Lee G, Sa T (2013) Ethylene emission and PR protein synthesis in ACC deaminase producing Methylobacterium spp. inoculated tomato plants (Lycopersicon esculentum Mill.) challenged with Ralstonia solanacearum under greenhouse conditions. Plant Physiol Biochem 67:95–104

    Article  CAS  Google Scholar 

  • You Y-H et al (2012) Fungal diversity and plant growth promotion of endophytic fungi from six halophytes in Suncheon Bay. J Microbiol Biotechnol 22:1549–1556

    Article  Google Scholar 

  • Yu J-G, Lim J-A, Song Y-R, Heu S, Kim GH, Koh YJ, Oh C-S (2016) Isolation and characterization of bacteriophages against Pseudomonas syringae pv. actinidiae causing bacterial canker disease in kiwifruit. J Microbiol Biotechnol 26:385–393

    Article  CAS  Google Scholar 

  • Zachow C, Müller H, Monk J, Berg G (2017) Complete genome sequence of Pseudomonas brassicacearum strain L13-6-12, a biological control agent from the rhizosphere of potato. Stand Genomic Sci 12:6

    Article  Google Scholar 

  • Zaidi A, Ahmad E, Khan MS, Saif S, Rizvi A (2015) Role of plant growth promoting rhizobacteria in sustainable production of vegetables: current perspective. Sci Hortic 193:231–239

    Article  Google Scholar 

  • Zhang S, Moyne A-L, Reddy M, Kloepper JW (2002) The role of salicylic acid in induced systemic resistance elicited by plant growth-promoting rhizobacteria against blue mold of tobacco. Biol Control 25:288–296

    Article  Google Scholar 

  • Zhang S, Gao P, Tong Y, Norse D, Lu Y, Powlson D (2015) Overcoming nitrogen fertilizer over-use through technical and advisory approaches: a case study from Shaanxi Province, Northwest China. Agric Ecosyst Environ 209:89–99

    Article  CAS  Google Scholar 

Download references

Acknowledgements

North-West University is gratefully acknowledged for school bursary to OOS. OOB would like to thank the National Research Foundation, South Africa for a grant (Ref: UID81192) that has supported research in her laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olubukola Oluranti Babalola.

Ethics declarations

Conflict of interest

There is no conflict of interest whatsoever from the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olanrewaju, O.S., Glick, B.R. & Babalola, O.O. Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol 33, 197 (2017). https://doi.org/10.1007/s11274-017-2364-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-017-2364-9

Keywords

Navigation