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Abstract
In an open world with a long-tail distribution of input samples, Deep Neural Networks (DNNs) may make unpredictable 
mistakes for Out-of-Distribution (OOD) inputs at test time, despite high levels of accuracy obtained during model training. 
OOD detection can be an effective runtime assurance mechanism for safe deployment of machine learning algorithms in 
safety–critical applications such as medical imaging and autonomous driving. A large number of OOD detection algorithms 
have been proposed in recent years, with a wide range of performance metrics in terms of accuracy and execution time. For 
real-time safety–critical applications, e.g., autonomous driving, timing performance is of great importance in addition to accu-
racy. We perform a comprehensive and systematic benchmark study of multiple OOD detection algorithms in terms of both 
accuracy and execution time on different hardware platforms, including a powerful workstation and a resource-constrained 
embedded device, equipped with both CPU and GPU. We also profile and analyze the internal details of each algorithm to 
identify the performance bottlenecks and potential for GPU acceleration. This paper aims to provide a useful reference for 
the practical deployment of OOD detection algorithms for real-time safety–critical applications.
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1  Introduction

Deep Neural Networks (DNNs) trained with Deep Learn-
ing are widely used in many application domains today, 
including safety–critical autonomous systems, e.g., such as 
Autonomous Vehicles (AVs), esp. for environment percep-
tion. The high complexity of modern DNNs causes them to 
be blackbox-like with little insight of their internal workings, 
and their complexity and opaqueness pose significant chal-
lenges to high levels of safety certification with traditional 
Verification and Validation techniques. Furthermore, large 

DNNs often lack strong generalization capability beyond the 
training data distribution. Consider the perception system 
of an AV, which faces an open world with a long-tail dis-
tribution of input samples that may be Out-of-Distribution 
(OOD), i.e., the training and testing data may not be i.i.d 
(independent and identically distributed), and a test data 
sample at runtime may fall outside of the statistical distri-
bution of the training dataset. Such distribution shifts may 
cause sharp drops in the classification accuracy of DNNs, as 
the typical softmax-based classifier often gives incorrect yet 
over-confident predictions for OOD inputs. A well-trained 
DNN may achieve high accuracy for In-Distribution (ID) 
inputs, but may fail catastrophically when faced with OOD 
inputs, with potentially serious safety consequences. One 
solution is to develop accurate OOD detection algorithms [1] 
as part of a runtime assurance architecture to achieve high 
levels of safety certification for autonomous systems with 
DNN-based perception systems. Instead of blindly trust-
ing the prediction results, the perception system equipped 
with an OOD detector should “fail loudly” by declaring “I 
don’t know” upon encountering OOD inputs, so the system 
knows that the DNN’s prediction result can no longer be 
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trusted. The higher-level safety supervision system may sub-
sequently take corrective measures to ensure safety.

A large number of different OOD detection algorithms 
have been proposed in recent years. Some benchmarking 
studies exist that focus on the accuracy of OOD detection 
algorithms [2]. For real-time safety–critical applications, 
e.g., autonomous driving, timing performance is of great 
importance in addition to accuracy. In this paper, we perform 
a comprehensive and systematic benchmark study of multi-
ple OOD detection algorithms in terms of both accuracy and 
execution time on different hardware platforms, including a 
powerful workstation and a resource-constrained embedded 
device, equipped with both CPU and GPU. We also profile 
and analyze the internal details of each algorithm to identify 
the performance bottlenecks and potential for GPU accelera-
tion. This paper aims to provide a reference for the practi-
cal deployment of OOD detection algorithms for real-time 
safety–critical applications, to help the designer choose the 
most appropriate OOD detection algorithm based on appli-
cation requirements and hardware platform capability.

This paper is structured as follows: we present the back-
ground and related work in Section 2; the experimental setup 
in Section 3; results and analysis in Section 4; and finally, 
conclusions and future work in Section 5.

2 � Background and Related Work 

Let X  be the input space and Y the label space. A parametric 
machine learning model, e.g., a DNN, is defined as a map-
ping function f� ∶ X → Y from the input space to the label 
space with learnable parameters � . Given a set of n training 
samples {

(
x1, y1

)
,… ,

(
xn, yn

)
} , which are drawn from the 

training distribution Ptr(X, Y) , the supervised learning prob-
lem is to find an optimal model that can generalize best on 
data drawn from test distribution Pte(X, Y)):

The conventional machine learning assumption is that 
the training samples and test samples are both i.i.d. reali-
zations from a common underlying distribution, that is, 
Ptr(X, Y) = Pte(X, Y) . Given this assumption, Empirical Risk 
Minimization (ERM), which minimizes the average loss on 
training samples LERM =

1

n

∑n

i
l
�
f�
�
xi
�
, yi

�
 , can be used to 

train a machine learning model that can generalize well to 
the test distribution.

However, in real application scenarios, the test distribu-
tion may shift/deviate from the training distribution, that 
is, Ptr(X, Y) ≠ Pte(X, Y) . The distribution shift may be due 
to different reasons, such as dataset sample selection bias, 
changes in the natural environment, or even adversarial 
attacks. The problem of OOD detection is detecting when a 

(1)f ∗
�
= argminf��(X,Y)∼Pte

[
l
(
f�(X), Y

)]

test input is sampled from Pte(X, Y) which is different from 
the training distribution Ptr(X, Y). (The related problem of 
OOD generalization [3] is defined as the instantiation of 
supervised learning problem where the test distribution 
Pte(X, Y) shifts from the training distribution Ptr(X, Y) and 
remains unknown during the training phase.) For a given 
input x and model f� , an OOD detection algorithm is a 
binary classifier that computes an OOD score (or anomaly 
score) S

(
x, f�

)
 and compares it to a given threshold � , i.e., 

input x is OOD if S
(
x, f�

)
≥ � . The threshold � is typically 

chosen so that a large fraction of ID data (e.g., 95%) is 
correctly classified. A threshold-independent metric, e.g., 
AUROC (Area Under the Receiver Operating Characteristics 
curve), can be used to remove the dependence on the thresh-
old th for evaluating classification accuracy.

A large number of OOD detection algorithms have been 
developed in recent years, with different OOD score func-
tions. Most authors consider the detection accuracy, but few 
studies focus on the issue of execution time, which is impor-
tant for real-time embedded systems with limited comput-
ing and memory resources [4, 5]. Yang et al. [2] present 
a unified codebase called OpenOOD for comprehensive 
benchmarking of different OOD detection algorithms. They 
can be categorized into classification-based, density-based, 
distance-based, and reconstruction-based methods. In this 
paper, we perform timing performance measurements for 13 
post-hoc OOD detection algorithms, including:

1.	 Classification-based: MSP, ODIN, MLS, KL-Matching, 
VIM, GradNorm, DICE, ReAct.

2.	 Density-based: EBO, OpenMax.
3.	 Distance-based: MDS, KNN, Gram.

We focus on the post-hoc OOD detection algorithms that 
work with pre-trained DNNs, since they are more suitable 
for real-world practice without the expensive training pro-
cess and/or need for OOD samples in other approaches, e.g., 
training-time regularization and training with outlier expo-
sure [2]. We do not consider reconstruction-based methods 
based on generative models, e.g., Generative Adversarial 
Networks (GANs) [6], Autoencoders (AEs) incl. Variational 
Autoencoders (VAEs) [7], which rely on the discrepancy of 
reconstruction errors between ID and OOD input samples, 
as their accuracy and execution time metrics are dependent 
on the architecture and size of the generative model, hence 
difficult to quantify and compare with the other methods in 
a general sense. Similarly, we do not consider distance-based 
methods based on monitoring hidden layers with outlier 
detection algorithms [8, 9], since their accuracy and execu-
tion time metrics are dependent on the number of monitored 
layers and (highly-configurable) size/complexity of the out-
lier detection method.
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Below is a brief introduction to the selected OOD algorithms.

	 1.	 Hendrycks and Gimpel [10] propose Maximum Soft-
max Probability (MSP), based on the idea that the 
DNN softmax score reflects the confidence of the 
DNN model on the test input. The higher the MSP 
(the highest softmax score among all classes), the more 
likely the test data is ID, and vice versa. Therefore, 
we can use a threshold of softmax score to determine 
whether the current test input is OOD. MSP is widely 
used as the comparison baseline method due to its sim-
plicity [11], but it may not be very accurate, since a 
DNN often outputs incorrect yet overconfident predic-
tions for OOD data, i.e., the ranges of softmax scores 
of ID and OOD data often overlap with each other.

	 2.	 Liang et al. [12] propose ODIN, which uses softmax 
with temperature as confidence on perturbed inputs, 
based on the observation that temperature scaling and 
adding small perturbations to the input image can sepa-
rate the softmax score distributions between ID and 
OOD inputs, allowing for more effective OOD detection.

	 3.	 Hendrycks et al. [13] propose MaxLogit (MLS), which 
uses the negative of the maximum unnormalized logit 
for an anomaly score −max

k
f (x)k . Unlike the softmax 

scores that are normalized to sum to 1, the logits are 
unnormalized, hence they are not affected by the num-
ber of classes and can serve as a better comparison 
baseline than MSP [10] for OOD detection.

	 4.	 Hendrycks et al. [13] propose KL-Matching, which 
works by capturing the typical shape of each class's 
posterior distribution and forming posterior distribu-
tion templates for each class. During test time, the net-
work's softmax posterior distribution is compared to 
these templates to compute the anomaly score.

	 5.	 Wang et  al. [14] propose Virtual-logit Matching 
(VIM), which combines the class-agnostic score from 
feature space and the ID class-dependent logits. An 
additional logit representing the virtual OOD class is 
generated from the residual of the feature against the 
principal space and then matched with the original log-
its by constant scaling. The probability of this virtual 
logit after softmax is the indicator of OOD-ness.

	 6.	 Huang et al. [15] propose GradNorm, using infor-
mation extracted from the gradient space. GradNorm 
directly employs the vector norm of gradients, back-
propagated from the Kullback–Leibler (KL) diver-
gence between the softmax score and a uniform prob-
ability distribution. The key idea is that the magnitude 
of gradients is higher for ID data than that for OOD 
data, making it informative for OOD detection.

	 7.	 Sun et al. [16] propose Directed Sparsification (DICE). 
The key idea is to rank weights based on a measure 

of contribution, and selectively use the most salient 
weights to derive the output for OOD detection, based 
on the insight that reliance on unimportant weights and 
units can attribute to the brittleness of OOD detection.

	 8.	 Sun et al. [17] propose ReAct, which works by clipping 
the activation value that exceeds a certain threshold, 
and then keeping the activations within a certain range 
based on the observation that abnormally high activa-
tions on OOD data can harm their detection.

	 9.	 Liu et al. [18] propose Energy-Based OOD detection 
(EBO) using energy scores. Unlike softmax confidence 
scores, energy scores are theoretically aligned with the 
probability density of the inputs and are less suscepti-
ble to the overconfidence issue. Within this framework, 
energy can be flexibly used as a scoring function for any 
pre-trained DNN as well as a trainable cost function to 
shape the energy surface explicitly for OOD detection.

	10.	 Bendale and Boult [19] propose a new model layer 
OpenMax, which estimates the probability of an 
input being from an unknown class. A key element of 
estimating the unknown probability is adapting Meta-
Recognition concepts to the activation patterns in the 
penultimate layer of the network, to reject unrelated 
open set images.

	11.	 Lee et  al. [20] propose the Mahalanobis Distance 
(MDS) algorithm. It computes layer-wise Mahalanobis 
distances from class-conditional feature distributions, 
which are used to train a Logistic Regression classifier.

	12.	 Sun et al. [21] propose K-Nearest Neighbor (KNN)-
based OOD detection, which computes the k-th nearest 
neighbor (KNN) distance between the embeddings of 
the test input and the embeddings of the training set 
and compares it to a threshold.

	13.	 Sastry et al. [22] propose Gram, by computing Gram 
Matrices at every layer and checking for anomalously 
high or low values by comparing each value with its 
respective range observed over the training data.

3 � Experimental Setup

We consider two well-known benchmark datasets, namely 
Mnist [23] and Cifar10 [24]. We consider two types of OOD 
datasets: Near-OOD datasets only have semantic shift com-
pared with ID datasets, while Far-OOD datasets further 
contain obvious covariate (domain) shift [2]. In the Mnist 
benchmark, the ID dataset is the Mnist dataset, the Near-
OOD datasets include NotMnist [25], FashionMnist [26], 
and the Far-OOD datasets include Texture [27], Cifar10 
[24], TinyImageNet [28], and Places365 [29], respectively. 
The DNN architecture is LeNet [30]. For all datasets, the 
input image is resized to the uniform size of 28 × 28 × 3. In 



1358	 Journal of Signal Processing Systems (2023) 95:1355–1370

1 3

the Cifar10 benchmark, the ID dataset is the Cifar10 data-
set, the Near-OOD datasets include Cifar100 [31], TinyIma-
geNet, and the Far-OOD datasets include Mnist, SVHN [32], 
Texture, and Places365, respectively. The DNN architecture 
is ResNet-18 [33]. For all datasets, the input image is resized 
to the uniform size of 32 × 32 × 3. Table 1 shows the dataset 
details, including the dataset names and their sizes (number 
of data items in the dataset).

We consider two hardware platforms, one powerful deep 
learning workstation platform, and one resource-constrained 
embedded device (Jetson Nano 2 GB). Their technical speci-
fications are shown in Table 2. We use the following abbre-
viations: JSNCPU for Jetson Nano CPU; JSNGPU for Jet-
son Nano GPU; WSCPU for Workstation CPU; WSGPU 
for Workstation GPU. In our measurements, we only use one 
GPU on the workstation even though it is equipped with two 
GPUs. The Deep Learning workstation has separate CPU 
memory of size 125 GB and GPU memory of size 11 GB, 
whereas Jetson Nano has a unified memory of size 2 GB, 
shared between the CPU and the GPU. We adopt batchsize 
128 for the Mnist benchmark, and 32 for the Cfar10 bench-
mark, based on the maximum batchsize that can fit on the 
Jetson Nano device. For each benchmark, we measure the 
total execution time of the entire testset and divide it by the 
testset size to obtain the execution time of each instance, as 
reported in this paper.

We consider two performance metrics: for OOD detection 
accuracy, we consider the AUROC; for the execution time 
metric, we measure the average execution time for one input 
sample on either CPU or GPU, obtained by dividing the 
total execution time of the entire test dataset by the number 

of data items in the dataset. Common to all OOD detection 
algorithms is one forward inference for the DNN to obtain 
the feature f (x) (the logits) in the penultimate layer, and then 
compute either the softmax scores with a softmax layer, or a 
one-hot prediction result with a hard max function over the 
logits. In Section 4.1, we measure the total execution time, 
which includes both the DNN forward inference time to 
compute f (x) , and the OOD detection time, which includes 
the final softmax or hard max function as part of it. (The 
most time-consuming part of the DNN forward inference is 
the convolutional layers plus zero or more fully-connected 
layers to compute f (x) . Since the final softmax or hard max 
function consumes a tiny fraction of the total inference time, 
and it is often inter-mixed within the OOD detection code, 
we count it as part of the OOD detection time.) The latency 
due to OOD detection is computed by subtracting one for-
ward inference time from the total execution time. In Sec-
tion 4.2, we report the execution time percentage of OOD 
detection, defined in Eq. (2):

We control a code section to run on the CPU or GPU by 
placing the relevant tensor data structures on the CPU or 
GPU with calls to torch.Tensor.cpu() and torch.
Tensor.cuda(), respectively. While DNN forward infer-
ence can run on either the CPU or the GPU, the OOD detec-
tion code can always be on the CPU, but not always on the 
GPU, since many OOD detection algorithms invoke APIs 
defined in the NumPy library [34] or the Scikit-learn library 
[35] that may or may not be supported on the GPU. When 
we denote a timing measurement on JSNGPU or WSGPU, 
the implication is that the DNN forward inference always 
runs on the GPU, whereas the OOD detection code runs on 
the GPU whenever possible for maximum acceleration, but 
sometimes it must run on the CPU due to lack of GPU sup-
port in Scikit-learn. In other words, we can always change 
any statement torch.Tensor.cuda() into torch.
Tensor.cpu(), but not vice versa. If DNN forward 
inference and OOD detection are run on different processing 
units (GPU and CPU, respectively), then the OOD detection 
time measured on the workstation may include additional 
memory transfer delays between the separate CPU memory 
and GPU memory, which are typically quite short for our use 
case of OOD detection, since the transferred data sizes are 
not very large. In our experiments, for timing measurements 
on the GPU, we use the original source code in OpenOOD, 
where the DNN forward inference step always runs on the 
GPU, and the OOD detection algorithm may run (partially 
or fully) on the GPU; for timing measurements on the CPU, 
we replace all calls to torch.Tensor.cuda() with 
torch.Tensor.cpu().

(2)OODpercent =
(Total time − one DNN inference time)

Total time

Table 1   ID and OOD datasets for the two benchmarks with Mnist or 
Cifar10 as the ID dataset.

Bench-
mark

Type Dataset name Dataset size

Mnist ID Mnist 9004
Near-OOD NotMnist 17,724

FashionMnist 10,000
Far-OOD Texture 5640

Cifar10 10,000
Tin 10,000
Places365 36,500

Cifar10 ID Cifar10 9000
Near-OOD Cifar100 9000

Tin 8793
Far-OOD Mnist 70,000

SVHN 26,032
Texture 5640
Places365 35,195
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For a code section that runs on the CPU, we use the fol-
lowing code fragment to measure its execution time [36]:

For a code section that runs on the GPU, we use the follow-
ing code fragment to measure its execution time [36]:

Since cuda operations are asynchronous and return immedi-
ately, the code uses a combination of torch.cuda.
Event(), a synchronization marker, and torch.cuda.
synchronize(), a directive for waiting for the event to 
complete. Based on documentation of PyTorch, torch.
cuda.synchronize() “waits until the completion of 
all work currently captured in this event. This prevents the 
CPU thread from proceeding until the event completes.”

If a code section contains a mixture of code that runs 
on both CPU and GPU, we use timer.time() to meas-
ure its total execution time, while adding torch.cuda.
synchronize() just before the second call to timer.
time(), to wait for the completion of all the code execu-
tions on the GPU before calculating the time interval length. 
This situation is quite common in OOD detection algo-
rithms, as some parts of the algorithm must run on the CPU 
due to lack of library support on the GPU, while some parts 
may be run on the GPU for maximum acceleration.

4 � Results and Analysis

In this section, we present execution time measurements in 
Section 4.1; execution time percentage of OOD detection in 
Section 4.2; detailed measurements of different components 
of OOD detection algorithms in Section 4.3; and AUROC 
vs. execution time in Section 4.4.

4.1 � Execution Time Measurements

4.1.1 � Mnist as ID Dataset

Figure 1(a), (b) show the results on JSNCPU and JSNGPU, 
respectively (note the different timescale on the y-axis, since 
GPU is much faster than CPU). We can see that MDS, Gram, 
and ODIN are the most time-consuming on the CPU. Gram 
is time-consuming since it involves multiplication operations 
of higher-order Gram matrices. MDS and ODIN both incur 
two DNN forward inferences and one back-propagation of 
gradients for input preprocessing of adding a small pertur-
bation to the input image. Back-propagation of gradients is 
quite time-consuming, esp. on the CPU (roughly twice the 
time cost of one forward inference), which explains their 
high execution times. GPU helps achieve significant speed-
ups for MDS and ODIN relative to running on the CPU, esp. 
thanks to the speedup of the back-propagation step, hence 
they are no longer in the top three most time-consuming 
algorithms on the GPU. Instead, Gram, GradNorm and KNN 
are the most time-consuming algorithms on the GPU.

Figure 1(c) shows the results on WSCPU. The most time-
consuming algorithms are still MDS, ODIN, and Gram, but 
the relative differences from the other algorithms are less 
pronounced. Figure 1(d) shows the results on WSGPU, 
which show similar trends as the case of the JSNGPU.

4.1.2 � Cifar10 as ID Dataset

From Fig. 2(a), (c), we can see that MDS and ODIN are 
the most time-consuming on both JSNCPU and WSCPU: 
their execution times are increased significantly compared to 
the Mnist benchmark due to the increase in the input image 
size and the more complex DNN model architecture in the 

Table 2   Hardware 
Configuration of Two  
Platforms.

Deep Learning Workstation CPU: AMD Ryzen Threadripper 2990WX 32-Core Processor. Clock 
speed: 3.0 GHz

GPU: 2 × GeForce RTX 2080 Ti GPU
CPU memory: 125 GB, GPU memory: 11 GB

NVIDIA Jetson Nano 2 GB CPU: Quad-core ARM A57 Processor. Clock speed: 1.43 GHz
GPU: 128-core Maxwell GPU
Unified memory: 2 GB
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Cifar10 benchmark. The other algorithms have similar execu-
tion times. (Gram runs out of memory on Jetson Nano due 
to the larger input image size (32 × 32x3) and larger DNN 
architecture (ResNet-18) in the Cifar10 benchmark relative to 
the Mnist benchmark (28 × 28x3, LeNet), for both JSNCPU 
and JSNGPU, hence it is not shown in Fig. 2(a), (b)).

From Fig. 2(b), (d), we can see that the differences among 
different algorithms become more pronounced on the GPU than 
on the CPU. MDS and ODIN are the most time-consuming on 
the JSNGPU, whereas Gram, MDS, and KNN are the most 
time-consuming on WSGPU.

4.2 � Execution Time Percentage of OOD Detection

In this section, we report the execution time percentage of 
OOD detection as defined in Eq. (2).

4.2.1 � Mnist as ID Dataset

Figure 3 shows the results for the Mnist benchmark. From 
Fig. 3(a), we can see that Gram has the highest percentage 
of 78.9%, followed by ODIN, MDS and KNN on JSNCPU. 
Figure 3(c) shows similar trends on WSCPU, with minor 

differences from Fig. 3(a). The percentages for the other 
algorithms are quite low, indicating their relative computa-
tion efficiency.

Figure  3(b), (d) shows the results on JSNGPU and 
WSGPU. Since GPU helps achieve a significant speedup 
of the DNN forward inference step, but not for most OOD 
detection algorithms, which may run on the CPU (partially 
or fully). Hence OOD detection accounts for a significantly 
larger proportion of the total execution time compared to 
CPU execution for most algorithms, reaching close to 100% 
in some cases (e.g., Gram). This highlights the importance 
of optimizing the computation efficiency of OOD detection 
algorithms, esp. for smaller DNNs with fast inference times.

4.2.2 � Cifar10 as ID Dataset

Figure 4 shows the results for the Cifar10 benchmark. Com-
pared to Fig. 3 for the Mnist benchmark, the execution time 
percentages of most OOD detection algorithms on both 
GPU and GPU are reduced compared to the Mnist bench-
mark, since the DNN forward inference time of ResNet-18 is 
much larger than that of LeNet. The reduction effect is less 
pronounced for ODIN and MDS, since they both incur two 

Figure 1   Average execution time with Mnist as the ID dataset.
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DNN forward inferences and one back-propagation of gradi-
ents, which are all accelerated by adopting a more powerful 
CPU or switching from CPU to GPU.

4.3 � Time Measurements of Different Components 
of OOD Detection Algorithms 

In this section, we use the Cifar10 benchmark to further 
investigate the effect of GPU acceleration on the different 
components of seven OOD detection algorithms that are 
more time-consuming, including ODIN, KL-Matching, 
GradNorm, OpenMax, MDS, KNN, and Gram. The other 
algorithms are quite simple and efficient, according to our 
measurement results in Sections 4.1 and 4.2, hence not con-
sidered in this section. We do not consider the Mnist bench-
mark, since the LeNet architecture for the Mnist benchmark 
is quite small and is less practically relevant compared to the 
ResNet-18 architecture for the Cifar10 benchmark.

As mentioned in Section 3, for timing measurements on 
the GPU, the DNN forward inference step always runs on the 
GPU, and the OOD detection algorithm may run (partially 
or fully) on the GPU. In this section, in the columns marked 

“JSNGPU” and “WSGPU” of the tables containing timing 
measurement results: if an algorithm component runs fully 
on the GPU, then we do not add any annotation; if an algo-
rithm component runs fully on the CPU, then we add the 
annotation “(on CPU)” next to its execution time measure-
ment; if an algorithm component contains a mixture of code 
that runs on both CPU and GPU, then we add the annotation 
“(on CPU/GPU)”.

4.3.1 � ODIN

ODIN (Liang et al. [12]) improves upon MSP [10] based 
on the observation that using temperature scaling and input 
preprocessing of adding small perturbations to the input can 
help separate the softmax score distributions between ID and 
OOD inputs, allowing for more effective detection. ODIN 
includes three steps: one DNN forward inference (Inf); one 
back-propagation of gradients to apply a small perturbation 
to the input (Backprop) as input preprocessing; and finally 
another DNN forward inference (Inf) to compute the MSP 
of the perturbed input.

Figure 2   Average execution time with Cifar10 as the ID dataset. (Gram is not shown in (a), (b), since it runs out of memory on Jetson Nano).
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Step 1: For input x , perform one DNN forward inference 
to compute the softmax score for each class with tem-
perature scaling:

where N is the number of classes; fi(x) is the logit value 
for class i.
Step 2: Preprocess the input by applying a small perturba-
tion to it, computed by back-propagating the gradient of 
the cross-entropy loss w.r.t the input:

where the parameter � is the perturbation magnitude.
Step 3: For the preprocessed input x̃  , perform another 
DNN forward inference to compute the softmax score for 
each class Si

(
x̃;T

)
 , and compare the MSP to a threshold � . 

The input x is classified as OOD if the MSP is less than � , 
which indicates that the DNN is not confident about the 
classification result.

(3)Si(x; T) =
exp

�
fi(x)

T

�

∑N

j=1
exp

�
fj(x)

T

�

(4)x̃ = x − �sign
(
−∇xlogSŷ(x; T)

)

From Table 3, we can see that on both Jetson Nano and 
Workstation platforms, GPU achieves significant accelera-
tion for all three steps, including two (DNN forward infer-
ence plus softmax) steps and one back-propagation step.

4.3.2 � KL‑Matching

KL-Matching (Hendrycks et al. [13]) captures the typical 
shape of each class’s posterior distribution and forms poste-
rior distribution templates for each class. During test time, 
the network’s softmax posterior distribution is compared to 
these templates to compute the anomaly score. More con-
cretely, we compute k different distributions dk , one for each 
class, on the validation dataset Xval , denoting the posterior 
distribution template for class k.

For each test input x , we perform forward inference (Inf) 
to obtain the softmax scores p(y|x) , then compute the anomaly 

(5)dk = �x
�
∼Xval

[p(y|x�

)],

where k = argmaxk p (y = k|x�

)

Figure 3   Execution time percentage of OOD for the Mnist benchmark.
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score as the minimum KL Divergence (KLD) among all 
classes min

k
KL[p(y|x)||dk] , i.e., KLD to the posterior distri-

bution template dk of the class k that is closest to p(y|x).
Unlike ODIN, which can execute entirely on the CPU or 

entirely on the GPU, KL-Matching must run on the CPU 
since uses some Scikit-learn functions not supported by the 
GPU (specifically, the function pairwise_distances_
argmin_min()). From Table 4, we can see that the KLD 
step has a slightly longer execution time when the Inf step 
is run on the GPU (in columns JSNGPU and WSGPU) due 
to switching from GPU execution to CPU execution. But the 
calculation in the KLD step is relatively simple and takes 
little time, and running Inf on the GPU helps to significantly 
reduce the overall execution time compared to running it on 
the CPU on each platform.

4.3.3 � GradNorm

GradNorm (Huang et al. [15]) works as follows: we first 
perform DNN forward inference, then compute the gradi-
ents w.r.t. each parameter by backpropagating the KL diver-
gence between the softmax score and a uniform distribu-
tion � =

[
1∕C, 1∕C, ..., 1∕C

]
 . The predictive probability 

distribution is the softmax score. The KL divergence for 
backpropagation is:

where the first term is the cross-entropy loss between the 
softmax score distribution and the uniform distribution u, 

(6)DKL(�� �sof tmax(f(x))) = −
1

C

C�

c=1

log
e

fc(x)

T

∑C

j=1
e

fj (x)

T

− H(�)

Figure 4   Execution time percentage of OOD detection for the Cifar10 benchmark. (Gram is not shown in (a), (b), since it runs out of memory 
on Jetson Nano).

Table 3   Execution time of different components of ODIN (time unit: ms).

ODIN JSNCPU JSNGPU WSCPU WSGPU

Inf + softmax 52.92 5.89 4.19 0.12
Backprop 195.98 13.30 6.36 0.28
Inf + softmax 58.14 5.95 3.18 0.14

Table 4   Execution time of different components of KL Matching 
(time unit: ms).

KL-Matching JSNCPU JSNGPU WSCPU WSGPU

Inf 51.82 5.90 5.60 0.14
KLD 0.80 0.87 (on CPU) 0.16 0.17 (on CPU)
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and the second term H(u) is the entropy of u (a constant). 
The KL divergence measures how much the predictive dis-
tribution deviates from the uniform distribution. ID data is 
expected to have a larger KL divergence because the predic-
tion tends to concentrate on the ground-truth class and is 
thus distributed less uniformly.

For a given parameter w , the gradient of the above KL 
divergence is:

where LCE is the Cross-Entropy loss for classification.
The Gradient Norm (GradNorm) is defined via a vector 

norm of gradients of the selected parameters:

where ‖‖p denotes the Lp-norm, and � is the set of param-
eters in vector form. The GradNorm is higher for ID inputs 
than for OOD inputs.

When the Inf step runs on the GPU. the implementation 
of GradNorm consists of a mixture of CPU execution and 
GPU execution steps. From Table 5, we can see that the 
GradNorm step has a slightly longer execution time when 
the Inf step is run on the GPU (in columns JSNGPU and 
WSGPU) due to switching between GPU execution and CPU 
execution, but the overall execution time is still reduced sig-
nificantly on the GPU compared to the CPU.

4.3.4 � OpenMax

The OpenMax algorithm (Bendale and Boult [19]) replaces 
the conventional softmax layer with the OpenMax layer. We 
first perform DNN forward inference (Inf) until the penulti-
mate layer. In the OpenMax layer, we use the Weibull CDF 
probability on the distance between x and �i for the core of 
the rejection estimation. The model �i is computed using 
the images associated with category i, images that were 
classified correctly (top-1) during the training process. We 
compute weights for the � largest activation classes and use 
it to scale the Weibull CDF probability. We then compute 
a revised activation vector with the top scores changed. We 
compute a pseudo-activation for the unknown unknown 
class with index 0, keeping the total activation level con-
stant. Including the unknown unknown class, the OpenMax 
probabilities are computed with the revised activation vector.

(7)�

�w
DKL(u||sof tmax(f (x))) =

1

C

C∑

i=1

�LCE(f (x), i)

�w

(8)S(x) = ‖ �

��
DKL(u��sof tmax(f (x)))‖

p

From Table 6, we can draw similar conclusions as KL-
Matching and GradNorm.

4.3.5 � MDS

MDS (Lee et al. [20]) is a parametric distance-based method 
that works as follows: in the training phase, we obtain a 
generative classifier, assuming that each class-conditional 
distribution follows the multivariate Gaussian distribu-
tion in the feature space. Specifically, we define C class-
conditional Gaussian distributions with a tied covariance ∑

: P(f (x)�y = c) = N(f (x)��c,
∑
) where �c is the mean of 

multivariate Gaussian distribution of class c�{1,… ,C} . 
To estimate the parameters of the generative classifier 
from the pre-trained softmax classifier, we compute the 
empirical class mean and covariance of training samples {(
x1, y1

)
,… ,

(
xN , yN

)}
:

where Nc is the number of training samples with label c.
During inference, for each layer l ∈ {1,… , L} , three steps 

are run, including one DNN forward inference (Inf); one 
back-propagation of gradients to apply a small perturbation 
to the input (Backprop); and finally another DNN forward 
inference (Inf) to compute the confidence score.

Step 1: Find the closest class as measured by Mahalano-
bis distance (Inf and M-Dis):

Step 2: Apply a small perturbation to the test input (Backprop):

�̂c =
1

Nc

∑

i∶yi=c

f (xi),

∑̂
=

1

N

∑

c

∑

i∶yi=c

(
f
(
xi
)
− �̂c

)(
f
(
xi
)
− �̂c

)T

(9)ĉ = argminc
�
fl(x) − �̂l,c

�T ∑̂−1

l

�
fl(x) − �̂l,c

�

Table 5   Execution time of 
different components of 
GradNorm (time unit: ms).

GradNorm JSNCPU JSNGPU WSCPU WSGPU

Inf 50.89 5.89 5.64 0.14
GradNorm 1.15 2.78 (on CPU/GPU) 0.29 0.55 (on CPU/GPU)

Table 6   Execution time of different components of OpenMax (time 
unit: ms).

OpenMax JSNCPU JSNGPU WSCPU WSGPU

Inf 53.82 5.50 5.64 0.14
OpenMax 1.94 1.97 (on CPU/

GPU)
0.28 0.22 (on CPU/

GPU)
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Step 3: Compute confidence score (Inf and M-Dis):

Finally, return confidence score for the input as 
∑

l �l Ml.
One tunable hyperparameter in MDS is the set of layer 

indices for computing the feature ensemble, as the confi-
dence scores are extracted from every end of residual blocks 
of ResNet with the specified layer indices. In our experi-
ments, we set L = 3 , i.e., the set of layer indices l ∈ {1, 2, 3} 

(10)x̂ = x − �sign(∇x

�
fl(x) − �̂l,̂c

�T ∑̂−1

l

�
fl(x) − �̂l,̂c

�
)

(11)Ml = max
c

−
�
fl
�
x̂
�
− �̂l,c

�T ∑̂−1

l

�
fl
�
x̂
�
− �̂l,c

�

refer to the first 3 residual blocks in ResNet-18. From 
Table 7, we can see that the Inf and Backprop steps take 
much longer than the other algorithms, and Backprop steps 
take less time than Inf steps since they start from intermedi-
ate layers. GPU achieves significant acceleration for both 
the Inf and Backprop steps, and also the overall algorithm.

4.3.6 � KNN

MDS is based on the assumption that samples of each class 
form a Gaussian distribution in the feature space, which 
may not always hold true. KNN-based OOD detection 
(Sun et al. [21]) is a non-parametric distance-based method 

Table 7   Execution time of 
different components of MDS 
(time unit: ms).

MDS JSNCPU JSNGPU WSCPU WSGPU

Inf 147.16 17.69 10.30 0.35
M-Dis 2.07 0.68 (on CPU/GPU) 0.19 0.09 (on CPU/GPU)
Backprop 149.73 8.68 4.69 0.29
Inf 173.67 18.10 9.44 0.39
M-Dis 0.33 0.70 (on CPU/GPU) 0.11 0.09 (on CPU/GPU)

Figure 5   AUROC vs. execution time with Mnist as the ID dataset, Near-OOD as the OOD dataset.
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that does not impose such distributional assumptions. It is 
based on the normalized feature vector z = f (x)∕‖f (x)‖2 
in the penultimate layer. We first collect feature vectors 
ℤn = (z1, z2,… , zn) for each input xi in the training dataset 
Din . In the testing stage, we first perform forward inference 
(Inf) to obtain the normalized feature vector z∗ from input 
x∗ (Norm), then calculate the Euclidean distances ‖zi − z∗‖

2
 

w.r.t. embedding vectors zi ∈ ℤn ; reorder ℤn in the order 
of increasing distance ‖zi − z∗‖

2
 . Denote the reordered data 

sequence as ℤ�
n = (z(1), z(2),… , z(n)) . OOD detection is based 

on the following decision function:

where rk(z∗) = ‖z∗ − z(k)‖2 is the distance to the k-th near-
est neighbor, and 1{} is the indicator function. The threshold 

(12)G(z∗;k) = 1
{
−rk(z

∗) ≥ �
}

� is chosen so that a large fraction of ID data (e.g., 95%) is 
correctly classified.

The implementation of KNN relies on the open-source 
library Faiss [37] for efficient similarity search and cluster-
ing of dense vectors. We can specify Faiss to run on either 
the CPU or the GPU, and the GPU implementation can 
accept input from either CPU or GPU memory (if they are 
separate). From Table 8, we can see that GPU achieves a 
small acceleration for the KNN step on both platforms.

4.3.7 � Gram

Gram (Sastry et al. [22]) uses higher-order Gram matrices to 
compute pairwise feature correlations between the channels 
of each layer of a DNN.

Table 8   Execution time of different components of KNN (time unit: ms).

KNN JSNCPU JSNGPU WSCPU WSGPU

Inf 55.65 5.93 5.56 0.15
KNN 9.04 7.48 1.24 0.89

Table 9   Execution time of 
different components of Gram on 
the workstation (time unit: ms).

Gram WSCPU WSGPU

Inf 4.46 0.15
Gram_M 2.13 0.26

(on CPU)
Deviation 1.74 1.24

Figure 6   AUROC vs. execution time with Mnist as the ID dataset, Far-OOD as the OOD dataset.
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We use Fl(x) to denote the feature map at the l-th layer for 
input image x . It is stored in a matrix of dimension nl × pl , 
where nl is the number of channels at the l-th layer and pl , 
the number of activation values per channel, is the height 
times the width of the feature map. The p-th order Gram 
matrix is computed using Fp

l
 , where the power of Fl is com-

puted element-wise:

We use Gp

l
 to denote the flattened upper (or lower) trian-

gular matrix along with the diagonal entries. We set p = 5 
in our experiments.

Gram consists of three steps. It first extracts the feature 
vector Fl(x) from input x ; then for each of the layers, com-
putes Gp

l
 (Gram_M) on the CPU, then computes layer-wise 

deviations (Deviation) of the input from the input images 
seen at training time, as the percentage change w.r.t the 
maximum or minimum values of feature co-occurrences, 
on the GPU.

Table 9 shows the results on the workstation only, since 
Gram runs out of memory on Jetson Nano. We can see that 

(13)G
p

l
=
(
F
p

l
F
p

l

T
) 1

p

GPU helps achieve significant acceleration for each of the 
three steps of Gram.

4.4 � AUROC vs. Execution Time

In this section, we plot both the metrics of AUROC and exe-
cution time in the same figure to have a more complete picture 
of the overall performance in terms of both metrics. We state 
that algorithm A dominates algorithm B if A has both higher 
AUROC and shorter execution time than B, i.e., A lies on the 
left and on the top of B in subsequent figures. Therefore, the 
algorithm on the upper-left corner dominates all the others 
(if there exists one).

4.4.1 � Mnist Near‑OOD Benchmark

Figure 5 shows the results when the ID dataset is Mnist, and 
the OOD datasets are Near-OOD.

From Figure 5(a), (c), we can see that on JSNCPU and 
WSCPU, MDS lies in the upper right corner, with the high-
est AUROC and longest execution time. VIM and MLS lie in 
the upper left corner, and outperform most other algorithms 

Figure 7   AUROC vs. execution time with Cifar10 as the ID dataset, Near-OOD as the OOD dataset. (Gram is not shown in (a)(b), since it runs 
out of memory on Jetson Nano.)
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in both AUROC and execution time. Gram has relatively low 
AUROC and medium execution time.

From Figure 5(b), (d), we can see that on JSNGPU and 
WSGPU, MDS has the highest AUROC and relatively short 
execution time, thanks to the significant acceleration effect 
of the GPU. Gram performs poorly with the lowest AUROC 
and longest execution time.

4.4.2 � Mnist Far‑OOD Benchmark

Figure 6 shows the results when the ID dataset is Mnist, and 
the OOD datasets are Far-OOD.

From Figure 6(a), (c), we can see that on JSNCPU and 
WSCPU, MDS lies close to the upper right corner, with rela-
tively high AUROC and long execution times. Gram has the 
highest AUROC and medium execution time.

From Figure 6(b), (d), we can see that on JSNGPU and 
WSGPU, Gram lies in the upper right corner, with the highest 
AUROC and longest execution time. While Gram is signifi-
cantly accelerated by GPU, MDS is accelerated even more.

4.4.3 � Cifar10 Near‑OOD Benchmark

Figure 7 shows the results when the ID dataset is Cifar10, 
and the OOD datasets are Near-OOD.

From Figure 7(a), (c), we can see that on JSNCPU and 
WSCPU, MDS has medium AUROC and the longest execu-
tion time. From Fig. 7(d), we can see that on WSGPU, Gram 
is the most time-consuming algorithm. 

4.4.4 � Cifar10 Far‑OOD Benchmark

Figure 8 shows the case when the ID dataset is Cifar10, and 
the OOD datasets are Far-OOD.

From Fig.  8(a), (c), we can see that on JSNCPU and 
WSCPU, MDS lies close to the upper right corner, with rela-
tively high AUROC and long execution times. From Fig. 8(d), 
we can see that on WSGPU, Gram is the most time-consuming 
algorithm. 

Figure 8   AUROC vs. execution time with Cifar10 as the ID dataset, Far-OOD as the OOD dataset. (Gram is not shown in (a)(b), since it runs 
out of memory on Jetson Nano.)
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4.5 � Discussions

We make the following observations from our experimental 
results:

1.	 Overall, no OOD detection algorithm consistently domi-
nates all the others, and there is no monotonic correla-
tion between accuracy and execution time, i.e., a more 
time-consuming algorithm may not necessarily outper-
form another simple-and-efficient algorithm, and the 
algorithm accuracy is dependent on multiple factors, 
incl. DNN architectures and hyperparameters, ID and 
OOD datasets, etc. This observation is consistent with 
Tajwar et al. [38], who showed that none of the three 
OOD detection algorithms (MSP, ODIN, and MDS) is 
consistently better than the others on a standardized set 
of 16 (ID, OOD) pairs.

2.	 While there is no consistent winner, we can observe 
from Figs. 5, 6, 7, and 8 (AUROC vs. execution time) 
that several algorithms form a tight cluster in the upper 
left corner, with relatively high AUROC values and low 
execution times, including MSP, EBO, MLS, VIM, and 
React. Hence they can be the safe choice of OOD detec-
tion algorithms for most application scenarios. KNN, 
Gram, and MDS can generally achieve high AUROC, 
but they have relatively long execution times.

3.	 GPU helps achieve significant acceleration for the DNN 
forward inference and back-propagation of gradients, 
hence OOD detection algorithms such as MDS and 
ODIN benefit the most from GPU acceleration, since 
they both incur two DNN forward inferences and one 
back-propagation of gradients.

5 � Conclusions and Future Work

OOD detection is an important topic for the practical deploy-
ment of DNNs in safety–critical applications. During the 
actual deployment, the designer needs to select the most 
appropriate OOD detection algorithm according to applica-
tion requirements and available hardware resources. In this 
paper, we carry out comprehensive and systematic bench-
marking and evaluation of both accuracy and execution time 
metrics of well-known OOD detection algorithms on dif-
ferent hardware platforms, to provide a useful reference for 
the system designer in choosing the most appropriate OOD 
detection algorithm for given application requirements and 
hardware capability.

All the DNN models and OOD detection algorithms 
studied in this paper are implemented in Python, which 
is an interpreted language that is much slower than com-
piled languages such as C/C ++. For practical deploy-
ment on resource-constrained embedded platforms, it may  

be necessary to perform model compression [39–41], and 
compile the DNNs into efficient executable code with a 
Deep Learning compiler framework [42]. This also requires 
the OOD score function to be converted from Python to 
C/C ++ to be used in conjunction with the compiled DNN.
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