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Abstract
In real-world object recognition, there are numerous object classes to be recognized. Traditional image recognition methods
based on supervised learning can only recognize object classes present in the training data, and have limited applicability
in the real world. In contrast, humans can recognize novel objects by questioning and acquiring knowledge about them.
Inspired by this, we propose a framework for acquiring external knowledge by generating questions that enable the model
to instantly recognize novel objects. Our framework comprises three components: the object classifier (OC), which performs
knowledge-based object recognition, the question generator (QG), which generates knowledge-aware questions to acquire
novel knowledge, and the policy decision (PD)Model, which determines the “policy” of questions to be asked. The PDmodel
utilizes two strategies, namely “confirmation” and “exploration”—the former confirms candidate knowledge while the latter
explores completely new knowledge. Our experiments demonstrate that the proposed pipeline effectively acquires knowledge
about novel objects compared to several baselines, and realizes novel object recognition utilizing the obtained knowledge.
We also performed a real-world evaluation in which humans responded to the generated questions, and the model used the
acquired knowledge to retrain the OC, which is a fundamental step toward a real-world human-in-the-loop learning-by-asking
framework. We plan to release the dataset immediately upon acceptance of our work.

Keywords Visual question generation · Novel object recognition · Human-in-the-loop learning · Knowledge acquisition

1 Introduction

Object category recognition has long been a central topic
in computer vision research. Traditionally, object recogni-
tion has been addressed by supervised learning using a large
dataset of image-label pairs (Deng et al., 2009). However,
with supervised approaches, the model can only recognize a
frozen set of object classes, and is not suitable for real-world
object recognition, where numerous object classes exist.
Recently, image recognition methods based on contrastive
learning using image-text pair datasets have emerged (Rad-
ford, 2021; Jia et al., 2021). By training with hundreds of
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millions of image-text pairs, these models have acquired
remarkable zero-shot recognition capabilities for various
objects. However, these models can recognize objects that
commonly appear in the pre-training dataset but are not as
effective for rare objects (Shen et al., 2022). Collecting new
data and retraining the entire model to make these models
recognize novel objects is impractical considering the cost
of data collection and computation. Therefore, it is essen-
tial to develop a method that enables the model to recognize
novel objects whilemaintaining low data collection costs and
avoiding model retraining as much as possible.

Asking questions and explicitly acquiring knowledge are
important skills when humans acquire knowledge about the
world (Chouinard, 2007; Ronfard et al., 2018). Inspired by
this, we explored methods to dynamically increase knowl-
edge in image recognition by askingquestions. This approach
has several advantages over the traditional supervised learn-
ing method: (1) it requires only a small amount of data to
acquire knowledge because the system acquires only the
required knowledge, and (2) it has a low data collection cost
because the system itself seeks the required data.
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Fig. 1 Example of a knowledge
acquisition process via
visual-question asking. An
intelligent agent observes an
image and asks a question to an
answerer to acquire knowledge.
The answerer answers the
question, the agent updates its
knowledge, and then the agent
asks another question to acquire
more knowledge

We propose a pipeline comprising a knowledge-based
object classifier (OC), a question generator (QG) for knowl-
edge acquisition, and a Policy Decision (PD) model to
determine the optimal questioning strategy. Following pre-
vious studies on structured knowledge (Ji et al., 2022), we
represent knowledge as a knowledge triplet, that is, a list of
three words or phrases: head, relation, and tail, such as 〈dog,
IsA, mammal〉.

In anticipation of the ultimate goal of using the acquired
knowledge to improve the object recognition performance,
the OC is designed to perform object recognition while
explicitly modeling the knowledge. This is realized by com-
puting the image-knowledge similarity. The QG model then
generates questions to add new knowledge to the knowledge
source for novel object recognition. In the QGmodel, we use
two modes in question generation: confirmation and explo-
ration, as illustrated in Fig. 1.

Let’s imagine the situationwhere ourmodel encounters an
image of a teddy bear for the very first time. Since it doesn’t
know anything about teddy bears, it enters the “Exploration”
mode to generate questions. In this mode, the model asks
broad questions without focusing on specific details, allow-
ing it to learn entirely new knowledge. An example of such
a question is: “What is the type of the object sitting next to
the dog?”

When a human provides an answer, the model uses that
answer to add the newly acquired knowledge to its knowledge
source. For instance, it can learn something like “teddy-bear,
IsA, stuffed animal” and store it to the knowledge source.

The second mode, named “Confirmation,” is used when
the model already has some knowledge about the object in
question. Here, the model asks specific questions to confirm
what it knows.

For example, if the model has already identified the object
as a “teddy-bear” from previous question and answer, it
might then inquire about the teddy bear’smaterial. Themodel
sets a target knowledge like 〈teddy-bear, MadeUpOf,
[MASK]〉 and generates a question like “What is this teddy-
bear made of?”

In the question-and-answer process, the model is tasked
with determining the appropriate strategy to employ-either
explorationor confirmation-anddeciding theoptimalmoment
to cease questioning. These determinations are made by the
policy decision (PD) module. The PD module produces a
policy for question generation by taking into account the
current state of the object classifier (OC) model and the his-
tory of posed questions. The PD module gets trained using a
reinforcement learning algorithm to maximize the expected
performance of the OC model, allowing for optimal strategy
selection in various scenarios.

Our contributions andfindings are summarized as follows:

• We propose a novel pipeline to acquire knowledge about
novel objects by asking questions. We designed the OC
model based on CLIP (Radford, 2021) and the QGmodel
as a Transformer (Vaswani et al., 2017) based text gen-
eration model.
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• Wecollect a novel dataset—ProfessionalK-VQG dataset,
which contains knowledge-aware visual questions, anno-
tated by experts. This dataset complements the existing
K-VQG dataset, which was limited in terms of expert
annotations.Bymergingour newdatasetwith the existing
K-VQG dataset, we created an enriched resource—K-
VQG v2 dataset.

• Wecompare our proposed pipelinewith several baselines
and show that the knowledge acquired through question
generation is effective for novel object recognition.

• We conducted an experiment with human-in-the-loop
setting, where humans provide answers to the gener-
ated questions, and human-written answers are used
to train the OC model. This experiment demonstrates
the practicality of the proposed pipeline in real-world
applications and validates its effectiveness by integrating
human expertise into the learning process.

2 RelatedWork

2.1 Novel Object Recognition

Novel object recognition, which aims to increase the number
of recognizable object classes, is a widely studied prob-
lem in the field of object recognition. A typical approach
in novel object recognition involves training a model that
computes the similarities between the visual and semantic
features of objects. To compute the semantic features of
a novel object, external knowledge about the object (e.g.,
attributes (Akata et al., 2016; Farhadi et al., 2009; Jayara-
man &Grauman, 2014; Lampert et al., 2009; Li et al., 2021),
class hierarchy (Rohrbach et al., 2011; Wang, 2018), or tex-
tual description (Ba et al., 2015; Qiao et al., 2016; Reed et al.,
2016; Zareian, 2021)) is often employed. Recently proposed
vision-and-language contrastive learning methods, such as
CLIP (Radford, 2021) and ALIGN (Jia et al., 2021), leverage
extremely large-scale image caption data to learn the rela-
tionship between images and their textual descriptions. With
the help of the prefix-tuning technique, these models have
demonstrated strong zero-shot recognition abilities. How-
ever, the aforementioned studies share a limitation in that
they require either a well-prepared knowledge database on
novel objects or a large number of image-text pair datasets
and carefully designed prompts, both of which are labor-
intensive tasks for humans. Our proposed method addresses
this limitation by enabling the model to acquire the neces-
sary knowledge dynamically through question generation,
thereby reducing human effort.

2.2 Visual Question Generation (VQG)

Early studies on VQG employed simple methods that
involved inputting image features into a text decoder and gen-
erating questions (Mostafazadeh et al., 2016). Recent studies
have focused on improving the control over the content of
the generated questions. Typically, this involves providing a
text decoder with additional information along with image
features to achieve better control. This was achieved by pro-
viding answers (Li et al., 2018; Liu et al., 2018), answer
categories (Krishna et al., 2019; Uehara et al., 2018; Uppal
et al., 2021), or by targeting knowledge that is expected
to be acquired through questioning (Uehara & Harada,
2022). The latter study created a knowledge-aware VQG
dataset (K-VQG) using Amazon Mechanical Turk (AMT)
and employed UNITER (Chen et al., 2020), a state-of-the-art
vision-and-language transformer, as an encoder for images
and knowledge to successfully generate questions for knowl-
edge acquisition.Wedesigned our question generationmodel
based on their work. In addition, we subsequently curated
a new dataset, named Professional K-VQG. We followed
the same format as their approach but with one significant
difference—our annotations were performed exclusively by
experts, not by workers on AMT.

We have summarized the key features of the existingVQG
dataset and our dataset in Table 1. Our dataset is the first
dataset with common-sense knowledge annotations and tar-
get bounding boxes, and annotated by humans.

2.3 Learning by Asking (LBA)

LBA is an approach that generates questions to collect addi-
tional data for model training. LBA has been studied in
both natural language processing and vision-and-language
domains. In the realm of NLP, various studies have har-
nessed the power of LBA for enhancing tasks like reading
comprehension. For instance, Du et al. (2017) explored
automatic question generation from text passages, lever-
aging attention-based sequence learning models. Yuan et
al. (2017) employed LBA techniques to improve question-
answering systems’ performance, while Curiosity-driven
Question Generation (Scialom&Staiano, 2020) took a novel
approach to generate questions aimed at enriching existing
knowledge or elucidating previous information for question
answering task.

In the vision-and-language domain, the work of Misra
et al. (2018) applied LBA to the VQA task. Unlike tradi-
tional VQA methods, where questions are predefined during
training, their model had the capability to generate its own
questions and realized a more organic and interactive learn-
ing process. Further bridging vision and language through
LBA, the study by Shen et al. (2019) showcased an agent
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Table 1 This table provides a comprehensive comparison of major datasets used in VQG and Knowledge-aware VQA, emphasizing their features
such as the number of questions, knowledge types, and annotation methodologies (Uehara & Harada, 2022)

Num. of Q Knowledge
type?

Structured
knowledge?

Target bound-
ing box?

Manually
annotated?

VQAv2 (Goyal & Khot, 2017) 1.1M N/A ✗ ✗ ✓

VQGCOCO, Flickr, Bing-5000 (Mostafazadeh
et al., 2016)

5000 N/A ✗ ✗ ✓

FVQA (Wang et al., 2017) 5,826 Common-
sense

✓ ✗ ✓

OK-VQA (Marino et al., 2019) 14,055 Open knowl-
edge

✗ ✗ ✓

K-VQA (Shah et al., 2019) 183,007 Named enti-
ties

✓ ✗ ✗

CRIC (Gao et al., 2019) 1.3M Common-
sense

✓ ✓ ✗

K-VQG (v2) 22,212 Common-
sense

✓ ✓ ✓

The K-VQG dataset is the only dataset that is common-sense knowledge-aware, annotated by humans, and associated with target bounding boxes.
This table is partly derived from

that actively learns by posing specific natural language ques-
tions to humans for the task of image captioning.

However, despite these advances, existing research has
focused primarily on well-defined tasks, such as reading
comprehension, standard VQA, or image captioning. In con-
trast to these approaches, we address the broad challenge
of real-world object recognition by introducing a framework
that dynamically recognizes novel objects through question-
ing.

3 Professional K-VQGDataset

To address the limitations in existing datasets and further
advance the field of knowledge-aware visual question gener-
ation, we developed a novel dataset, Professional K-VQG.
This dataset comprises knowledge-aware visual questions
related to objects, annotated by professional annotators. The
images are sourced from the Visual Genome (Krishna et
al., 2017), whereas knowledge is derived from Concept-
Net (Speer et al., 2017) and Atomic2020 (Hwang et al., 2020).
We identified 371 object classes common to both the Visual
Genome dataset and the knowledge sources.
ConceptNet In ConceptNet, knowledge is structured as
triplets in the format of 〈head, relation, tail〉. For
instance, the triplet 〈cat, AtLocation, sofa〉 rep-
resents the concept that a cat can be found on a sofa.
ConceptNet comprises approximately 34 million triplets and
37 relation types. However, some relations in ConceptNet,
such as DistinctFrom or MotivatedByGoal, are unsuitable
for generating questions about images. Therefore, we identi-

Fig. 2 Examples of the Professional K-VQG dataset

fied 15 relation types as appropriate targets for image-based
question generation.
Atomic2020 Atomic2020 features over 1 million knowledge
triplets related to physical-entity relations (e.g., 〈bread,
ObjectUse, make french toast〉), event-centered relations
(e.g., 〈PersonX eats spinach, isAfter,
PersonX makes dinner〉), and social interactions (e.g.,
〈PersonX calls a friend, xIntent,
to socialize with their friend〉). For our dat
aset construction, we exclusively used physical-entity rela-
tions since they are more relevant to images in Visual
Genome.
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Fig. 3 Word clouds for the questions and answers in the Professional
K-VQG dataset

Fig. 4 Distribution of relations in the professional K-VQG dataset

During the annotation process, we first extracted the cor-
responding knowledge triplets for each candidate object in
the image from the knowledge sources. Subsequently, anno-
tators were instructed to create knowledge-aware questions
with the head or tail of the knowledge triplet as the answer.
Annotators were provided with a bounding box indicating
the target object. In addition, they were provided with a list
of candidate knowledge items related to the image and tar-
get object. After selecting a knowledge item, the annotators
wrote questions and answers based on the selected knowl-
edge.

A summary of the guidelines for formulating the questions
and answers is as follows:

• The answer should be the head or the tail of the knowl-
edge.

• Answers could be rephrased to ensure a natural flow of
words and sentences.

• Questions should be framed in relation to other objects
in the image or object’s position within the image.

• Questions should not mention the presence of bounding
boxes.

This process resulted in 10,431 questions for 9210 images,
with 5242 unique knowledge.

Figure 2 displays sample questions from the dataset,
demonstrating their relation to the images and target the
masked part of the knowledge—e.g., if the target knowledge
is 〈[MASK], IsA, feathered bird〉, the resulting
question is actually about the category of the bird (What is
the feathered bird seen to be swimming in a large body of
water?)

The dataset’s word clouds and relation distribution are
illustrated in Figs. 3 and 4, which reveal a diverse range of
questions encompassing topics such as food, clothing, and
furniture. Although the most frequent relations, “UsedFor”
and “IsA,” constitute approximately 50 and 25% of the total,
respectively, this apparent bias reflects the prevalence of these
relations in the knowledge sources.

3.1 K-VQG v2 Dataset

To enhance the existing K-VQG dataset (Uehara & Harada,
2022) (referred to as K-VQG v1), we integrated it with the
Professional K-VQG dataset, resulting in K-VQG v2 dataset.
Anticipating the integration of object recognition models in
this study, we excluded samples in which the Faster R-CNN
failed to detect the target regions as objects (i.e., the IoU
between the detected bounding box and the target bounding
box was less than 0.5).

The detailed statistics of the Professional K-VQG dataset
and K-VQG v2 dataset are shown in Table 2. The K-VQG
v2 dataset features 22,212 questions on 9210 images, which
is a significant increase compared to previous versions. One

Table 2 Detailed statistics of
the professional K-VQG and
K-VQG v2 dataset

K-VQG v1 Professional K-VQG K-VQG v2

# Questions 16,098 10, 431 22,212

—Head answers 11,588 5047 13,916

—Tail answers 4510 5384 8296

# Images 13, 648 9494 9210

# Unique answers 2819 3687 4953

# Unique knowledge 6084 5242 7808

# Unique head 527 371 533

# Unique tail 4922 4257 6199
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Fig. 5 Overall pipeline of our method. The OC model performs
knowledge-based object recognition using knowledge sources. The QG
model generates questions targeting the knowledge needed for novel

object recognition. Answers to the questions are provided by the Ora-
cle Answerer and added to the knowledge source.With the newly added
knowledge, the OC model is able to recognize novel objects

of the significant features of the K-VQG v2 dataset is the
increased number of unique answers and knowledge. It has
4953 unique answers and 7808 unique knowledge items,
which represent a considerable improvement over the pre-
vious versions. This indicates that the K-VQG v2 dataset has
an increased diversity of answers and knowledge, which can
improve the generalization ability of the VQGmodel trained.

These statistics reveal that the K-VQG v2 dataset is not
only larger but also more diverse and comprehensive than its
predecessors, making it a valuable resource for research and
development in the field of knowledge-aware VQG.

4 Method

Our system is designed with three modules: the Object
Classifier (OC), theQuestionGenerator (QG), and thePolicy
Decisionmodel (PD). In this section, we present an overview
of the system pipeline, followed by a detailed description of
each module. The entire pipeline is illustrated in Fig. 5.

4.1 Overview

Starting with the OC model, this module takes an object
region extracted from an image, and predicts themost-reltaed
knowledge to the object, and outputs the object label. More
specifically, the OCmodel, with its knowledge-centric object
recognition capatbility, retrieves the corresponding knowl-
edge triplet k = [h, r , t] ∈ K from the knowledge source
K. Here, h denotes the head (e.g., the object label), r denotes
the relation, and t denotes the tail (e.g., the object property
or attribute). The OC’s output, in essence, is the object label
based on thematched knowledge fromK. The strength of this
classifier is evident when novel knowledge is added; there is
no need to retrain thewholemodel, just update the knowledge
source.

Note that in our study, we provide predefined object
regions in images for recognition. We chose not to incorpo-
rate object detection to maintain a focused and less complex
architecture, as our primary aim is to learn novel object con-

Fig. 6 Architecture of the OCmodel. Based on the knowledge encoded
by BERT and the similarity calculation of the object image encoded by
CLIP, the prediction of the knowledge required for object recognition
is performed

cepts. Existing detectors mainly recognize trained objects,
making them unsuitable for our research involving unknown
objects. While recent advances tackle more generalized
object detection (Gu et al., 2021; Kirillov et al., 2023), we’ve
deferred such considerations for future research.

The QG model, taking its cue from the OC’s output
knowledge and the region-of-interest, generates questions
regarding the objects in the image to obtain relevant knowl-
edge that is useful for novel object recognition. Specifically,
the QG accepts a partially masked knowledge triplet (e.g.,
〈[MASK], IsA, mammal〉) as input, which is taken from
the output of the OC model. This approach encourages the
model to generate questions that help acquire the most effec-
tive knowledge for object recognition.

The PD model plays an instrumental role in dictating the
sequence of questions. Taking as input the current state of the
OC model (i.e., the distribution of the knowledge similarity
score) and the region image, it outputs the most appropriate
next question to ask. In essense, this module decides the pol-
icy of question asking.Without this module, themodel might
gather incorrect knowledge or redundantly acquire informa-
tion it already possesses. For instance, consider an unknown
object that, based on the OC model’s prediction, is identi-
fied to be “MadeUpOf, fur”. In this case, posing the question
“What is the object made up of?” becomes redundant. Hence,
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the Policy DecisionModel is crucial for guiding the model to
ask more insightful questions that can yield new knowledge.

Upon obtaining answers to the generated questions, the
acquired knowledge K′ is added to the model’s original
knowledge source K. The OC’s knowledge source is there-
after updated asK+ = K ∪ K′. In the subsequent inference
phase, the OC refers to the updated knowledge source K+
used to make predictions regarding novel objects.

4.2 Object Classifier

The OC model, as illustrated in Fig. 6, is designed to
predict the object label while utilizing object-related knowl-
edge by leveraging the similarity between the object feature
f o ∈ R

d and knowledge feature f k ∈ R
d of the associ-

ated knowledge. Specifically, the similarity is computed as
p(k) = sim( f o, f k), where d denotes the dimensions of
the object and the knowledge features.

To effectively predict object knowledge, we decided to
base our OC model on the state-of-the-art visual recog-
nition model, CLIP (Radford, 2021), which comprises an
image encoder and a text encoder that calculate the simi-
larity between images and text. The image encoder of the
CLIP, fθ , accepts a cropped image Icrop as the input, and
outputs the visual feature f o. The knowledge features f k are
computed using the pre-trained CLIP text encoder fφ . Prior
to feeding knowledge into the text encoder, we convert the
triplet representation (e.g., 〈cat, IsA, mammal〉) into a
single sentence with a masked head (e.g., 〈[MASK] is a
mammal〉), allowing the model to focus on object-related
knowledge instead of the object label itself.

The cosine similarity is employed to measure the similar-
ity between the object and knowledge features as follows:

f o = fθ (Icrop), f k = fφ(k) (1)

sim( f o, f k) = f�
o f k

‖ f o‖‖ f k‖
(2)

The OC model is trained to minimize the binary cross-
entropy loss as follows:

LOC = −
|K|∑

i

(
yi · log σ(sim( f o, f ki ))

+ (1 − yi ) · log(1 − σ(sim( f o, f ki )))
)

(3)

where yi ∈ {0, 1} indicates the ground-truth label for the i-th
knowledge.

Upon successful knowledge prediction, the OCmodel can
identify the relation and tail of the object’s knowledge. To
infer labels from the predicted knowledge k̂, we search for a
knowledge source K that satisfies the predicted relation and
the tail conditions. The corresponding head of the matching

knowledge serves as the predicted label. This process allows
the OC model to recognize and classify objects effectively
based on acquired knowledge.

4.3 Question Generator

In our question generation model, we employed a vision-
and-knowledge encoder based on the state-of-the-art vision-
and-language model ViLT (Kim et al., 2021) as the encoder
and GPT-2 (Radford et al., 2019) as the decoder. The overall
architecture is shown in Fig. 7. Themotivation for using these
models is their proven performance in handling both visual
and textual data, which is essential for generatingmeaningful
and knowledge-aware questions.

The ViLT encoder Enc(·) takes two inputs: (1) the input
image I and the masked region image IR and (2) knowl-
edge triplets k in sentence form, such as 〈[MASK] is a
mammal〉. A masked region image is created by setting the
pixel value outside the target region to zero.

In the knowledge encoder, each word in the masked
knowledge is embedded into the knowledge embedding
space ki ∈ R

D , where i denotes the word index and
D denotes the dimension of the embedding space. The
knowledge embedding vector is thereafter summed with
the modal-type embedding ktype ∈ R

D and the positional
embedding kpos ∈ R

D .
The visual encoder of ViLT processes the input image

I ∈ R
C×H×W by dividing it into patches of size P × P

and flattening them into two-dimensional patches Vp ∈
R

Np×(C×P2). Here, Np denotes the number of patches, calcu-
lated as Np = HW/P2. The visual embedding layer embeds
the patches in the visual embedding space v ∈ R

Np×D . The
visual embedding vectors are summed with learnable posi-
tional embeddings vpos ∈ R

Np×D and learnable modal-type
embeddings vtype ∈ R

Np×D .
For the masked region image IR , the same embedding

layer is used, with the only difference being the use of a
different modal-type embedding vector.

Once the visual and knowledge embeddings are obtained,
they are concatenated and fed into stacked transformer layers
to produce the contextualized embedding vector z.

TheGPT-2 based decoder, which comprises stacked trans-
former layers, uses the encoder output z as its initial input.
It predicts the next token ŷt at time step t using the previous
word sequences y<t and context vector z.

The model is trained to minimize the following loss func-
tion:

L = −
|y|∑

t

log P(yt | y<t , Enc([I , IM ], k)) (4)
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Fig. 7 Overview of our VQG model. The input to the model is the
masked target knowledge, the entire image, and the masked image that
indicate the region of the target object. The masked target knowledge
is embedded into the knowledge embedding space, and the entire and

masked images are split into patches and embedded into the visual
embedding space. The embedding vectors are concatenatedwithmodal-
type embeddings (tw , t i , and tr ) and summed with the positional
embeddings

where yt denotes the t-th word of the question, and Enc(·)
represents the ViLT encoder, which is responsible for pro-
ducing fused visual and textual knowledge features.

4.4 Policy DecisionModel

Since the VQG module outputs question q for target knowl-
edge k, the PD module determines the target knowledge k to
be used as an input to the VQG module.

First, we explain how the target knowledge is determined.
In knowledge acquisition, it is important to acquire knowl-
edge that is “appropriate” and “useful” for recognition, that
is, to acquire correct knowledge at the lowest possible cost.
Here, “low cost” implies that retraining the OCmodel should
be avoided as much as possible. Therefore, we propose using
two different modes of question generation: “confirmation”
and “exploration.” As described in Sect. 1, the “confirma-
tion” mode is used when the unknown object is relatively
close to a known object category, whereas the “exploration”
mode is used when the unknown object is far from the exist-
ing object category. The target knowledge k for each case is
defined as follows:

k =
{ [MASK, r̂ , t̂ ] (confirmation)

[MASK, r∗, MASK ] (exploration)
(5)

where r̂ and t̂ denote the predicted relation and tail, respec-
tively, and r∗ is an arbitrarily selected relation based on its
frequency in the data.

We propose two approaches for the PD module: a naive
greedy model and a reinforcement learning based model.

4.4.1 Greedy Model

In the greedy model, we control for the mode selection pol-
icy based on the expected value of utility that the model can
obtain from the answer. We define the policy selection func-
tion π , which takes the value of one for the confirmation
mode and zero for the exploration mode.

We thereafter adopt a policy that maximizes the expected
utility of the model using the utility function uθ for the train-
ing data X :

1

|X |
∑

(π uθ ( f o) + (1 − π) uθ ( f o)) (6)

We define the utility function as the sum of the “correct-
ness” and “informativeness” of the expected answer. The
“correctness” represents the estimated correctness of the
knowledge expected to be acquired by the answer. For sim-
plicity, we assume that the oracle answer should be correct
and suppose that the expected correctness is 1.0 when the
mode is “exploration.” In contrast, when the mode is “confir-
mation,” the expected correctness depends on the confidence
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of the model conf(k̂); thus, we set the expected correctness
as the predicted score output by the OC model.

The “informativeness” is the value representing the use-
fulness of the acquired knowledge to the model. For the
“exploration” mode, we estimate the informativeness using
the similarity between the input image and target knowledge
features sim( f o, f k̂). For the “confirmation” mode, we use
the expected value of the similarity based on the mean simi-
larity of the training data, i.e., E[I ] 
 1

|X |
∑

sim( f o, f k̂).
The utility function is expressed as follows:

uθ ( f o) =
{
conf(k̂) + sim( f o, f k̂) (conf.)
1 + 1

|X |
∑

sim( f o, f k̂) (exp.)
(7)

Once the input knowledge k is determined, question gen-
eration is performed using it as the input.

4.4.2 RL-Based Policy Decision Model

In addition to the greedy model, we consider an RL-based
model as an improved approach. We construct this RL-based
model using a recurrent neural network with four inputs: the
region image feature f Ir and current prediction scores f score.
We formulate the PD model as follows:

at = PD( f Ir , f score, ht−1) (8)

where at denotes the action at time t and f score denotes the
current prediction score. ht−1 denotes the hidden state of the
previous time step. We extract the image region feature f Ir
using a pre-trained CLIP feature extractor (Radford, 2021),
which is the same as that used in the OC module. We use a
two-layer LSTM (Hochreiter & Schmidhuber, 1997) for the
recurrent neural network.

This PDmodel is trained to maximize the expected cumu-
lative reward r . The reward consists of the following values:
Target region consistency rR This reward is given when the
generated question is actually related to the region of the
target object. To compute this value, we first calculate the
question-to-region grounding score by UNITER-grounding
model Chen et al. (2020). The UNITER-grounding model
takes questions q and the image I as inputs, and outputs the
probability of the image region the question is related to.
We thereafter calculate the Intersection over Bounding Box
(IoBB) score between the target region and the region with
the highest probability.

The reward is computed as follows:

rR =
{
1.0 if IoBB > θ

0.0 otherwise
(9)

The threshold θ is set to 0.4.

Informativeness rI This value implies how informative the
question is, i.e., how much recognition performance of the
object recognition model can be improved by adding the
knowledge obtained by the generated questions. To compute
this value, we use the Oracle Answerer model to provide
the answer to the generated question. The Oracle Answerer
model takes question q and image I as inputs and out-
puts answer ka . The details of the Oracle Answerer model
are described in the following section. We thereafter calcu-
late the recognition performance of the object recognition
model before and after adding the knowledge obtained from
the generated questions. We use the difference between the
recognition performance before and after adding knowledge
as a reward. The computation of this reward is as follows:

ka = OA(q̂, I ) (10)

K+
y = Ky ∪ {ka} (11)

rI = score(y | f o, K+
y ) − score(y | f o, Ky) (12)

Consequently, the expected cumulative reward r is computed
as follows:

r = rR · rI (13)

In addition, we set certain constraints on the action
selection. First, the model was not allowed to select the con-
firmation mode multiple times. This is because the target
knowledge of the confirmation mode relies purely on the ini-
tially predicted knowledge; thus, the question target never
changes throughout the time steps. Second, if the model out-
puts the no-question mode, it is not allowed to select any
other mode for the remaining time steps. This is because the
model has already decided that it has completed the gather-
ing of the necessary knowledge; thus, it does not need to ask
questions.

We train the PD model using the REINFORCE (Williams
et al., 1992) algorithm. The gradient of the PD model is cal-
culated as follows:

∇θ J (θ) =
T∑

t=1

∇θ logπθ (at | f Ir , f score, ht−1)

·
T∑

t ′=t

γ t ′−t exp(rt ′) (14)

where θ denotes the parameter of the PD model, πθ (at | f Ir ,
f score, ht−1) is the probability of the action at given the
region image f Ir , the current prediction scores f score, and
the hidden state ht−1, and T denotes the number of time
steps. We set the discount factor γ to 0.99.

In addition to the policy gradient loss, we train the PD
model to minimize entropy loss, which is calculated as the
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Shanon’s entropy of the action distribution. The entropy loss
is calculated as follows:

Lentropy = −
T∑

t=1

∑

at

(
πθ (at | f Ir , f score, ht−1)

· logπθ (at | f Ir , f score, ht−1)
)

(15)

This entropy loss is used to encourage the model to explore
various actions and avoid becoming stuck in a specific action.

The entire loss function is calculated as the sum of the
policy gradient and entropy loss as follows:

L = Lpolicy + α Lentropy (16)

The balancing factor α to 0.01.

4.5 Oracle Answerer

Given an image and generated question, Oracle Answerer
predicts the answer knowledge for the question. We imple-
ment this module as a composition of three submodules:
(1) Head classifier, (2) Relation classifier, and (3) Region
classifier. Each module checks whether the generated ques-
tion is “valid,” and if all modules agree that the question
is “valid,” Oracle Answerer searches the oracle knowledge
source and outputs the knowledge that matches the targeted
head and relation. Oracle knowledge source is a knowl-
edge source that merges ConceptNet (Speer et al., 2017) and
Atomic2020 (Hwang et al., 2020) . The overall architecture of
the oracle answerer is illustrated in Fig. 8.
Head classifier The head classifier H predicts the head of
the target knowledge from the generated question, that is
h = H(I , Q).We implement this module following the stan-
dardVQAmethodology, that is, as amulti-class classification
problem that outputs the proper entity given an image and
question. For this module, we fine-tuned pre-trained ViLT-
VQA (Kim et al., 2021) model. This module returns “valid”
if the predicted head is equal to the object in the target region.
Relation classifier The relation classifierR predicts the rela-
tion of the target knowledge from the generated question,
that is, r = R(Q). Since this problem can be formulated
as a sentence classification problem, we use the fine-tuned
Distil-BERT Sanh et al. (2019) as the relation classifier. This
module returns “valid” if the predicted relation matches the
target relation (r in Eq.5).
Region classifier The region classifier G predicts the target
region, that is, g = G(I , Q). We design this module as a
model that outputs the region most relevant to the question,
given a question and a set of candidate regions. The problem
setup is similar to that of the Referring Expression Compre-
hension (RE Comprehension) (Yu et al., 2016). Therefore,
we used a fine-tuned version of the UNITER grounding

Fig. 8 Architecture of the oracle answerer

model (Chen et al., 2020), which achieved high performance
in theREComprehension task. Thismodule returns “valid” if
the predicted region is sufficiently close to the target region.
We calculated the IoBB (Intersection over Bounding Box)
between the predicted and target regions and considered two
regions sufficiently close if the value was greater than 0.4.
Oracle Knowledge Source The Oracle Knowledge Source
is used to provide the answer knowledge to the generated
question. To build such knowledge source, it is important to
collect as much correct knowledge as possible. Therefore,
we extend the original knowledge source in the dataset. The
extension of the knowledge source is performed in the fol-
lowing steps:

1. Collect the knowledge from the train and validation
datasets.

2. Add all the knowledge from the original knowledge
source, ConceptNet (Speer et al., 2017) and Atomic2020
(Hwang et al., 2020), whose head entity is already con-
tained in the dataset.
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’stool , UsedFor , use as a step ’,
’pillow , UsedFor , Keep head comfortable

’,
’cab , UsedFor , ride to their home ’,
’bread , UsedFor , offer someone else ’,
’briefcase , MadeUpOf , plastic ’,
’window , UsedFor , lock when she leaves

’,
’cardigan , UsedFor , hide themselves ’,
’sack , HasA , strap ’,
’knife , UsedFor , outdoors living ’,
’jump suit , UsedFor , buy ’,
’ottoman , IsA , chair ’,
’octopus , IsA , animal ’,
’coffee cup , AtLocation , restaurant ’,
’sausage , UsedFor , pass around ’,
’ruler , UsedFor , measure the distance ’,
’segway , UsedFor , travel to the venue ’,
’container , CapableOf , amount water ’,
’bath mat , UsedFor , wash face ’,
’coffee cup , AtLocation , airport ’,
’soccer ball , IsA , burgoise ’

Listing 1 The list of randomly sampled oracle knowledge.

3. For each knowledge in the collected knowledge by the
previous step, we add the knowledgewhose head entity is
a synonym of the head entity of the original knowledge.
To determine whether the head entity is a synonym of the
head entity of the original knowledge, we use the pre-
trained word embeddings from ConceptNet (Speer et al.,
2017). We calculate the similarity using the cosine sim-
ilarity between the word embeddings of the head entity
and all candidate head entities in the data. If the similarity
is higher than 0.5, we add the knowledge of the candidate
head entity.

Using these procedures, a large amount of knowledge that
is related to the datasetwas collected. Theoriginal knowledge
source in the training and validation datasets contain 8585
knowledge, while the extended knowledge source contains
124,326 knowledge. Examples of additional knowledge in
the extended knowledge source are listed in List 1.

To obtain the answer knowledge, we search the oracle
knowledge source for the knowledge whose head entity is
the same as the target head and the predicted relation. If
there is no knowledge that satisfies the condition, the oracle
answerer returns the answer as “invalid.”

4.6 Knowledge Expansion

When an answer knowledge k′ is obtained for a generated
question q by themodel, it is added to themodel’s knowledge

source K, that is, K+ = K ∪ {k′}Mi=1, where M denotes the
number of newly acquired knowledge.
Avoiding redundancy To avoid asking redundant ques-
tions, we use different types of QG methods: neural-based
QG (as described above) and rule-based QG. The rule-
based QG method uses simple rules to generate ques-
tions for the input knowledge, e.g., 〈[MASK], UsedFor,
[MASK]〉 → “What is the object used for?” or 〈[MASK],
MadeUpOf, [MASK]〉 → “What is the object made of?”

Neural-QG is better at generating questions that reflect the
image content and target knowledge in detail, and at gener-
ating questions that allow answerers to clearly identify the
target object. However, when considering its use in multi-
turn questions, once a question that can clearly identify the
target object is generated, there is no need for further infor-
mation to identify the target object in subsequent questions.
For instance, if the first question is “What is the object sitting
next to the dog?,” the answerer can easily identify the target
object as a teddy-bear. Therefore, in subsequent questions, it
is not necessary to include spatial information, such as next
to the dog.

We make the decision of which QG method to use based
on the Region Classifiermodel, which can identify the region
of the image referred to in the question. We calculate IoBB
between the ground-truth target region and the predicted
region for each question If the IoBB up to the present ques-
tion is greater than the threshold, we use the rule-based QG
method. Otherwise, we use the neural-based QG method.

q =
{
Neural-VQG(I , a) if IoBB<t < θ

Rule-VQG(a) otherwise
(17)

where I denotes the input image, a denotes the action deter-
mined by the PD model, t denotes the current turn, and θ

denotes the threshold.

5 Experiments

5.1 Training

We used the same text encoder as CLIP (Radford, 2021) and
ViT-B/32 (Dosovitskiy et al., 2021) as the visual encoder in
the OC model. The OC model is trained from a pre-trained
checkpoint of CLIP.1 The number of training epochs was
200, with a cosine learning rate scheduler and a warmup
ratio of 0.2. We used the Adafactor optimizer (Shazeer &
Stern, 2018) with learning rate 8e−5 and weight decay 0.01.
The training of theOCmodel required about 12h on 8×Tesla
A100 GPUs with a batch size of 512.

1 https://huggingface.co/openai/clip-vit-base-patch32.
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We tested all methods in two settings: zero-shot and fine-
tuned. In the zero-shot setting, we did not conduct any
fine-tuning on the OC model with the knowledge acquired
by the QG model. In the fine-tuned setting, we fine-tuned
the OC model using the knowledge obtained. To maintain
the performance on known classes in a fine-tuned setting, we
adopted simple replayingmethods inwhich the same number
of samples as the newly acquired data were randomly sam-
pled from the training set and input to the model along with
the newly acquired knowledge. For fine-tuning, we trained
the OCmodel for 40 epochs with a learning rate of 8e−5 and
weight decay of 0.2, clipping the gradient norm to 0.1.

In the VQG model, we used the pre-trained ViLT Kim
and Son (2021) encoder2 as the multi-modal encoder and
the pre-trained GPT-2 Radford et al. (2019) decoder3 as the
decoder.

5.2 Baselines

We compared our approach to four baselines: CLIP-Ret. In
this setting, no knowledge acquisition is performed using the
QG model and the performance of the OC model trained
using only the training set is evaluated. All Exp./All Conf.
In these settings, the question generation policy is fixed to
“exploration” and “confirmation,” respectively.RandomPol-
icy.The question generation policy is selected randomly. This
method was tested three times using different random seeds.

It is important to note, as detailed in Sect. 2, that none
of the previous methods are designed to generate questions
targeting knowledge or specific regions within an image.
Consequently, these methods could not be adopted as base-
line approaches for our study. Even if these methods were
utilized, due to the outlined limitations, they would fail to
generate questions that accurately target the correct knowl-
edge or regions. This shortcoming is expected to result in
a significant reduction in the quality of the generated ques-
tions, leading to an overall decrease in performance when
compared to the proposed method and other baselines.

Furthermore, we conducted an ablation study concerning
the algorithmof themodel. Specifically,within thePDmodel,
we tested versions that did not utilize region consistency (w/o
region cons.) and informativeness (w/o informativeness) for
reward calculation. These were implemented by setting rR
and rI to 1.0 in Eq. (13) respectively.

5.3 EvaluationMetrics

Following previous studies on multi-label object recogni-
tion (Huynh & Elhamifar, 2020; Ben-Cohen et al., 2021),
we evaluated the performance of the proposed model using

2 https://github.com/dandelin/ViLT.
3 https://github.com/openai/gpt-2.

themean average precision (mAP).We computed the average
precision (AP) for each class c as follows:

AP(c) = 1

Nc

N∑

k=1

Precision(k, c) (18)

where Nc denotes the number of examples with label c,
Precition(k, c) denotes the precision at the k-th ranked pre-
diction.

We calculate the mAP for known and novel classes sepa-
rately.

To calculate the AP for each class, we considered labels
that satisfied the following conditions as ground-truth labels:
First, we considered the ground-truth labels in the original
dataset for the target region as the initial set of ground-truth
labels for the given target region R. Second,we added objects
to the overlapping region of R. The overlapping region was
defined as the region in which the IoBB is greater than 0.4.
Finally, we added the synonyms of the labels to the set of
ground-truth labels.We used the same synonym list asOracle
Answerer.

5.4 Results and Discussion

The main results are shown in Table 3.
We compare the performance of the baseline (CLIP-Ret.),

single-turn methods, and five-turn methods, as well as the
zero-shot and fine-tuning settings.

When comparing the baseline CLIP-Ret. to other meth-
ods, the baseline is inferior in all metrics. This highlights
the effectiveness of knowledge acquisition through question
generation for improving object recognition performance,
particularly for novel classes, which are more challenging
to recognize without additional information.

For single-turn settings, our Greedy method outperforms
both All Conf. and All Exp. in all metrics, achieving the
highest overallmAP, known classmAP, and novel classmAP.
This demonstrates the effectiveness of our Greedy approach
in acquiring useful knowledge for object recognition with
just one question generation turn.

In the five-turn settings, our RL Policy method attains
the best performance among all metrics, showing substan-
tial improvement over the All Exp. and Random methods.
Moreover, the standard deviations of our RL Policy method
are relatively small, indicating the stability of our approach
across multiple runs.

When comparing single-turn and five-turn methods, we
observe that the five-turn methods generally yield better
performance, particularly in the fine-tuning setting. This
improvement is most prominent in novel class mAP, which
supports the notion that our model successfully learns to
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Table 3 The results of the object recognition model after obtaining the knowledge by asking questions

Overall Known Novel
Zero-shot Fine-tune Zero-shot Fine-tune Zero-shot fine-tune

Single

Baseline (CLIP-Ret.) 12.10 – 12.26 – 6.86 –

All Conf 12.92 12.94 12.59 12.61 24.02 23.87

5-turn

All Exp 12.97 13.26 12.56 12.81 27.14 28.40

Greedy 12.99 13.32 12.59 12.92 26.64 26.97

All Exp 13.48 14.69 13.02 14.13 29.12 33.85

Random 13.52 ± 0.15 14.62 ± 0.01 13.06 ± 0.13 13.99 ± 0.01 29.12 ± 0.55 35.98 ± 0.15

RL 13.54 ± 0.08 15.32 ± 0.1 13.06 ± 0.09 14.48 ± 0.12 29.59 ± 0.23 43.52 ± 0.42

—w/o region cons 13.17 14.81 12.70 14.00 29.17 42.41

—w/o informativeness 13.38 14.48 12.91 13.86 29.22 35.72

Bold values indicate the best results
The results are shown in terms of mAP for overall classes, known classes, and novel classes. The baseline (CLIP-Ret.) refers to the performance
without additional question generation or knowledge acquisition. Themiddle group of rows shows the results when question generation is performed
for only one turn. The bottom group presents examples of the outcomes when question generation is conducted for multiple turns (five turns) per
target

Table 4 Performance variations
of VQG resulting from the
replacement of individual
components with different
structures

BLEU-4 METEOR CIDEr Mean IoU

Confirmation

UNITER + BART 16.95 22.71 113.39 0.45

ViLT + GPT-2 17.15 21.94 97.81 0.49

—w/o image 14.22 20.10 85.90 0.44

—w/o region 15.57 20.85 86.47 0.45

—w/o knowledge 8.9 14.59 20.31 0.36

Exploration

UNITER + BART 9.62 16.82 39.17 0.28

ViLT + GPT-2 9.51 16.57 38.09 0.40

—w/o image 7.83 14.19 14.08 0.23

—w/o region 8.00 15.18 26.45 0.26

—w/o knowledge 6.52 13.96 20.72 0.32

Bold values indicate the best results
We used two types of the encoder: UNITER or ViLT, and two types of the decoder: BART or GPT-2

select a policy that generates questions and acquires useful
knowledge for recognizing novel objects.

From the results of the ablation study, it is evident that both
region consistency and informativeness in reward calculation
effectively contribute to acquiring novel information through
question generation. Notably, the recognition performance
for novel objects during fine-tuning exhibited a significant
drop under the setting without informativeness. This can be
attributed to the fact that, without considering informative-
ness during reward computation, questions tend to acquire
redundant knowledge. Specifically, they pose questions with
low information target, hindering the acquisition of diverse
knowledge regarding novel objects.

Table 5 Performance variations of VQG from different training dataset

BLEU-4 METEOR CIDEr Mean IoU

Confirmation

CRIC 2.09 12.16 15.23 0.35

K-VQG v1 13.75 19.62 67.57 0.45

K-VQG v2 17.15 21.94 97.81 0.49

Exploration

CRIC 0.87 10.98 8.43 0.32

K-VQG v1 6.60 14.06 19.83 0.31

K-VQG v2 9.51 16.57 38.09 0.40

Bold values indicate the best results
We used ViLT + GPT type model for this experiments
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5.5 Model Component Variations

Here, we conduct experiments to see the performance
changes when varying the structures of individual com-
ponents and provide a detailed analysis of the results. In
the main result, we used the pre-trained ViLT (Kim et al.,
2021) based model as the encoder, and the GPT-2 (Rad-
ford et al., 2019) based model as the decoder. Here, we
experimented with counterpart models, one using the pre-
trained UNITER (Chen et al., 2020) as the encoder and the
BART (Lewis et al., 2020) as the decoder. The UNITER
model is one of the large-scale pre-trained multi-modal
encoder, and the BART model is an encoder-decoder pre-
trained text generation model.

In addition, we conducted an ablation study to investi-
gate the question generation performance when altering the
model’s input components. Specifically, we evaluated sce-
narios where each of the three inputs—the entire image, the
region image, and the target knowledge—was individually
omitted from the model’s input. This ablation study is done
for ViLT +GPT-2model, which is used in our primary exper-
iments.

For all models, we report the results of “confirmation”
setting and “exploration” setting. As described in Sect. 4.3,
in former setting, the model is given the head-masked target
knowledge as the input. In the latter setting, the model is
given the target knowledge in which the head and tail are
masked.

As the evaluationmetric,weusedBLEU-4 (Papineni et al.,
2002),METEOR(Denkowski&Lavie, 2014),CIDEr (Vedan-
tam et al., 2015), and Mean IoU. The BLEU, METEOR, and
CIDEr scores are the metrics to evaluate the quality of the
generated questions compared to the ground-truth questions.
The Mean IoU (Intersection over Union) is a metric that
evaluates whether the question is about the correct region
in the image. We compute the IoU between the predicted
region of the generated question and the ground-truth ques-
tion. To predict the target region of the question, we used
region grounding model G(Ir | q, I ), which predicts the
target region of the question Ir from the question q. We
built the grounding model based on UNITER grounding
model (Chen et al., 2020), same as the region classifier in
the Oracle Answerer model.

We summarize the results in Table 4. In terms of question
quality, as measured by BLEU-4, METEOR, and CIDEr, the
differences between the primary models, UNITER + BART
and ViLT + GPT-2, are minimal. However, the distinction
becomesmore evidentwhen examining target region correct-
ness,with theMean IoU scores indicating notable differences
between these architectures.

When assessing the influence of individual inputs, the
omission of the image input leads to a pronounced reduction
in performance metrics across both modes. This highlights

the importance of the image context in achieving high-quality
question generation. The noticeable drop in performance
whenknowledge input is removedunderscores its critical role
in generating coherent and contextually appropriate ques-
tions.

While the distinction between the ViLT + GPT-2 and
UNITER + BART architectures does not significantly influ-
ence the overarching quality of questions, it does impact the
precision of region targeting. More significantly, the alter-
ation in key inputs (image, region, or knowledge) seems to
have more impact on performance. It implies that the high-
level model structures we proposed, such as the encoding
of region information and the introduction of knowledge
embeddings, contribute significantly to the performance.

5.6 Dataset Variations

This section presents the comparative outcomes of VQG
using diverse datasets. We summarize the results in Table 5.
As highlighted in Sect. 2, datasets fulfilling all required
criteria such as being manually created, containing region
bounding boxes, and targeting knowledge acquisition are
scarcely available. To demonstrate the efficacy of the dataset
curated for this study, we conducted experiments using the
newly constructed K-VQG v2 dataset, the smaller-scale K-
VQG v1 dataset annotated via crowdsourcing, and the CRIC
dataset, which is generated based on a rule-based algorithm
rather than manual annotation.

We used the same architecture and training settings as the
main experiments, i.e., ViLT + GPT-2. To evaluate the result
under constant criteria, evaluations were conducted using the
validation split from the K-VQG v2 dataset. The evaluation
metrics adopted were consistent with Sect. 5.5, including
BLEU-4, METEOR, and CIDEr for assessing the quality of
the generated question, along with Mean IoU to measure
how well the generated questions corresponded to the target
regions.

The results indicate that using the K-VQG v2 dataset
resulted in superior quality of the generated questions and
a higher degree of alignment with the target regions com-
pared to the other datasets. This superior performance is
believed to be influenced by both the quantity and quality
of the data. For instance, the K-VQG v2 dataset is approx-
imately 1.5 times larger than K-VQG v1. Moreover, it is
presumed that the K-VQG v2, written by human annotators,
contains a more diverse and natural questions compared to
the rule-based CRIC dataset.

These results underscore the suitability of our K-VQG
v2 dataset for constructing models for the task of generating
visual questions that acquire knowledge about target objects,
as required for our research.
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Fig. 9 Qualitative examples of the multi-turn question generation

5.7 Qualitative Examples

Wepresent qualitative examples of ourmodel with RL policy
in Figs. 9 and 10.

In the leftmost example of Fig. 9, the target object is
“bread,” which is a novel class. The model first asks a
question in exploration mode, that is, the target knowledge
is 〈[MASK], AtLocation, [MASK]〉. Since the first
question is deemed as valid, the model asks a second ques-
tion in confirmation mode, that is, the target knowledge is
〈[MASK], IsA, food〉, using a Rule-VQG model.

In the middle example, the target object is “monitor,”
which is also a novel class. In this case, the model first
asks a question in the exploration mode in which the tar-
get knowledge is 〈[MASK], UsedFor, [MASK]〉. Since
the question is deemed as valid, the next question is asked in
the confirmation mode; the target knowledge is 〈[MASK],
UsedFor, work on mturk〉, and the subsequent ques-
tions are in the exploration mode.

In the rightmost example, in the fifth turn, the model
decides to discontinue the question generation (“no ques-
tion”). As shown in this example, our model can discontinue

question generation when it has obtained sufficient knowl-
edge to recognize the target object.

In Fig. 10, we present examples in which the model failed
to generate valid questions. In the left example, the first ques-
tion “what is the round white object on the table next to
another one that is used to hold more food for more than
one person?” was considered invalid by Oracle Answerer. In
this case, the generated question seems to incorrectly target
“plate” in the image, while the correct target object is “fork.”
The second question, “what is the purpose of themetal object
above the plate?,” is correctly targeted to the fork. Thus, the
model can obtain knowledge 〈fork, UsedFor, feed
self〉.

In the example on the right, the model failed to generate
valid questions for all five turns. In this case, the model con-
tinually asks questions about the objects around the donut,
which is placed in the middle of the image, while the correct
target object “sandal” is placed in the right bottom area of the
image. This is attributed to the VQG model’s limited ability
to correctly localize the target object in the image.
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Fig. 10 Qualitative examples of the multi-turn question generation in which the model failed to generate valid questions

6 Human Evaluation

We employed human evaluations to assess the usefulness of
the questions generated by our model for recognizing novel
classes. To accomplish this, we used AMT as the evaluation
platform. Since real-time question generation by themodel is
difficult to achieve,we used the following procedure. The ini-
tial questionpertaining to the imagewasgenerated in advance
on a local server utilizing the pre-trained model. Subse-
quently, the generated questions were submitted to AMT and
workers were asked to provide the appropriate knowledge as
answers. Once the answers to the initial question were col-
lected, the initial question and workers’ answers were fed
into the trained model to generate the second question. The
second question, along with the history of previous interac-
tions (initial question and answer), was thereafter presented
to the worker, who was prompted to provide an answer to the
new question. This process was repeated for up to five ques-
tions. In Fig. 11, we present an example of a user interface
for workers based on human evaluations.

Weperformedhumanevaluations for the object “monitor.”
We established three criteria for selecting AMT workers to
ensure the highest possible data quality. First, the hit approval
rate for all requesters’ hits must be greater than 95%, which
is considered to be a high bar for requesters. Second, the

Fig. 11 User interface for human evaluation

123



International Journal of Computer Vision

Table 6 Performance of the object recognition using the acquired
knowledge from human evaluation

Top-1 Acc Top-5 Acc Mean Rank

Ours (zero-shot) 0.0 84.8 5.3

Ours (fine-tuned) 60.9 91.3 2.4

Bold values indicate the best results
The performance was assessed under two settings: without fine-tune
(zero-shot) and with fine-tune. Note that the lower the mean rank, the
better the performance

workers had to be located in Canada, the United Kingdom,
or the United States. Finally, we only considered workers
who had been granted “Masters” status, which AMT awards
to workers who have consistently demonstrated a high level
of performance.

We obtained 225 responses (45 images, five questions per
image). This resulted in 176 new knowledge obtained. Of
these, knowledgewith the head “monitor”was themost com-
mon, 35 new knowledge. The next most common head in
the obtained knowledge were “desk” (22) and “laptop” (17).
However, 22 questions were deemed invalid.

The performance of the object recognition using the
acquired knowledge was thereafter assessed under two set-
tings: without fine-tuning (zero-shot) and with fine-tuning.
We evaluated the performance using accuracy andmean rank
of “monitor” and the results are summarized in Table 6. Note
that the metrics are calculated with the data that have “mon-
itor” as the ground truth, as we only gathered knowledge for
“monitor.”

In the zero-shot setting, the accuracy for “monitor”was 0.0
and its rank was 5.33, while after fine-tuning was performed,
the accuracy for “monitor” increased to 60.87 and its rank
improved to 2.40. This indicates that the knowledge acquired
from the human evaluationwas not able to raise the prediction
score of “monitor” to the point where it was predicted to be
the top among the other classes without fine-tuning.

Notably, the mean rank of “monitor” was not extremely
bad, considering that the number of all classes was 598. After
fine-tuning, the accuracy and mean rank of “monitor” were
significantly improved. From these results, we can conclude
that the knowledge acquired from human evaluations is use-
ful for novel object recognition.

Examples of questions and answers are shown in Fig. 12.
We highlight some of the questions and answers in the fig-
ure (A ∼ H). In answers (A, C, G, and H), the workers
provided correct knowledge about the object monitor, such
as 〈monitor, UsedFor, displaying computer
images〉 (A), and 〈monitor, UsedFor, display
graphics〉 (C). In these cases, the questions are concrete
and easy to understand. For instance, from the question of
A, “what piece of equipment on the desk is used to display
computer images?,” we can easily understand the question is

about the monitor on the desk, and the required knowledge
is whether the object is used to display computer images. In
contrast, B, D, E, and F are examples of failed questions and
answers. For B, the question seemed to be about the mon-
itor and its typical location, but the answer was about the
usage of themonitor (〈monitor, UsedFor, display
screen〉). This indicates that the given task should be per-
formed with caution, as there is a significant chance of
misunderstanding or lack of seriousness among the work-
ers. The case of E is similar to that of B; it is probable that
theworkermisunderstood the instruction, resulting in knowl-
edge having a head of the black thing on the desk, which is a
phrase from the original question, instead of an entity name,
such as monitor, as it should have been.

In D and F, the workers provided knowledge about incor-
rect, but similar, or near-located objects (e.g., laptop or
computer monitor). This was attributed to a lack of clarity in
the questions. For instance, in D, the question is “what is the
object on top of the desk that is used to do work on?,” and
themonitor and laptop are both located on the desk and used
to do work on.

From these examples,we found that it is essential to ensure
that the questions are clear and that the workers fully under-
stand their task before beginning, or to provide a training
session for the workers.

In addition,wepresent exampleof theknowledgeobtained
from human answerers in Fig. 13. By our method, the model
successfully acquired various knowledge, i.e., various rela-
tions and tails for the head “monitor,” such as 〈monitor,
AtLocation, desk〉 or 〈monitor, CapableOf,
display images〉. We observe that the knowledge cor-
responding to the relation “UsedFor” and “IsA” tends to be
collectedmore than other relations. This is the same tendency
as in the previous section and can also be explained by the
imbalance of relations in the relying dataset. We believe that
the model can acquire more knowledge of rare relations in
the future when more data for rare relations are collected or
when the model is trained to generate more questions for rare
relations.

We observed certain tails that, though not exact matches,
are semantically analogous (e.g., “displaying computer
images” and “displaying images” or “playing computer
games” and “playing games”). This is not surprising in the
current context because semantically equivalent tails may be
expressed differently in natural languages. However, from
the perspective of computational complexity, it is desirable
to avoid adding different, yet semantically analogous, tails
to the knowledge source. This finding indicates the need for
further exploration of how a knowledge base may be struc-
tured to store vast amounts of knowledge efficiently, while
compressing semantically similar tails in the most compact
manner.
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Fig. 12 Examples of the questions and answers obtained from human evaluation. For the discussion, we highlighted some of the questions and
answers in the figure (A ∼ H)
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Fig. 13 Visualization of the knowledge acquired for the “monitor” from
the human answers

7 Conclusion

In this study, we proposed a multi-turn question generation
model that can generate questions for an object recognition
model to recognize novel classes. We also proposed a policy
network that can select the policy for each action, from the
“confirmation” and “exploration” policies, and “no question”
policy. We evaluated our model on the K-VQG v2 dataset
and demonstrated that it can generate questions useful for
recognizing novel classes. By adding newly obtained knowl-
edge to the knowledge source, themodel can recognize novel
classes while maintaining the performance of known classes,
which results in a significant improvement in mAP for novel
classes, particularly after fine-tuning the model on the newly
obtained knowledge. We also performed a human evaluation
to investigate whether the questions generated by our model
were useful for recognizing novel classes. From the human
evaluation results, we confirmed that our model can generate
questions that are useful for recognizing novel classes, even
if the answerer is not an oracle VQA model but a human.
Despite these successes, our method has a limitation in that
the questions must be clear and concrete to enable work-
ers to understand the tasks. Furthermore, we can include
an answerer model that resembles the behavior of human
answerers, such as the misunderstanding of the question or
answering similar but incorrect knowledge. We believe that
this limitation can be addressed by deploying this model in
real-world applications and continuously collecting data on
the behavior of human answerers.
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