
Vol.:(0123456789)1 3

Journal of Signal Processing Systems (2023) 95:1355–1370
https://doi.org/10.1007/s11265-023-01852-0

Timing Performance Benchmarking of Out‑of‑Distribution Detection
Algorithms

Siyu Luan1 · Zonghua Gu1 · Amin Saremi1 · Leonid Freidovich1 · Lili Jiang2 · Shaohua Wan3

Received: 13 December 2022 / Revised: 18 January 2023 / Accepted: 28 January 2023 / Published online: 23 March 2023
© The Author(s) 2023

Abstract
In an open world with a long-tail distribution of input samples, Deep Neural Networks (DNNs) may make unpredictable
mistakes for Out-of-Distribution (OOD) inputs at test time, despite high levels of accuracy obtained during model training.
OOD detection can be an effective runtime assurance mechanism for safe deployment of machine learning algorithms in
safety–critical applications such as medical imaging and autonomous driving. A large number of OOD detection algorithms
have been proposed in recent years, with a wide range of performance metrics in terms of accuracy and execution time. For
real-time safety–critical applications, e.g., autonomous driving, timing performance is of great importance in addition to accu-
racy. We perform a comprehensive and systematic benchmark study of multiple OOD detection algorithms in terms of both
accuracy and execution time on different hardware platforms, including a powerful workstation and a resource-constrained
embedded device, equipped with both CPU and GPU. We also profile and analyze the internal details of each algorithm to
identify the performance bottlenecks and potential for GPU acceleration. This paper aims to provide a useful reference for
the practical deployment of OOD detection algorithms for real-time safety–critical applications.

Keywords Machine Learning · Deep Learning · Out-of-Distribution detection · Real-time systems · Embedded systems

1 Introduction

Deep Neural Networks (DNNs) trained with Deep Learn-
ing are widely used in many application domains today,
including safety–critical autonomous systems, e.g., such as
Autonomous Vehicles (AVs), esp. for environment percep-
tion. The high complexity of modern DNNs causes them to
be blackbox-like with little insight of their internal workings,
and their complexity and opaqueness pose significant chal-
lenges to high levels of safety certification with traditional
Verification and Validation techniques. Furthermore, large

DNNs often lack strong generalization capability beyond the
training data distribution. Consider the perception system
of an AV, which faces an open world with a long-tail dis-
tribution of input samples that may be Out-of-Distribution
(OOD), i.e., the training and testing data may not be i.i.d
(independent and identically distributed), and a test data
sample at runtime may fall outside of the statistical distri-
bution of the training dataset. Such distribution shifts may
cause sharp drops in the classification accuracy of DNNs, as
the typical softmax-based classifier often gives incorrect yet
over-confident predictions for OOD inputs. A well-trained
DNN may achieve high accuracy for In-Distribution (ID)
inputs, but may fail catastrophically when faced with OOD
inputs, with potentially serious safety consequences. One
solution is to develop accurate OOD detection algorithms [1]
as part of a runtime assurance architecture to achieve high
levels of safety certification for autonomous systems with
DNN-based perception systems. Instead of blindly trust-
ing the prediction results, the perception system equipped
with an OOD detector should “fail loudly” by declaring “I
don’t know” upon encountering OOD inputs, so the system
knows that the DNN’s prediction result can no longer be

 * Zonghua Gu
 zonghua.gu@umu.se

 * Shaohua Wan
 shaohua.wan@ieee.org

1 Department of Applied Physics and Electronics, Umeå
University, Umeå, Sweden

2 Department of Computing Science, Umeå University, Umeå,
Sweden

3 Shenzhen Institute for Advanced Study, University
of Electronic Science and Technology of China, Shenzhen,
China

http://orcid.org/0000-0003-4228-2774
http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-023-01852-0&domain=pdf

1356 Journal of Signal Processing Systems (2023) 95:1355–1370

1 3

trusted. The higher-level safety supervision system may sub-
sequently take corrective measures to ensure safety.

A large number of different OOD detection algorithms
have been proposed in recent years. Some benchmarking
studies exist that focus on the accuracy of OOD detection
algorithms [2]. For real-time safety–critical applications,
e.g., autonomous driving, timing performance is of great
importance in addition to accuracy. In this paper, we perform
a comprehensive and systematic benchmark study of multi-
ple OOD detection algorithms in terms of both accuracy and
execution time on different hardware platforms, including a
powerful workstation and a resource-constrained embedded
device, equipped with both CPU and GPU. We also profile
and analyze the internal details of each algorithm to identify
the performance bottlenecks and potential for GPU accelera-
tion. This paper aims to provide a reference for the practi-
cal deployment of OOD detection algorithms for real-time
safety–critical applications, to help the designer choose the
most appropriate OOD detection algorithm based on appli-
cation requirements and hardware platform capability.

This paper is structured as follows: we present the back-
ground and related work in Section 2; the experimental setup
in Section 3; results and analysis in Section 4; and finally,
conclusions and future work in Section 5.

2 Background and Related Work

Let X be the input space and Y the label space. A parametric
machine learning model, e.g., a DNN, is defined as a map-
ping function f� ∶ X → Y from the input space to the label
space with learnable parameters � . Given a set of n training
samples {

(
x1, y1

)
,… ,

(
xn, yn

)
} , which are drawn from the

training distribution Ptr(X, Y) , the supervised learning prob-
lem is to find an optimal model that can generalize best on
data drawn from test distribution Pte(X, Y)):

The conventional machine learning assumption is that
the training samples and test samples are both i.i.d. reali-
zations from a common underlying distribution, that is,
Ptr(X, Y) = Pte(X, Y) . Given this assumption, Empirical Risk
Minimization (ERM), which minimizes the average loss on
training samples LERM =

1

n

∑n

i
l
�
f�
�
xi
�
, yi

�
 , can be used to

train a machine learning model that can generalize well to
the test distribution.

However, in real application scenarios, the test distribu-
tion may shift/deviate from the training distribution, that
is, Ptr(X, Y) ≠ Pte(X, Y) . The distribution shift may be due
to different reasons, such as dataset sample selection bias,
changes in the natural environment, or even adversarial
attacks. The problem of OOD detection is detecting when a

(1)f ∗
�
= argminf��(X,Y)∼Pte

[
l
(
f�(X), Y

)]

test input is sampled from Pte(X, Y) which is different from
the training distribution Ptr(X, Y). (The related problem of
OOD generalization [3] is defined as the instantiation of
supervised learning problem where the test distribution
Pte(X, Y) shifts from the training distribution Ptr(X, Y) and
remains unknown during the training phase.) For a given
input x and model f� , an OOD detection algorithm is a
binary classifier that computes an OOD score (or anomaly
score) S

(
x, f�

)
 and compares it to a given threshold � , i.e.,

input x is OOD if S
(
x, f�

)
≥ � . The threshold � is typically

chosen so that a large fraction of ID data (e.g., 95%) is
correctly classified. A threshold-independent metric, e.g.,
AUROC (Area Under the Receiver Operating Characteristics
curve), can be used to remove the dependence on the thresh-
old th for evaluating classification accuracy.

A large number of OOD detection algorithms have been
developed in recent years, with different OOD score func-
tions. Most authors consider the detection accuracy, but few
studies focus on the issue of execution time, which is impor-
tant for real-time embedded systems with limited comput-
ing and memory resources [4, 5]. Yang et al. [2] present
a unified codebase called OpenOOD for comprehensive
benchmarking of different OOD detection algorithms. They
can be categorized into classification-based, density-based,
distance-based, and reconstruction-based methods. In this
paper, we perform timing performance measurements for 13
post-hoc OOD detection algorithms, including:

1. Classification-based: MSP, ODIN, MLS, KL-Matching,
VIM, GradNorm, DICE, ReAct.

2. Density-based: EBO, OpenMax.
3. Distance-based: MDS, KNN, Gram.

We focus on the post-hoc OOD detection algorithms that
work with pre-trained DNNs, since they are more suitable
for real-world practice without the expensive training pro-
cess and/or need for OOD samples in other approaches, e.g.,
training-time regularization and training with outlier expo-
sure [2]. We do not consider reconstruction-based methods
based on generative models, e.g., Generative Adversarial
Networks (GANs) [6], Autoencoders (AEs) incl. Variational
Autoencoders (VAEs) [7], which rely on the discrepancy of
reconstruction errors between ID and OOD input samples,
as their accuracy and execution time metrics are dependent
on the architecture and size of the generative model, hence
difficult to quantify and compare with the other methods in
a general sense. Similarly, we do not consider distance-based
methods based on monitoring hidden layers with outlier
detection algorithms [8, 9], since their accuracy and execu-
tion time metrics are dependent on the number of monitored
layers and (highly-configurable) size/complexity of the out-
lier detection method.

1357Journal of Signal Processing Systems (2023) 95:1355–1370

1 3

Below is a brief introduction to the selected OOD algorithms.

 1. Hendrycks and Gimpel [10] propose Maximum Soft-
max Probability (MSP), based on the idea that the
DNN softmax score reflects the confidence of the
DNN model on the test input. The higher the MSP
(the highest softmax score among all classes), the more
likely the test data is ID, and vice versa. Therefore,
we can use a threshold of softmax score to determine
whether the current test input is OOD. MSP is widely
used as the comparison baseline method due to its sim-
plicity [11], but it may not be very accurate, since a
DNN often outputs incorrect yet overconfident predic-
tions for OOD data, i.e., the ranges of softmax scores
of ID and OOD data often overlap with each other.

 2. Liang et al. [12] propose ODIN, which uses softmax
with temperature as confidence on perturbed inputs,
based on the observation that temperature scaling and
adding small perturbations to the input image can sepa-
rate the softmax score distributions between ID and
OOD inputs, allowing for more effective OOD detection.

 3. Hendrycks et al. [13] propose MaxLogit (MLS), which
uses the negative of the maximum unnormalized logit
for an anomaly score −max

k
f (x)k . Unlike the softmax

scores that are normalized to sum to 1, the logits are
unnormalized, hence they are not affected by the num-
ber of classes and can serve as a better comparison
baseline than MSP [10] for OOD detection.

 4. Hendrycks et al. [13] propose KL-Matching, which
works by capturing the typical shape of each class's
posterior distribution and forming posterior distribu-
tion templates for each class. During test time, the net-
work's softmax posterior distribution is compared to
these templates to compute the anomaly score.

 5. Wang et al. [14] propose Virtual-logit Matching
(VIM), which combines the class-agnostic score from
feature space and the ID class-dependent logits. An
additional logit representing the virtual OOD class is
generated from the residual of the feature against the
principal space and then matched with the original log-
its by constant scaling. The probability of this virtual
logit after softmax is the indicator of OOD-ness.

 6. Huang et al. [15] propose GradNorm, using infor-
mation extracted from the gradient space. GradNorm
directly employs the vector norm of gradients, back-
propagated from the Kullback–Leibler (KL) diver-
gence between the softmax score and a uniform prob-
ability distribution. The key idea is that the magnitude
of gradients is higher for ID data than that for OOD
data, making it informative for OOD detection.

 7. Sun et al. [16] propose Directed Sparsification (DICE).
The key idea is to rank weights based on a measure

of contribution, and selectively use the most salient
weights to derive the output for OOD detection, based
on the insight that reliance on unimportant weights and
units can attribute to the brittleness of OOD detection.

 8. Sun et al. [17] propose ReAct, which works by clipping
the activation value that exceeds a certain threshold,
and then keeping the activations within a certain range
based on the observation that abnormally high activa-
tions on OOD data can harm their detection.

 9. Liu et al. [18] propose Energy-Based OOD detection
(EBO) using energy scores. Unlike softmax confidence
scores, energy scores are theoretically aligned with the
probability density of the inputs and are less suscepti-
ble to the overconfidence issue. Within this framework,
energy can be flexibly used as a scoring function for any
pre-trained DNN as well as a trainable cost function to
shape the energy surface explicitly for OOD detection.

 10. Bendale and Boult [19] propose a new model layer
OpenMax, which estimates the probability of an
input being from an unknown class. A key element of
estimating the unknown probability is adapting Meta-
Recognition concepts to the activation patterns in the
penultimate layer of the network, to reject unrelated
open set images.

 11. Lee et al. [20] propose the Mahalanobis Distance
(MDS) algorithm. It computes layer-wise Mahalanobis
distances from class-conditional feature distributions,
which are used to train a Logistic Regression classifier.

 12. Sun et al. [21] propose K-Nearest Neighbor (KNN)-
based OOD detection, which computes the k-th nearest
neighbor (KNN) distance between the embeddings of
the test input and the embeddings of the training set
and compares it to a threshold.

 13. Sastry et al. [22] propose Gram, by computing Gram
Matrices at every layer and checking for anomalously
high or low values by comparing each value with its
respective range observed over the training data.

3 Experimental Setup

We consider two well-known benchmark datasets, namely
Mnist [23] and Cifar10 [24]. We consider two types of OOD
datasets: Near-OOD datasets only have semantic shift com-
pared with ID datasets, while Far-OOD datasets further
contain obvious covariate (domain) shift [2]. In the Mnist
benchmark, the ID dataset is the Mnist dataset, the Near-
OOD datasets include NotMnist [25], FashionMnist [26],
and the Far-OOD datasets include Texture [27], Cifar10
[24], TinyImageNet [28], and Places365 [29], respectively.
The DNN architecture is LeNet [30]. For all datasets, the
input image is resized to the uniform size of 28 × 28 × 3. In

1358 Journal of Signal Processing Systems (2023) 95:1355–1370

1 3

the Cifar10 benchmark, the ID dataset is the Cifar10 data-
set, the Near-OOD datasets include Cifar100 [31], TinyIma-
geNet, and the Far-OOD datasets include Mnist, SVHN [32],
Texture, and Places365, respectively. The DNN architecture
is ResNet-18 [33]. For all datasets, the input image is resized
to the uniform size of 32 × 32 × 3. Table 1 shows the dataset
details, including the dataset names and their sizes (number
of data items in the dataset).

We consider two hardware platforms, one powerful deep
learning workstation platform, and one resource-constrained
embedded device (Jetson Nano 2 GB). Their technical speci-
fications are shown in Table 2. We use the following abbre-
viations: JSNCPU for Jetson Nano CPU; JSNGPU for Jet-
son Nano GPU; WSCPU for Workstation CPU; WSGPU
for Workstation GPU. In our measurements, we only use one
GPU on the workstation even though it is equipped with two
GPUs. The Deep Learning workstation has separate CPU
memory of size 125 GB and GPU memory of size 11 GB,
whereas Jetson Nano has a unified memory of size 2 GB,
shared between the CPU and the GPU. We adopt batchsize
128 for the Mnist benchmark, and 32 for the Cfar10 bench-
mark, based on the maximum batchsize that can fit on the
Jetson Nano device. For each benchmark, we measure the
total execution time of the entire testset and divide it by the
testset size to obtain the execution time of each instance, as
reported in this paper.

We consider two performance metrics: for OOD detection
accuracy, we consider the AUROC; for the execution time
metric, we measure the average execution time for one input
sample on either CPU or GPU, obtained by dividing the
total execution time of the entire test dataset by the number

of data items in the dataset. Common to all OOD detection
algorithms is one forward inference for the DNN to obtain
the feature f (x) (the logits) in the penultimate layer, and then
compute either the softmax scores with a softmax layer, or a
one-hot prediction result with a hard max function over the
logits. In Section 4.1, we measure the total execution time,
which includes both the DNN forward inference time to
compute f (x) , and the OOD detection time, which includes
the final softmax or hard max function as part of it. (The
most time-consuming part of the DNN forward inference is
the convolutional layers plus zero or more fully-connected
layers to compute f (x) . Since the final softmax or hard max
function consumes a tiny fraction of the total inference time,
and it is often inter-mixed within the OOD detection code,
we count it as part of the OOD detection time.) The latency
due to OOD detection is computed by subtracting one for-
ward inference time from the total execution time. In Sec-
tion 4.2, we report the execution time percentage of OOD
detection, defined in Eq. (2):

We control a code section to run on the CPU or GPU by
placing the relevant tensor data structures on the CPU or
GPU with calls to torch.Tensor.cpu() and torch.
Tensor.cuda(), respectively. While DNN forward infer-
ence can run on either the CPU or the GPU, the OOD detec-
tion code can always be on the CPU, but not always on the
GPU, since many OOD detection algorithms invoke APIs
defined in the NumPy library [34] or the Scikit-learn library
[35] that may or may not be supported on the GPU. When
we denote a timing measurement on JSNGPU or WSGPU,
the implication is that the DNN forward inference always
runs on the GPU, whereas the OOD detection code runs on
the GPU whenever possible for maximum acceleration, but
sometimes it must run on the CPU due to lack of GPU sup-
port in Scikit-learn. In other words, we can always change
any statement torch.Tensor.cuda() into torch.
Tensor.cpu(), but not vice versa. If DNN forward
inference and OOD detection are run on different processing
units (GPU and CPU, respectively), then the OOD detection
time measured on the workstation may include additional
memory transfer delays between the separate CPU memory
and GPU memory, which are typically quite short for our use
case of OOD detection, since the transferred data sizes are
not very large. In our experiments, for timing measurements
on the GPU, we use the original source code in OpenOOD,
where the DNN forward inference step always runs on the
GPU, and the OOD detection algorithm may run (partially
or fully) on the GPU; for timing measurements on the CPU,
we replace all calls to torch.Tensor.cuda() with
torch.Tensor.cpu().

(2)OODpercent =
(Total time − one DNN inference time)

Total time

Table 1 ID and OOD datasets for the two benchmarks with Mnist or
Cifar10 as the ID dataset.

Bench-
mark

Type Dataset name Dataset size

Mnist ID Mnist 9004
Near-OOD NotMnist 17,724

FashionMnist 10,000
Far-OOD Texture 5640

Cifar10 10,000
Tin 10,000
Places365 36,500

Cifar10 ID Cifar10 9000
Near-OOD Cifar100 9000

Tin 8793
Far-OOD Mnist 70,000

SVHN 26,032
Texture 5640
Places365 35,195

1359Journal of Signal Processing Systems (2023) 95:1355–1370

1 3

For a code section that runs on the CPU, we use the fol-
lowing code fragment to measure its execution time [36]:

For a code section that runs on the GPU, we use the follow-
ing code fragment to measure its execution time [36]:

Since cuda operations are asynchronous and return immedi-
ately, the code uses a combination of torch.cuda.
Event(), a synchronization marker, and torch.cuda.
synchronize(), a directive for waiting for the event to
complete. Based on documentation of PyTorch, torch.
cuda.synchronize() “waits until the completion of
all work currently captured in this event. This prevents the
CPU thread from proceeding until the event completes.”

If a code section contains a mixture of code that runs
on both CPU and GPU, we use timer.time() to meas-
ure its total execution time, while adding torch.cuda.
synchronize() just before the second call to timer.
time(), to wait for the completion of all the code execu-
tions on the GPU before calculating the time interval length.
This situation is quite common in OOD detection algo-
rithms, as some parts of the algorithm must run on the CPU
due to lack of library support on the GPU, while some parts
may be run on the GPU for maximum acceleration.

4 Results and Analysis

In this section, we present execution time measurements in
Section 4.1; execution time percentage of OOD detection in
Section 4.2; detailed measurements of different components
of OOD detection algorithms in Section 4.3; and AUROC
vs. execution time in Section 4.4.

4.1 Execution Time Measurements

4.1.1 Mnist as ID Dataset

Figure 1(a), (b) show the results on JSNCPU and JSNGPU,
respectively (note the different timescale on the y-axis, since
GPU is much faster than CPU). We can see that MDS, Gram,
and ODIN are the most time-consuming on the CPU. Gram
is time-consuming since it involves multiplication operations
of higher-order Gram matrices. MDS and ODIN both incur
two DNN forward inferences and one back-propagation of
gradients for input preprocessing of adding a small pertur-
bation to the input image. Back-propagation of gradients is
quite time-consuming, esp. on the CPU (roughly twice the
time cost of one forward inference), which explains their
high execution times. GPU helps achieve significant speed-
ups for MDS and ODIN relative to running on the CPU, esp.
thanks to the speedup of the back-propagation step, hence
they are no longer in the top three most time-consuming
algorithms on the GPU. Instead, Gram, GradNorm and KNN
are the most time-consuming algorithms on the GPU.

Figure 1(c) shows the results on WSCPU. The most time-
consuming algorithms are still MDS, ODIN, and Gram, but
the relative differences from the other algorithms are less
pronounced. Figure 1(d) shows the results on WSGPU,
which show similar trends as the case of the JSNGPU.

4.1.2 Cifar10 as ID Dataset

From Fig. 2(a), (c), we can see that MDS and ODIN are
the most time-consuming on both JSNCPU and WSCPU:
their execution times are increased significantly compared to
the Mnist benchmark due to the increase in the input image
size and the more complex DNN model architecture in the

Table 2 Hardware
Configuration of Two
Platforms.

Deep Learning Workstation CPU: AMD Ryzen Threadripper 2990WX 32-Core Processor. Clock
speed: 3.0 GHz

GPU: 2 × GeForce RTX 2080 Ti GPU
CPU memory: 125 GB, GPU memory: 11 GB

NVIDIA Jetson Nano 2 GB CPU: Quad-core ARM A57 Processor. Clock speed: 1.43 GHz
GPU: 128-core Maxwell GPU
Unified memory: 2 GB

1360 Journal of Signal Processing Systems (2023) 95:1355–1370

1 3

Cifar10 benchmark. The other algorithms have similar execu-
tion times. (Gram runs out of memory on Jetson Nano due
to the larger input image size (32 × 32x3) and larger DNN
architecture (ResNet-18) in the Cifar10 benchmark relative to
the Mnist benchmark (28 × 28x3, LeNet), for both JSNCPU
and JSNGPU, hence it is not shown in Fig. 2(a), (b)).

From Fig. 2(b), (d), we can see that the differences among
different algorithms become more pronounced on the GPU than
on the CPU. MDS and ODIN are the most time-consuming on
the JSNGPU, whereas Gram, MDS, and KNN are the most
time-consuming on WSGPU.

4.2 Execution Time Percentage of OOD Detection

In this section, we report the execution time percentage of
OOD detection as defined in Eq. (2).

4.2.1 Mnist as ID Dataset

Figure 3 shows the results for the Mnist benchmark. From
Fig. 3(a), we can see that Gram has the highest percentage
of 78.9%, followed by ODIN, MDS and KNN on JSNCPU.
Figure 3(c) shows similar trends on WSCPU, with minor

differences from Fig. 3(a). The percentages for the other
algorithms are quite low, indicating their relative computa-
tion efficiency.

Figure 3(b), (d) shows the results on JSNGPU and
WSGPU. Since GPU helps achieve a significant speedup
of the DNN forward inference step, but not for most OOD
detection algorithms, which may run on the CPU (partially
or fully). Hence OOD detection accounts for a significantly
larger proportion of the total execution time compared to
CPU execution for most algorithms, reaching close to 100%
in some cases (e.g., Gram). This highlights the importance
of optimizing the computation efficiency of OOD detection
algorithms, esp. for smaller DNNs with fast inference times.

4.2.2 Cifar10 as ID Dataset

Figure 4 shows the results for the Cifar10 benchmark. Com-
pared to Fig. 3 for the Mnist benchmark, the execution time
percentages of most OOD detection algorithms on both
GPU and GPU are reduced compared to the Mnist bench-
mark, since the DNN forward inference time of ResNet-18 is
much larger than that of LeNet. The reduction effect is less
pronounced for ODIN and MDS, since they both incur two

Figure 1 Average execution time with Mnist as the ID dataset.

1361Journal of Signal Processing Systems (2023) 95:1355–1370

1 3

DNN forward inferences and one back-propagation of gradi-
ents, which are all accelerated by adopting a more powerful
CPU or switching from CPU to GPU.

4.3 Time Measurements of Different Components
of OOD Detection Algorithms

In this section, we use the Cifar10 benchmark to further
investigate the effect of GPU acceleration on the different
components of seven OOD detection algorithms that are
more time-consuming, including ODIN, KL-Matching,
GradNorm, OpenMax, MDS, KNN, and Gram. The other
algorithms are quite simple and efficient, according to our
measurement results in Sections 4.1 and 4.2, hence not con-
sidered in this section. We do not consider the Mnist bench-
mark, since the LeNet architecture for the Mnist benchmark
is quite small and is less practically relevant compared to the
ResNet-18 architecture for the Cifar10 benchmark.

As mentioned in Section 3, for timing measurements on
the GPU, the DNN forward inference step always runs on the
GPU, and the OOD detection algorithm may run (partially
or fully) on the GPU. In this section, in the columns marked

“JSNGPU” and “WSGPU” of the tables containing timing
measurement results: if an algorithm component runs fully
on the GPU, then we do not add any annotation; if an algo-
rithm component runs fully on the CPU, then we add the
annotation “(on CPU)” next to its execution time measure-
ment; if an algorithm component contains a mixture of code
that runs on both CPU and GPU, then we add the annotation
“(on CPU/GPU)”.

4.3.1 ODIN

ODIN (Liang et al. [12]) improves upon MSP [10] based
on the observation that using temperature scaling and input
preprocessing of adding small perturbations to the input can
help separate the softmax score distributions between ID and
OOD inputs, allowing for more effective detection. ODIN
includes three steps: one DNN forward inference (Inf); one
back-propagation of gradients to apply a small perturbation
to the input (Backprop) as input preprocessing; and finally
another DNN forward inference (Inf) to compute the MSP
of the perturbed input.

Figure 2 Average execution time with Cifar10 as the ID dataset. (Gram is not shown in (a), (b), since it runs out of memory on Jetson Nano).

1362 Journal of Signal Processing Systems (2023) 95:1355–1370

1 3

Step 1: For input x , perform one DNN forward inference
to compute the softmax score for each class with tem-
perature scaling:

where N is the number of classes; fi(x) is the logit value
for class i.
Step 2: Preprocess the input by applying a small perturba-
tion to it, computed by back-propagating the gradient of
the cross-entropy loss w.r.t the input:

where the parameter � is the perturbation magnitude.
Step 3: For the preprocessed input x̃ , perform another
DNN forward inference to compute the softmax score for
each class Si

(
x̃;T

)
 , and compare the MSP to a threshold � .

The input x is classified as OOD if the MSP is less than � ,
which indicates that the DNN is not confident about the
classification result.

(3)Si(x; T) =
exp

�
fi(x)

T

�

∑N

j=1
exp

�
fj(x)

T

�

(4)x̃ = x − �sign
(
−∇xlogSŷ(x; T)

)

From Table 3, we can see that on both Jetson Nano and
Workstation platforms, GPU achieves significant accelera-
tion for all three steps, including two (DNN forward infer-
ence plus softmax) steps and one back-propagation step.

4.3.2 KL‑Matching

KL-Matching (Hendrycks et al. [13]) captures the typical
shape of each class’s posterior distribution and forms poste-
rior distribution templates for each class. During test time,
the network’s softmax posterior distribution is compared to
these templates to compute the anomaly score. More con-
cretely, we compute k different distributions dk , one for each
class, on the validation dataset Xval , denoting the posterior
distribution template for class k.

For each test input x , we perform forward inference (Inf)
to obtain the softmax scores p(y|x) , then compute the anomaly

(5)dk = �x
�
∼Xval

[p(y|x�

)],

where k = argmaxk p (y = k|x�

)

Figure 3 Execution time percentage of OOD for the Mnist benchmark.

1363Journal of Signal Processing Systems (2023) 95:1355–1370

1 3

score as the minimum KL Divergence (KLD) among all
classes min

k
KL[p(y|x)||dk] , i.e., KLD to the posterior distri-

bution template dk of the class k that is closest to p(y|x).
Unlike ODIN, which can execute entirely on the CPU or

entirely on the GPU, KL-Matching must run on the CPU
since uses some Scikit-learn functions not supported by the
GPU (specifically, the function pairwise_distances_
argmin_min()). From Table 4, we can see that the KLD
step has a slightly longer execution time when the Inf step
is run on the GPU (in columns JSNGPU and WSGPU) due
to switching from GPU execution to CPU execution. But the
calculation in the KLD step is relatively simple and takes
little time, and running Inf on the GPU helps to significantly
reduce the overall execution time compared to running it on
the CPU on each platform.

4.3.3 GradNorm

GradNorm (Huang et al. [15]) works as follows: we first
perform DNN forward inference, then compute the gradi-
ents w.r.t. each parameter by backpropagating the KL diver-
gence between the softmax score and a uniform distribu-
tion � =

[
1∕C, 1∕C, ..., 1∕C

]
 . The predictive probability

distribution is the softmax score. The KL divergence for
backpropagation is:

where the first term is the cross-entropy loss between the
softmax score distribution and the uniform distribution u,

(6)DKL(�� �sof tmax(f(x))) = −
1

C

C�

c=1

log
e

fc(x)

T

∑C

j=1
e

fj (x)

T

− H(�)

Figure 4 Execution time percentage of OOD detection for the Cifar10 benchmark. (Gram is not shown in (a), (b), since it runs out of memory
on Jetson Nano).

Table 3 Execution time of different components of ODIN (time unit: ms).

ODIN JSNCPU JSNGPU WSCPU WSGPU

Inf + softmax 52.92 5.89 4.19 0.12
Backprop 195.98 13.30 6.36 0.28
Inf + softmax 58.14 5.95 3.18 0.14

Table 4 Execution time of different components of KL Matching
(time unit: ms).

KL-Matching JSNCPU JSNGPU WSCPU WSGPU

Inf 51.82 5.90 5.60 0.14
KLD 0.80 0.87 (on CPU) 0.16 0.17 (on CPU)

1364 Journal of Signal Processing Systems (2023) 95:1355–1370

1 3

and the second term H(u) is the entropy of u (a constant).
The KL divergence measures how much the predictive dis-
tribution deviates from the uniform distribution. ID data is
expected to have a larger KL divergence because the predic-
tion tends to concentrate on the ground-truth class and is
thus distributed less uniformly.

For a given parameter w , the gradient of the above KL
divergence is:

where LCE is the Cross-Entropy loss for classification.
The Gradient Norm (GradNorm) is defined via a vector

norm of gradients of the selected parameters:

where ‖‖p denotes the Lp-norm, and � is the set of param-
eters in vector form. The GradNorm is higher for ID inputs
than for OOD inputs.

When the Inf step runs on the GPU. the implementation
of GradNorm consists of a mixture of CPU execution and
GPU execution steps. From Table 5, we can see that the
GradNorm step has a slightly longer execution time when
the Inf step is run on the GPU (in columns JSNGPU and
WSGPU) due to switching between GPU execution and CPU
execution, but the overall execution time is still reduced sig-
nificantly on the GPU compared to the CPU.

4.3.4 OpenMax

The OpenMax algorithm (Bendale and Boult [19]) replaces
the conventional softmax layer with the OpenMax layer. We
first perform DNN forward inference (Inf) until the penulti-
mate layer. In the OpenMax layer, we use the Weibull CDF
probability on the distance between x and �i for the core of
the rejection estimation. The model �i is computed using
the images associated with category i, images that were
classified correctly (top-1) during the training process. We
compute weights for the � largest activation classes and use
it to scale the Weibull CDF probability. We then compute
a revised activation vector with the top scores changed. We
compute a pseudo-activation for the unknown unknown
class with index 0, keeping the total activation level con-
stant. Including the unknown unknown class, the OpenMax
probabilities are computed with the revised activation vector.

(7)�

�w
DKL(u||sof tmax(f (x))) =

1

C

C∑

i=1

�LCE(f (x), i)

�w

(8)S(x) = ‖ �

��
DKL(u��sof tmax(f (x)))‖

p

From Table 6, we can draw similar conclusions as KL-
Matching and GradNorm.

4.3.5 MDS

MDS (Lee et al. [20]) is a parametric distance-based method
that works as follows: in the training phase, we obtain a
generative classifier, assuming that each class-conditional
distribution follows the multivariate Gaussian distribu-
tion in the feature space. Specifically, we define C class-
conditional Gaussian distributions with a tied covariance ∑

: P(f (x)�y = c) = N(f (x)��c,
∑
) where �c is the mean of

multivariate Gaussian distribution of class c�{1,… ,C} .
To estimate the parameters of the generative classifier
from the pre-trained softmax classifier, we compute the
empirical class mean and covariance of training samples {(
x1, y1

)
,… ,

(
xN , yN

)}
:

where Nc is the number of training samples with label c.
During inference, for each layer l ∈ {1,… , L} , three steps

are run, including one DNN forward inference (Inf); one
back-propagation of gradients to apply a small perturbation
to the input (Backprop); and finally another DNN forward
inference (Inf) to compute the confidence score.

Step 1: Find the closest class as measured by Mahalano-
bis distance (Inf and M-Dis):

Step 2: Apply a small perturbation to the test input (Backprop):

�̂c =
1

Nc

∑

i∶yi=c

f (xi),

∑̂
=

1

N

∑

c

∑

i∶yi=c

(
f
(
xi
)
− �̂c

)(
f
(
xi
)
− �̂c

)T

(9)ĉ = argminc
�
fl(x) − �̂l,c

�T ∑̂−1

l

�
fl(x) − �̂l,c

�

Table 5 Execution time of
different components of
GradNorm (time unit: ms).

GradNorm JSNCPU JSNGPU WSCPU WSGPU

Inf 50.89 5.89 5.64 0.14
GradNorm 1.15 2.78 (on CPU/GPU) 0.29 0.55 (on CPU/GPU)

Table 6 Execution time of different components of OpenMax (time
unit: ms).

OpenMax JSNCPU JSNGPU WSCPU WSGPU

Inf 53.82 5.50 5.64 0.14
OpenMax 1.94 1.97 (on CPU/

GPU)
0.28 0.22 (on CPU/

GPU)

1365Journal of Signal Processing Systems (2023) 95:1355–1370

1 3

Step 3: Compute confidence score (Inf and M-Dis):

Finally, return confidence score for the input as
∑

l �l Ml.
One tunable hyperparameter in MDS is the set of layer

indices for computing the feature ensemble, as the confi-
dence scores are extracted from every end of residual blocks
of ResNet with the specified layer indices. In our experi-
ments, we set L = 3 , i.e., the set of layer indices l ∈ {1, 2, 3}

(10)x̂ = x − �sign(∇x

�
fl(x) − �̂l,̂c

�T ∑̂−1

l

�
fl(x) − �̂l,̂c

�
)

(11)Ml = max
c

−
�
fl
�
x̂
�
− �̂l,c

�T ∑̂−1

l

�
fl
�
x̂
�
− �̂l,c

�

refer to the first 3 residual blocks in ResNet-18. From
Table 7, we can see that the Inf and Backprop steps take
much longer than the other algorithms, and Backprop steps
take less time than Inf steps since they start from intermedi-
ate layers. GPU achieves significant acceleration for both
the Inf and Backprop steps, and also the overall algorithm.

4.3.6 KNN

MDS is based on the assumption that samples of each class
form a Gaussian distribution in the feature space, which
may not always hold true. KNN-based OOD detection
(Sun et al. [21]) is a non-parametric distance-based method

Table 7 Execution time of
different components of MDS
(time unit: ms).

MDS JSNCPU JSNGPU WSCPU WSGPU

Inf 147.16 17.69 10.30 0.35
M-Dis 2.07 0.68 (on CPU/GPU) 0.19 0.09 (on CPU/GPU)
Backprop 149.73 8.68 4.69 0.29
Inf 173.67 18.10 9.44 0.39
M-Dis 0.33 0.70 (on CPU/GPU) 0.11 0.09 (on CPU/GPU)

Figure 5 AUROC vs. execution time with Mnist as the ID dataset, Near-OOD as the OOD dataset.

1366 Journal of Signal Processing Systems (2023) 95:1355–1370

1 3

that does not impose such distributional assumptions. It is
based on the normalized feature vector z = f (x)∕‖f (x)‖2
in the penultimate layer. We first collect feature vectors
ℤn = (z1, z2,… , zn) for each input xi in the training dataset
Din . In the testing stage, we first perform forward inference
(Inf) to obtain the normalized feature vector z∗ from input
x∗ (Norm), then calculate the Euclidean distances ‖zi − z∗‖

2

w.r.t. embedding vectors zi ∈ ℤn ; reorder ℤn in the order
of increasing distance ‖zi − z∗‖

2
 . Denote the reordered data

sequence as ℤ�
n = (z(1), z(2),… , z(n)) . OOD detection is based

on the following decision function:

where rk(z∗) = ‖z∗ − z(k)‖2 is the distance to the k-th near-
est neighbor, and 1{} is the indicator function. The threshold

(12)G(z∗;k) = 1
{
−rk(z

∗) ≥ �
}

� is chosen so that a large fraction of ID data (e.g., 95%) is
correctly classified.

The implementation of KNN relies on the open-source
library Faiss [37] for efficient similarity search and cluster-
ing of dense vectors. We can specify Faiss to run on either
the CPU or the GPU, and the GPU implementation can
accept input from either CPU or GPU memory (if they are
separate). From Table 8, we can see that GPU achieves a
small acceleration for the KNN step on both platforms.

4.3.7 Gram

Gram (Sastry et al. [22]) uses higher-order Gram matrices to
compute pairwise feature correlations between the channels
of each layer of a DNN.

Table 8 Execution time of different components of KNN (time unit: ms).

KNN JSNCPU JSNGPU WSCPU WSGPU

Inf 55.65 5.93 5.56 0.15
KNN 9.04 7.48 1.24 0.89

Table 9 Execution time of
different components of Gram on
the workstation (time unit: ms).

Gram WSCPU WSGPU

Inf 4.46 0.15
Gram_M 2.13 0.26

(on CPU)
Deviation 1.74 1.24

Figure 6 AUROC vs. execution time with Mnist as the ID dataset, Far-OOD as the OOD dataset.

1367Journal of Signal Processing Systems (2023) 95:1355–1370

1 3

We use Fl(x) to denote the feature map at the l-th layer for
input image x . It is stored in a matrix of dimension nl × pl ,
where nl is the number of channels at the l-th layer and pl ,
the number of activation values per channel, is the height
times the width of the feature map. The p-th order Gram
matrix is computed using Fp

l
 , where the power of Fl is com-

puted element-wise:

We use Gp

l
 to denote the flattened upper (or lower) trian-

gular matrix along with the diagonal entries. We set p = 5
in our experiments.

Gram consists of three steps. It first extracts the feature
vector Fl(x) from input x ; then for each of the layers, com-
putes Gp

l
 (Gram_M) on the CPU, then computes layer-wise

deviations (Deviation) of the input from the input images
seen at training time, as the percentage change w.r.t the
maximum or minimum values of feature co-occurrences,
on the GPU.

Table 9 shows the results on the workstation only, since
Gram runs out of memory on Jetson Nano. We can see that

(13)G
p

l
=
(
F
p

l
F
p

l

T
) 1

p

GPU helps achieve significant acceleration for each of the
three steps of Gram.

4.4 AUROC vs. Execution Time

In this section, we plot both the metrics of AUROC and exe-
cution time in the same figure to have a more complete picture
of the overall performance in terms of both metrics. We state
that algorithm A dominates algorithm B if A has both higher
AUROC and shorter execution time than B, i.e., A lies on the
left and on the top of B in subsequent figures. Therefore, the
algorithm on the upper-left corner dominates all the others
(if there exists one).

4.4.1 Mnist Near‑OOD Benchmark

Figure 5 shows the results when the ID dataset is Mnist, and
the OOD datasets are Near-OOD.

From Figure 5(a), (c), we can see that on JSNCPU and
WSCPU, MDS lies in the upper right corner, with the high-
est AUROC and longest execution time. VIM and MLS lie in
the upper left corner, and outperform most other algorithms

Figure 7 AUROC vs. execution time with Cifar10 as the ID dataset, Near-OOD as the OOD dataset. (Gram is not shown in (a)(b), since it runs
out of memory on Jetson Nano.)

1368 Journal of Signal Processing Systems (2023) 95:1355–1370

1 3

in both AUROC and execution time. Gram has relatively low
AUROC and medium execution time.

From Figure 5(b), (d), we can see that on JSNGPU and
WSGPU, MDS has the highest AUROC and relatively short
execution time, thanks to the significant acceleration effect
of the GPU. Gram performs poorly with the lowest AUROC
and longest execution time.

4.4.2 Mnist Far‑OOD Benchmark

Figure 6 shows the results when the ID dataset is Mnist, and
the OOD datasets are Far-OOD.

From Figure 6(a), (c), we can see that on JSNCPU and
WSCPU, MDS lies close to the upper right corner, with rela-
tively high AUROC and long execution times. Gram has the
highest AUROC and medium execution time.

From Figure 6(b), (d), we can see that on JSNGPU and
WSGPU, Gram lies in the upper right corner, with the highest
AUROC and longest execution time. While Gram is signifi-
cantly accelerated by GPU, MDS is accelerated even more.

4.4.3 Cifar10 Near‑OOD Benchmark

Figure 7 shows the results when the ID dataset is Cifar10,
and the OOD datasets are Near-OOD.

From Figure 7(a), (c), we can see that on JSNCPU and
WSCPU, MDS has medium AUROC and the longest execu-
tion time. From Fig. 7(d), we can see that on WSGPU, Gram
is the most time-consuming algorithm.

4.4.4 Cifar10 Far‑OOD Benchmark

Figure 8 shows the case when the ID dataset is Cifar10, and
the OOD datasets are Far-OOD.

From Fig. 8(a), (c), we can see that on JSNCPU and
WSCPU, MDS lies close to the upper right corner, with rela-
tively high AUROC and long execution times. From Fig. 8(d),
we can see that on WSGPU, Gram is the most time-consuming
algorithm.

Figure 8 AUROC vs. execution time with Cifar10 as the ID dataset, Far-OOD as the OOD dataset. (Gram is not shown in (a)(b), since it runs
out of memory on Jetson Nano.)

1369Journal of Signal Processing Systems (2023) 95:1355–1370

1 3

4.5 Discussions

We make the following observations from our experimental
results:

1. Overall, no OOD detection algorithm consistently domi-
nates all the others, and there is no monotonic correla-
tion between accuracy and execution time, i.e., a more
time-consuming algorithm may not necessarily outper-
form another simple-and-efficient algorithm, and the
algorithm accuracy is dependent on multiple factors,
incl. DNN architectures and hyperparameters, ID and
OOD datasets, etc. This observation is consistent with
Tajwar et al. [38], who showed that none of the three
OOD detection algorithms (MSP, ODIN, and MDS) is
consistently better than the others on a standardized set
of 16 (ID, OOD) pairs.

2. While there is no consistent winner, we can observe
from Figs. 5, 6, 7, and 8 (AUROC vs. execution time)
that several algorithms form a tight cluster in the upper
left corner, with relatively high AUROC values and low
execution times, including MSP, EBO, MLS, VIM, and
React. Hence they can be the safe choice of OOD detec-
tion algorithms for most application scenarios. KNN,
Gram, and MDS can generally achieve high AUROC,
but they have relatively long execution times.

3. GPU helps achieve significant acceleration for the DNN
forward inference and back-propagation of gradients,
hence OOD detection algorithms such as MDS and
ODIN benefit the most from GPU acceleration, since
they both incur two DNN forward inferences and one
back-propagation of gradients.

5 Conclusions and Future Work

OOD detection is an important topic for the practical deploy-
ment of DNNs in safety–critical applications. During the
actual deployment, the designer needs to select the most
appropriate OOD detection algorithm according to applica-
tion requirements and available hardware resources. In this
paper, we carry out comprehensive and systematic bench-
marking and evaluation of both accuracy and execution time
metrics of well-known OOD detection algorithms on dif-
ferent hardware platforms, to provide a useful reference for
the system designer in choosing the most appropriate OOD
detection algorithm for given application requirements and
hardware capability.

All the DNN models and OOD detection algorithms
studied in this paper are implemented in Python, which
is an interpreted language that is much slower than com-
piled languages such as C/C ++. For practical deploy-
ment on resource-constrained embedded platforms, it may

be necessary to perform model compression [39–41], and
compile the DNNs into efficient executable code with a
Deep Learning compiler framework [42]. This also requires
the OOD score function to be converted from Python to
C/C ++ to be used in conjunction with the compiled DNN.

Author contributions System implementation and evaluation (S.
Luan); Idea conception and paper writing (Z. Gu); Method formula-
tion (A. Saremi, L. Freidovich, L. Jiang, S. Wan).

Funding Open access funding provided by Umea University. This work
was partially supported by National Natural Science Foundation of
China under Grant No. 62172438, Key Project of Shenzhen City Spe-
cial Fund for Fundamental Research under Grant # 202208183000751,
and the Kempe Foundation, Sweden.

Data Availability N/A.

Declarations

Ethics Approval This research involves no human participants and/or
animals.

Competing Interests The authors declare that they have no known
competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Yang, J., Zhou, K., Li, Y., & Liu, Z. (2021). Generalized out-of-
distribution detection: A survey. arXiv preprint: arXiv: 2110. 11334

 2. Yang J., et al. (2022) OpenOOD: Benchmarking Generalized Out-
of-Distribution Detection. arXiv preprint: arXiv: 2210. 07242

 3. Shen Z., et al. (2021). Towards out-of-distribution generalization:
a survey. arXiv preprint: arXiv: 2108. 13624

 4. Gu, Z., Wang, S., Kodase, S., & Shin, K. G. (2003). An End-to-
End Tool Chain for Multi-View Modeling and Analysis of Avion-
ics Mission Computing Software. In RTSS 2003. 24th IEEE Real-
Time Systems Symposium: IEEE Computer Society, pp. 78–78.

 5. Al-bayati, Z., Zhao, Q., Youssef, A., Zeng, H., & Gu, Z. (2015)
Enhanced partitioned scheduling of mixed-criticality systems on
multicore platforms. In the 20th Asia and South Pacific Design
Automation Conference: IEEE pp. 630–635.

 6. Xia, X., et al. (2022). GAN-based anomaly detection: A review.
Neurocomputing, 493, 497–535.

 7. Cai, F., Ozdagli, A. I., & Koutsoukos, X. (2022). Variational Autoen-
coder for Classification and Regression for Out-of-Distribution

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2110.11334
http://arxiv.org/abs/2210.07242
http://arxiv.org/abs/2108.13624

1370 Journal of Signal Processing Systems (2023) 95:1355–1370

1 3

Detection in Learning-Enabled Cyber-Physical Systems. Applied
Artificial Intelligence, 36(1), 2131056.

 8. Henzinger, T. A., Lukina, A., & Schilling, C. (2019). Outside
the box: Abstraction-based monitoring of neural networks. arXiv
preprint: arXiv: 1911. 09032

 9. Luan, S., Gu, Z., Freidovich, L. B., Jiang, L., & Zhao, Q.
(2021). Out-of-distribution detection for deep neural networks
with isolation forest and local outlier factor. IEEE Access, 9,
132980–132989.

 10. Hendrycks, D., & Gimpel, K. (2016). A baseline for detecting
misclassified and out-of-distribution examples in neural networks.
arXiv preprint: arXiv: 1610. 02136

 11. Zhao, Q., Chen, M., Gu, Z., Luan, S., Zeng, H., & Chakrabory,
S. (2022). CAN bus intrusion detection based on auxiliary clas-
sifier GAN and out-of-distribution detection. ACM Transactions
on Embedded Computing Systems (TECS), 21(4), 1–30.

 12. Liang, S., Li, Y., & Srikant, R. (2017). Enhancing the reliability
of out-of-distribution image detection in neural networks. arXiv
preprint: arXiv: 1706. 02690

 13. Hendrycks, D., et al. (2022). Scaling out-of-distribution detection
for real-world settings. In International Conference on Machine
Learning, PMLR, pp. 8759–8773.

 14. Wang, H., Li, Z., Feng, L., & Zhang, W. (2022). ViM: Out-Of-
Distribution with Virtual-logit Matching. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 4921–4930.

 15. Huang, R., Geng, A., & Li, Y. (2021). On the importance of gra-
dients for detecting distributional shifts in the wild. Advances in
Neural Information Processing Systems, 34, 677–689.

 16. Sun, Y., & Li, Y. (2022). Dice: Leveraging sparsification for out-
of-distribution detection. European Conference on Computer
Vision (pp. 691–708). Springer.

 17. Sun, Y., Guo, C., & Li, Y. (2021). React: Out-of-distribution
detection with rectified activations. Advances in Neural Informa-
tion Processing Systems, 34, 144–157.

 18. Liu, W., Wang, X., Owens, J., & Li, Y. (2020). Energy-based out-
of-distribution detection. Advances in neural information process-
ing systems, 33, 21464–21475.

 19. Bendale, A., & Boult, T. E. (2016). Towards open set deep net-
works. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 1563–1572.

 20. Lee, K., Lee, K., Lee, H., & Shin, J. (2018). A simple unified
framework for detecting out-of-distribution samples and adver-
sarial attacks. arXiv preprint: arXiv: 1807. 03888

 21. Sun, Y., Ming, Y., Zhu, X., & Li, Y. (2022). Out-of-distribution
detection with deep nearest neighbors. In International Confer-
ence on Machine Learning, PMLR, pp. 20827–20840.

 22. Sastry, C. S., & Oore, S (2020) Detecting out-of-distribution
examples with gram matrices. In International Conference on
Machine Learning, PMLR, pp. 8491–8501.

 23. Deng, L. (2012). The mnist database of handwritten digit images
for machine learning research [best of the web]. IEEE signal pro-
cessing magazine, 29(6), 141–142.

 24. Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of
features from tiny images. Technical Report, University of Toronto.

 25. Bulatov, Y. NotMnist dataset. Retrieved March 1, 2023, from http://
yaros lavvb. com/ upload/ notMN IST

 26. Xiao, H., Rasul, K., & Vollgraf, R. (2017) Fashion-mnist: a novel
image dataset for benchmarking machine learning algorithms.
arXiv preprint: arXiv: 1708. 07747

 27. Kylberg, G. (2011). Kylberg texture dataset v. 1.0. Centre for
Image Analysis, Swedish University of Agricultural Sciences and
Uppsala University.

 28. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). Imagenet
classification with deep convolutional neural networks. Commu-
nications of the ACM, 60(6), 84–90.

 29. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., & Torralba, A.
(2017). Places: A 10 million image database for scene recognition.
IEEE transactions on pattern analysis and machine intelligence,
40(6), 1452–1464.

 30. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-
based learning applied to document recognition. Proceedings of
the IEEE, 86(11), 2278–2324.

 31. Krizhevsky, A., Nair, V., & Hinton, G. Cifar-10 and cifar-100
datasets. Retrieved March 1, 2023, from https:// www. cs. toron to.
edu/ kriz/ cifar. html

 32. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., & Ng, A. Y.
(2011). Reading digits in natural images with unsupervised feature
learning.

 33. He, K., Zhang, X., Ren, S., & Sun, J. (2016) Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 770–778.

 34. Harris, C. R., et al. (2020). Array programming with NumPy.
Nature, 585(7825), 357–362.

 35. Pedregosa F., et al. (2011) Scikit-learn: Machine learning in Python.
The Journal of Machine Learning Research, 12, 2825–2830.

 36. Tripathy, A. Timing your PyTorch Code Fragments. Retrieved
March 1, 2023, from https:// auro- 227. medium. com/ timing- your-
pytor ch- code- fragm ents- e1a55 6e81f2

 37. Johnson, J., Douze, M., & Jégou, H. (2019). Billion-scale similarity
search with gpus. IEEE Transactions on Big Data, 7(3), 535–547.

 38. Tajwar, F., Kumar, A., Xie, S. M. & Liang, P. (2021). No true
state-of-the-art? OOD detection methods are inconsistent across
datasets. arXiv preprint: arXiv: 2109. 05554

 39. Choudhary, T., Mishra, V., Goswami, A., & Sarangapani, J.
(2020). A comprehensive survey on model compression and
acceleration. Artificial Intelligence Review, pp. 1–43.

 40. Luan, S., Gu, Z., Xu, R., Zhao, Q., & Chen, G. (2023) LRP‐based
network pruning and policy distillation of robust and non‐robust
DRL agents for embedded systems. Concurrency and Computa-
tion: Practice and Experience.

 41. Meng, W., Gu, Z., Zhang, M., & Wu, Z. (2017). Two-bit networks
for deep learning on resource-constrained embedded devices.
arXiv preprint: arXiv: 1701. 00485

 42. Li, M., et al. (2020). The deep learning compiler: A comprehen-
sive survey. IEEE Transactions on Parallel and Distributed Sys-
tems, 32(3), 708–727.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1911.09032
http://arxiv.org/abs/1610.02136
http://arxiv.org/abs/1706.02690
http://arxiv.org/abs/1807.03888
http://yaroslavvb.com/upload/notMNIST
http://yaroslavvb.com/upload/notMNIST
http://arxiv.org/abs/1708.07747
https://www.cs.toronto.edu/kriz/cifar.html
https://www.cs.toronto.edu/kriz/cifar.html
https://auro-227.medium.com/timing-your-pytorch-code-fragments-e1a556e81f2
https://auro-227.medium.com/timing-your-pytorch-code-fragments-e1a556e81f2
http://arxiv.org/abs/2109.05554
http://arxiv.org/abs/1701.00485

	Timing Performance Benchmarking of Out-of-Distribution Detection Algorithms
	Abstract
	1 Introduction
	2 Background and Related Work
	3 Experimental Setup
	4 Results and Analysis
	4.1 Execution Time Measurements
	4.1.1 Mnist as ID Dataset
	4.1.2 Cifar10 as ID Dataset

	4.2 Execution Time Percentage of OOD Detection
	4.2.1 Mnist as ID Dataset
	4.2.2 Cifar10 as ID Dataset

	4.3 Time Measurements of Different Components of OOD Detection Algorithms
	4.3.1 ODIN
	4.3.2 KL-Matching
	4.3.3 GradNorm
	4.3.4 OpenMax
	4.3.5 MDS
	4.3.6 KNN
	4.3.7 Gram

	4.4 AUROC vs. Execution Time
	4.4.1 Mnist Near-OOD Benchmark
	4.4.2 Mnist Far-OOD Benchmark
	4.4.3 Cifar10 Near-OOD Benchmark
	4.4.4 Cifar10 Far-OOD Benchmark

	4.5 Discussions

	5 Conclusions and Future Work
	References

