Skip to main content

Advertisement

Log in

Distribution and Pools of Mercury in Czech Forest Soils

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Parts of the Czech Republic received extreme loading of acid deposition from coal combustion in the second half of the twentieth century. Although associated Hg deposition was not directly measured, Hg deposition rates calculated from peat cores approach 100 μg m−2 year−1. We quantified the soil concentrations and pools of Hg with carbon (C), sulfur (S), and nitrogen (N)—elements closely associated with soil organic matter at five sites across the Czech Republic—four sites known for extreme deposition levels of S and N compounds in the twentieth century, and one site relatively less impacted. The site-specific means of O-horizon Hg concentrations ranged from 277 to 393 μg kg−1, while means of Hg concentrations in mineral soil ranged from 22 to 95 μg kg−1. The mean Hg/C ratio across sites increased from ∼0.5 μg Hg g−1 C in the Oi-horizon to ∼5 μg Hg g−1 C in the C-horizon due to the progressive mineralization of soil organic matter. The soil Hg/C increase was accompanied by a soil C/N decrease, another indicator of soil organic matter mineralization. Soil Hg/C also increased as soil C/S decreased, suggesting that Hg was stabilized by S functional groups within the soil organic matter. Mineral soil Hg pools (8.9–130.0 mg m−2) dominated over organic soil Hg pools (5.3–10.1 mg m−2) at all sites. Mineral soil Hg pools correlated more strongly with total soil S and oxalate-extractable Fe than with total soil C. Total soil Hg pools could be accounted for by a time period of atmospheric inputs that was short relative to the age of the soils. The cross site variability of Hg soil pools was not sensitive to the local Hg deposition history but rather related to the capacity of soil to store and stabilize organic matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akerblom, S., Meili, M., Bringmark, L., Johansson, K., Kleja, D. B., & Bergkvist, B. (2008). Partitioning of Hg between solid and dissolved organic matter in the humus layer of boreal forests. Water, Air, and Soil Pollution, 189, 239–252.

    Article  Google Scholar 

  • Amirbahman, A., & Fernandez, I. J. (2012). The Role of Soils in Storage and Cycling of Mercury. In M. S. Bank (Ed.), Mercury in the environment: pattern and process (pp. 99–118). Berkeley: University of California Press.

    Chapter  Google Scholar 

  • Amirbahman, A., Ruck, P. L., Fernandez, I. J., Haines, T. A., & Kahl, J. A. (2004). The effect of fire on mercury cycling in the soils of forested watersheds: Acadia National Park, Maine, USA. Water, Air, and Soil Pollution, 152, 315–331.

    Article  Google Scholar 

  • Bishop, K.H., & Lee, Y.H. (1997). Catchments as a source of mercury/methylmercury in boreal surface waters. A. Sigel & H. Sigel (Eds.), metal ions in biological systems; mercury and its effect on environment and biology (pp. 113-127). New York: Marcel Dekker Inc

  • Bushey, J. T., Nallana, A. G., Montesdeoca, M. R., & Driscoll, C. T. (2008). Mercury dynamics of a northern hardwood canopy. Atmospheric Environment, 42, 6905–6914.

    Article  CAS  Google Scholar 

  • Demers, J.D., Yavitt, J.B., Driscoll, C.T., Montesdeoca, M.R. (2013). Legacy mercury and stoichiometry with C, N, and S in soil, pore water, and stream water across the upland–wetland interface: The influence of hydrogeologic setting. Journal of Geophysical Research: Biogeosciences 118, doi:10.1002/jgrg.20066

  • Demers, J. D., Driscoll, C. T., Fahey, T. J., & Yavitt, J. B. (2007). Mercury cycling in litter and soil in different forest types in the Adirondack region, New York, USA. Ecological Applications, 17, 1341–1351.

    Article  Google Scholar 

  • Denkenberger, J. S., Driscoll, C. T., Branfireun, B. A., Eckley, C. S., Cohen, M., & Selvendiran, P. A. (2012). Synthesis of rates and controls on elemental mercury evasion in the Great Lakes Basin. Environmental Pollution, 161, 291–298.

    Article  CAS  Google Scholar 

  • EMEP, (2012). Database of the EMEP Centre on Emission Inventories and Projections (CEIP) www.ceip.at Accessed January 2013.

  • Ettler, V., Navrátil, T., Mihaljevič, M., Rohovec, J., Zuna, M., Šebek, M., et al. (2008). Mercury deposition/accumulation rates in the vicinity of a lead smelter as recorded by a peat deposit. Atmospheric Environment, 42, 5968–5977.

    Article  CAS  Google Scholar 

  • Ettler, V., Rohovec, J., Navrátil, T., & Mihaljevič, M. (2007). Mercury distribution in soil profiles polluted by lead smelting. Bulletin of Environmental Contamination and Toxicology, 78, 12–16.

    Article  Google Scholar 

  • Fottová, D., & Skořepová, I. (1998). Changes in mass element fluxes and their importance for critical loads: GEOMON network, Czech Republic. Water, Air, and Soil Pollution, 105, 365–376.

    Article  Google Scholar 

  • Fröberg, M., Jardine, P. M., Hanson, P. J., Swanston, C. W., Todd, D. E., Tarver, J. R., & Garten, C. T., Jr. (2007). Low dissolved organic carbon input from fresh litter to deep mineral soils. Soil Science Society of America Journal, 71, 347–354.

    Article  Google Scholar 

  • Graydon, J. A., St. Louis, V. L., Lindberg, S. E., Sandilands, K. A., Rudd, J. W. M., Kelly, C. A., Harris, R., Tate, M. T., Krabbenhoft, D. P., Emmerton, C. A., Asmath, H., & Richardson, M. (2012). The role of terrestrial vegetation in atmospheric Hg deposition: pools and fluxes of spike and ambient Hg from the METAALICUS experiment. Global Biogeochemical Cycles, 26, GB1022.

    Article  Google Scholar 

  • Grigal, D. F. (2003). Mercury sequestration in forests and peatlands: a review. Journal of Environmental Quality, 32, 393–405.

    Article  CAS  Google Scholar 

  • Gustin, M. S., Lindberg, S. E., Austin, K., Coolbaugh, M., Vette, A., & Zhang, H. (2000). Assessing the contribution of natural sources to regional atmospheric mercury budgets. Science of the Total Environment, 259, 61–71.

    Article  CAS  Google Scholar 

  • Hagedorn, F., Kammer, A., Schmidt, M. W. I., & Goodale, C. L. (2012). Nitrogen addition alters mineralization dynamics of 13C depleted leaf and twig litter and reduces leaching of older DOC from mineral soil. Global Change Biology, 18, 1412–1427.

    Article  Google Scholar 

  • Hall, B. D., & St. Louis, V. L. (2004). Methylmercury and total mercury in plant litter decomposing in upland forests and flooded landscapes. Environmental Science and Technology, 38, 5010–5021.

    Article  CAS  Google Scholar 

  • Harris, R. C., Rudd, J. W. M., Amyot, M., Babiarz, C. L., Beaty, K. G., Blanchfield, P. J., et al. (2007). Whole-ecosystem study shows rapid fish–mercury response to changes in mercury deposition. Proceedings of the National Academy of Sciences, 104, 16586–16591.

    Article  CAS  Google Scholar 

  • Hintelmann, H., Harris, R., Heyes, A., Hurley, J., Kelly, C., Krabbenhoft, D., Lindberg, S., Rudd, J., Scott, K., & St. Louis, V. (2002). Reactivity and mobility of new and old mercury deposition in a boreal forest ecosystem during the first year of the METAALICUS study. Environmental Science and Technology, 36, 5034–5040.

    Article  CAS  Google Scholar 

  • Hruška, J., & Krám, P. (2003). Modelling long-term changes in stream water and soil chemistry in catchments with contrasting vulnerability to acidification (Lysina and Pluhuv Bor, Czech Republic). Hydrology and Earth System Sciences, 7, 525–539.

    Article  Google Scholar 

  • Juillerat, J. I., Ross, D. S., & Bank, M. S. (2012). Mercury in litterfall and upper soil horizons in forested ecosystems in Vermont, USA. Environmental Toxicology and Chemistry, 31, 1720–1729.

    Article  CAS  Google Scholar 

  • Kalbitz, K., & Kaiser, K. (2008). Contribution of dissolved organic matter to carbon storage in forest soils. Journal of Plant Nutrition and Soil Science, 171, 52–60.

    Article  CAS  Google Scholar 

  • Kaste, J. M., Bostick, B. C., Heimsath, A. M., Steinnes, E., & Friedland, A. J. (2011). Using atmospheric fallout to date organic horizon layers and quantify metal dynamics during decomposition. Geochimica et Cosmochimica Acta, 75, 1642–1661.

    Article  CAS  Google Scholar 

  • Klaminder J., Bindler R., Rydberg J., & Renberg, I. (2008). Is there a chronological record of atmospheric mercury and lead deposition preserved in the mor layer (O-horizon) of boreal forest soils? Geochimica et Cosmochimica Acta, 72, 703–712.

    Google Scholar 

  • Kopáček, J., & Veselý, J. (2005). Sulfur and nitrogen emissions in the Czech Republic and Slovakia from 1850 till 2000. Atmospheric Environment, 39, 2179–2188.

    Article  Google Scholar 

  • Krám, P., Hruška, J., Driscoll, C. T., Johnson, C. E., & Oulehle, F. (2009a). Long-term changes in aluminum fractions of drainage waters in two forest catchments with contrasting lithology. Journal of Inorganic Biochemistry, 103, 1465–1472.

    Article  Google Scholar 

  • Krám, P., Hruška, J., & Shanley, J. B. (2012). Streamwater chemistry in three contrasting monolithologic catchments. Applied Geochemistry, 27, 1854–1863.

    Article  Google Scholar 

  • Krám, P., Hruška, J., Wenner, B. S., Driscoll, C. T., & Johnson, C. E. (1997). The biogeochemistry of basic cations in two forest catchments with contrasting lithology in the Czech Republic. Biogeochemistry, 37, 173–202.

    Article  Google Scholar 

  • Krám, P., Oulehle, F., Štědrá, V., Hruška, J., Shanley, J. B., Minocha, R., & Traister, E. (2009b). Geoecology of a forest watershed underlain by serpentine in central Europe. Northeastern Naturalist, 16, 309–328.

    Article  Google Scholar 

  • Nasr, M., & Arp, P. A. (2011). Hg concentrations and accumulations in fungal fruiting bodies, as influenced by forest soil substrates and moss carpets. Applied Geochemistry, 26, 1905–1917.

    Article  CAS  Google Scholar 

  • Navrátil, T., Hojdová, M., Rohovec, J., Penížek, V., & Vařilová, Z. (2009). Effect of fire on pools of mercury in forest soil, central Europe. Bulletin of Environmental Contamination and Toxicology, 83, 269–274.

    Article  Google Scholar 

  • Navrátil, T., Kurz, D., Krám, P., Hofmeister, J., & Hruška, J. (2007). Acidification and recovery of soil at a heavily impacted forest catchment (Lysina, Czech Republic)—SAFE modeling and field results. Ecological Modeling, 205, 464–474.

    Article  Google Scholar 

  • Navrátil, T., Rohovec, J., Hojdová, M., & Vach, M. (2011). Spring snowmelt and mercury export from a forested catchment in the Czech Republic, Central Europe. Bulletin of Environmental Contamination and Toxicology, 86, 670–675.

    Article  Google Scholar 

  • Navrátil, T., Vach, M., Norton, S. A., Skřivan, P., Hruška, J., & Maggini, L. (2003). Chemical response of a small stream in a forested catchment (central Czech Republic) to a short-term in-stream acidification. Hydrology and Earth System Sciences, 7, 411–423.

    Article  Google Scholar 

  • Novák, M., Buzek, F., Harrison, A. F., Přechová, E., Jačková, I., & Fottová, D. (2003). Similarity between C, N and S stable isotope profiles in European spruce forest soils: implications for the use of delta S-34 as a tracer. Applied Geochemistry, 18, 765–779.

    Article  Google Scholar 

  • Novák, M., Kirchner, J., Fottová, D., Přechová, E., Jačková, I., Krám, P., & Hruška, J. (2005). Isotopic evidence for processes of sulfur retention/release in 13 forested catchments spanning a strong pollution gradient (Czech Republic, central Europe). Global Biogeochemical Cycles, 19, GB4012.

    Article  Google Scholar 

  • Obrist, D., Johnson, D.W., Lindberg, S. E., Luo, Y., Hararuk, O., Bracho, R. et al. (2011). Mercury distribution across 14 U.S. Forests. Part I: spatial patterns of concentrations in biomass, litter, and soils. Environmental Science and Technology, 3974-3981.

  • Obrist, D., Johnson, D. W., & Lindberg, S. E. (2009). Mercury concentrations and pools in four Sierra Nevada forest sites, and relationships to organic carbon and nitrogen. Biogeosciences, 6, 765–777.

    Article  CAS  Google Scholar 

  • Oulehle, F., Evans, C. D., Hofmeister, J., Krejci, R., Tahovska, K., Persson, T., Cudlin, P., & Hruska, J. (2011). Major changes in forest carbon and nitrogen cycling caused by declining sulphur deposition. Global Biogeochemical Cycles, 17, 3115–3129.

    Google Scholar 

  • Oulehle, F., McDowell, W. H., Aitkenhead-Peterson, J. A., Krám, P., Hruška, J., Navrátil, T., et al. (2008). Longterm trends in stream nitrate concentrations and losses across watersheds undergoing recovery from acidification in the Czech Republic. Ecosystems, 11, 410–425.

    Article  CAS  Google Scholar 

  • Pacyna, J. M., Pacyna, E. G., & Aas, W. (2009). Changes of emissions and atmospheric deposition of mercury, lead, and cadmium. Atmospheric Environment, 43, 117–127.

    Article  CAS  Google Scholar 

  • Pansu, M., & Gautheyrou, J. (2006). Handbook of soil analysis. Berlin: Springer.

    Book  Google Scholar 

  • Pilgrim, W., Poissant, L., & Trip, L. (2000). The Northeast states and Eastern Canadian provinces mercury study: a framework for action: summary of the Canadian chapter. Science of the Total Environment, 261, 177–184.

    Article  CAS  Google Scholar 

  • Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R. B., Friedli, H. R., Leaner, J., et al. (2010). Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmospheric Chemistry and Physics, 10, 5951–5964.

    Article  CAS  Google Scholar 

  • Pokharel, A. K., & Obrist, D. (2011). Fate of mercury in tree litter during decomposition. Biogeosciences, 8, 2507–2521.

    Article  CAS  Google Scholar 

  • Porębska, G., & Ostrowska, A. (2013). Assessment of C stock in forest soils in Poland over the last 30 years. Polish Journal of Environmental Studies, 22, 503–510.

    Google Scholar 

  • Rea, A. W., Lindberg, S. E., Scherbatskoy, T., & Keeler, G. J. (2002). Mercury accumulation in foliage over time in two northern mixed-hardwood forests. Water, Air, and Soil Pollution, 133, 49–67.

    Article  CAS  Google Scholar 

  • Ritchie, C. D., Richards, W., & Arp, P. A. (2006). Mercury in fog on the Bay of Fundy (Canada). Atmospheric Environment, 40, 6321–6328.

    Article  CAS  Google Scholar 

  • Rumpel, C., Kögel-Knabner, I., & Bruhn, F. (2002). Vertical distribution, age, and chemical composition of organic carbon in two forest soils of different pedogenesis. Organic Geochemistry, 33, 1131–1142.

    Article  CAS  Google Scholar 

  • Salminen, R., Batista, M. J., Bidovec, M., Demetriades, A., De Vivo, B., De Vos, W., Duris, M., et al. (2005). Geochemical Atlas of Europe. Part 1—background information, methodology and maps. Espoo: Geological Survey of Finland.

    Google Scholar 

  • Schimel, D. S., Braswell, B. H., Holland, E. A., McKeown, R., Ojima, D. S., Painter, T. H., Parton, W. J., & Townsend, A. R. (1994). Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Global Biogeochemical Cycles, 8, 279–293.

    Article  CAS  Google Scholar 

  • Schwesig, D., & Matzner, E. (2000). Pools and fluxes of mercury and methylmercury in two forested catchments in Germany. Science of the Total Environment, 260, 213–223.

    Article  CAS  Google Scholar 

  • Schwesig, D., & Matzner, E. (2001). Dynamics of mercury and methylmercury in forest floor and runoff of a forested watershed in Central Europe. Biogeochemistry, 53, 181–200.

    Article  CAS  Google Scholar 

  • Schwesig, D., Ilgen, G., & Matzner, E. (1999). Mercury and methylmercury in upland and wetland forest soils of a watershed in NE-Bavaria, Germany. Water, Air, and Soil Pollution, 113, 141–154.

    Article  CAS  Google Scholar 

  • Shanley, J. B., & Bishop, K. (2012). Mercury cycling in terrestrial watersheds. In M. S. Bank (Ed.), Mercury in the environment: pattern and process (pp. 119–142). Berkeley and Los Angeles: University of California Press.

    Chapter  Google Scholar 

  • Sheehan, K. D., Fernandez, I. J., Kahl, J. S., & Amirbahman, A. (2006). Litterfall mercury in two forested watersheds at Acadia Nation Park, Maine, USA. Water, Air, and Soil Pollution, 170, 249–265.

    Article  CAS  Google Scholar 

  • Skyllberg, U., Bloom, P. R., Qian, J., Lin, C.-M., & Bleam, W. F. (2006). Complexation of mercury(II) in soil organic matter: EZAFs evidence for linear two-coordination with reduced sulfur groups. Environmental Science and Technology, 40, 4174–4180.

    Article  CAS  Google Scholar 

  • Skyllberg, U., Qian, J., Frech, W., Xia, K., & Bleam, W. F. (2003). Distribution of mercury, methyl mercury and organic sulphur species in soil, soil solution and stream of a boreal forest catchment. Biogeochemistry, 64, 53–76.

    Article  CAS  Google Scholar 

  • Suchara, I., & Sucharová, J. (2000). Distribution of long-term accumulated atmospheric deposition loads of metal and sulphur compounds in the Czech Republic determined through forest floor humus analyses. Results of the International Biomonitoring Programme (1995). Acta Pruhoniciana, 69, 1–177.

    Google Scholar 

  • Suchara, I., & Sucharová, J. (2002). Distribution of sulphur and heavy metals in forest floor humus of the Czech Republic. Water, Air, and Soil Pollution, 136, 289–316.

    Article  CAS  Google Scholar 

  • Sucharová, J., & Suchara, I. (2004). Distribution of 36 element deposition rates in a historic mining and smelting area as determined through fine-scale biomonitoring techniques. Part I: relative and absolute current atmospheric deposition levels detected through moss analyses. Water Air and Soil Pollution, 153, 205–228.

    Article  Google Scholar 

  • Szopka, K., Karczewska, A., & Kabala, C. (2011). Mercury accumulation in the surface layers of mountain soils: a case study from the Karkonosze Mountains, Poland. Chemosphere, 83, 1507–1512.

    Article  CAS  Google Scholar 

  • Torn, M. S., Trumbore, S. E., Chadwick, O. A., Vitousek, P. M., & Hendricks, D. M. (1997). Mineral control of soil organic carbon storage and turnover. Nature, 389, 170–173.

    Article  CAS  Google Scholar 

  • Yu, X., Driscoll, C.T., Warby, R.A.F., Montesdeoca, M., Johnson C.E. (2013). Soil mercury and its response to atmospheric mercury deposition across the northeastern United States. Ecological Applications, Online.

  • Zhang, Y., Jaegle, L., van Donkelaar, A., Martin, R. V., Holmes, C. D., Amos, H. M., et al. (2012). Nested-grid simulation of mercury over North America. Atmospheric Chemistry and Physics, 12, 6095–6111.

    Article  CAS  Google Scholar 

  • Zuna, M., Ettler, V., Šebek, O., & Mihaljevič, M. (2012). Mercury accumulation in peatbogs at Czech sites with contrasting pollution histories. Science of the Total Environment, 424, 322–330.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Main financial support for this research has been provided by the Czech Science Foundation Project No. P210-11-1369. We are very thankful to Světlana Hubičková and Irena Dobešová for sample processing and laboratory treatment. We appreciate the work of Ondřej Šebek at the Laboratories of Faculty of Science Charles University performing sulfur analyses. Supporting information for site LIZ was kindly provided by Miroslav Tesař and for sites LYS and PLB by Pavel Krám.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Navrátil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navrátil, T., Shanley, J., Rohovec, J. et al. Distribution and Pools of Mercury in Czech Forest Soils. Water Air Soil Pollut 225, 1829 (2014). https://doi.org/10.1007/s11270-013-1829-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1829-1

Keywords

Navigation