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Abstract
This paper proposes the first self-supervised 6Dobject pose prediction frommultimodal RGB+polarimetric images. The novel
training paradigm comprises (1) a physical model to extract geometric information of polarized light, (2) a teacher–student
knowledge distillation scheme and (3) a self-supervised loss formulation through differentiable rendering and an invertible
physical constraint. Both networks leverage the physical properties of polarized light to learn robust geometric representations
by encoding shape priors and polarization characteristics derived from our physical model. Geometric pseudo-labels from the
teacher support the student network without the need for annotated real data. Dense appearance and geometric information of
objects are obtained through a differentiable renderer with the predicted pose for self-supervised direct coupling. The student
network additionally features our proposed invertible formulation of the physical shape priors that enables end-to-end self-
supervised training through physical constraints of derived polarization characteristics compared against polarimetric input
images. We specifically focus on photometrically challenging objects with texture-less or reflective surfaces and transparent
materials for which the most prominent performance gain is reported.

Keywords Self-supervision · Multi-modalities · Pose estimation · Differentiable rendering

1 Introduction

“Fiat lux, et facta est lux”.1 Light has been the foundation
of many significant scientific findings in history. Early horo-
logical devices utilized changing shadows cast from the sun
to measure time throughout centuries across different civi-
lizations all over the globe. Based on the constant speed of
the electromagnetic wave (EM) with which light travels, it is
possible to determine the distance of an object after emitting
a light pulse by measuring its return time after reflection:

1 Latin for “let there be light, and there was light”.
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a principle used in many active depth sensors. However,
measurements are affected by artifacts such as multi-path
interference (MPI) (Cui et al., 2010) due to reflective materi-
als, ambient light (Jung et al., 2021), or inherently incorrect
estimates when the light passes through transparent objects
such as glass. This leads to inaccurate depth estimates, most
noticeable for photometrically challenging objects (Jung et
al., 2022). Still, many methods that learn geometric tasks
from images use such geometry information from depth data.

6D object pose estimation is one of those geometric tasks
and essential in many computer vision and AR applications,
ranging from robotics (Wang et al., 2021c) to safety-critical
autonomous driving (Ost et al., 2021) and medical appli-
cations (Busam et al., 2018). Recent methods integrate
geometric information either directly as input (He et al.,
2021) or leverage it for self-supervision (Wang et al., 2021a).
Reliable geometric cues can improve pose estimation perfor-
mance, while unreliable and noisy depth information would
interfere with what information a neural network has learned
to extract.

Recent approaches integrate the geometric information of
polarized light by learning features from both the estimated
normal from polarization, and their polarization characteris-
tics, for the task of 6D object pose estimation in a supervised
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way (Gao et al., 2022). In the case of photometrically com-
plex objects, it is shown that the deterioration of measured
depth is even inferior to the use of this modality, ulti-
mately making the direct geometric measurement obsolete.
The authors report impressive results for texture-less, reflec-
tive and translucent objects, outperforming state-of-the-art
RGB-only (Wang et al., 2021b) and RGB-D (He et al.,
2021) methods. However, an extensive training dataset with
ground-truth annotations is required, whichmay be challeng-
ing to obtain in practice, especiallywith high accuracy (Wang
et al., 2022).

In S2P3, we study how a neural network can encode the
geometric shape priors from polarized light captured with a
multi-modal polarization camera for the task of 6D object
pose estimation without the need for annotated real data.
We leverage the aforementioned supervised polarimetric 6D
object pose estimation method (Gao et al., 2022) as a teacher
network and pre-train it on synthetically rendered polarimet-
ric image data only. We then utilize its noisy predictions
on real data, to support a student network with weak labels
for guidance. A differentiable renderer is employed to enable
self-supervisionwith dense geometric cues. Additionally, we
propose an invertible formulation of the physical polarization
model to analytically compute pixel-wise image character-
istics from the geometric normal representation after the
differentiable rendering of the student with the predicted 6D
pose. This analytic inversion closes the self-supervision loop
and allows for direct comparison with the input polarization
as illustrated in Fig. 1.

While we adopt the architecture of PPP-Net for a teacher
network with an additional differentiable renderer, different

from Gao et al. (2022), we use this network to only train
on synthetic data. This pre-trained model then produces pre-
dictions on the 6D pose of objects on real data, which are
leveraged in our proposed teacher–student scheme as weak
labels. The teacher network, basedonPPP-Net, is thusmerely
one element of the overall method S2P3 as introduced here.

Inspired by the advancements in self-supervised learning
and the use of differentiable renderers in end-to-end learn-
ing pipelines, as e.g. in Self6D++ (Wang et al., 2021a), we
transfer such knowledge to the multi-modal imaging domain
of polarization. Unlike Self6D++, where a renderer produces
geometric information in terms of a depth map, which is then
compared against a presumably noisy depth map from an
active depth sensor, i.e., as explained in later sections here,we
carefully study the physical properties of light and integrate
encoded shape priors into a self-supervised scheme. This is
possible through the differentiable analytical derivation of
the physical properties from surface normal information.

The full pipeline of S2P3 thus includes (a) novel archi-
tectural designs for the encoding of physical shape priors
that extend the findings from PPP-Net to a student–teacher
scheme; (b) integrates RGB-agnostic shape information as
surface normal maps from a differentiable renderer, offering
amore resilient alternative to the issues posed by active depth
sensors for photometrically complex objects; (c) entailsweak
pseudo-labels in the form of geometric and pose informa-
tion for self-supervision from the teacher network; and most
notably, (d) proposes an inverted physical model to leverage
shape priors. The lightweight student network predicts and
encodes these into a surface normal representation through
a differentiable renderer. This encoded representation is

Fig. 1 S2P3 pipeline overview. Our proposed teacher–student training
scheme takes four polarization images taken under different polariza-
tion filter angles as well as polarimetric and geometrical representations
derived from the analytical physicalmodel asmulti-modal inputs to both
the teacher and student networks, individually. The student network is
optimized not only towards the pseudo labels generated from the teacher

denoted as L pseudo, but also by L physics which minimizes the discrep-
ancy between the polarimetric representations ρ from the input images
after the analytical physical model (cf. Inputs) and ρ̂ derived through
the inverted physical model from the predicted surface normal of the
student network
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then utilized to derive the object’s analytical polarimet-
ric representation. By integrating this representation into a
new physical loss, we achieve complete end-to-end self-
supervision using raw polarimetric images.

To this end we contribute in summary:

1. S2P3 as a hybrid neural-physics approach to learn
6D object pose prediction with photometric challenges
through self-supervision with neural encodings of geo-
metric shape priors from mutli-modal data.

2. Insights on the interplay of differentiable rendering with
the invertible physical model through extensive experi-
ments on objects of varying photometric complexity.

3. An instance-level synthetic polarimetric image dataset
for 6D pose estimation that comprises objects present
in PPP-Net (Gao et al., 2022) and PhoCal (Wang et al.,
2022).

2 RelatedWork

We revise related work in the realm of polarimetric imaging
and 6D object pose estimation, including relevant datasets
and recent self-supervised approaches, to provide a solid
overview in the research field.

2.1 Polarimetric Imaging

Earlyworks on shape frompolarization (SfP) investigate how
the relation between polarization and the object’s surface can
be used to estimate surface normals and depth information,
but focus on lab scenarios with controlled conditions of the
environment (Atkinson&Hancock, 2006;Garcia et al., 2015;
Smith et al., 2018; Yu et al., 2017). These methods only rely
on monocular polarization images, but multiple views can
also be used for SfP (Atkinson & Hancock, 2005; Cui et
al., 2017), also extending to depth estimation (Verdie et al.,
2022) from a freely moving camera. In Verdie et al. (2022)
the goal is to predict dense depth for outdoor scenes with
photometrically easy objects in a (partly) supervised manner
with depthmeasurements from an active structured light sen-
sor while leveraging multi-modal input to account for other
artefacts that affect depth predictions. Polarimetric images
are also combined with photometric information from either
stereo (Atkinson, 2017) or monocular RGB (Zhu & Smith,
2019) to complement each other for depth predictions. Polar-
ized light can also improve initial noisy depth maps from
other sensors (Kadambi et al., 2017).Ba et al. (2020) compute
a set of plausible cues from polarimetric images to predict
surface normals with a neural network which can disam-
biguate such cues for SfP. Lei et al. (2022) present a novel
method for scene-level surface normal estimation from a sin-
gle polarization image. By introducing a unique real-world

dataset and employing advanced neural architecture with a
multi-head self-attention module and viewing encoding, the
study achieves superior performance in complex scenes. Our
approach is inspired from these findings to complement the
pose estimation with shape priors from physical properties
extracted from the polarized light.

2.2 6D Object Pose Estimation

Dense correspondence-basedmethods (Hodan et al., 2020;Li
et al., 2019; Park et al., 2019; Shugurov et al., 2021; Zakharov
et al., 2019) gained popularity in recent years for 6D object
pose estimation. The key idea is to train a neural network
to predict 2D–3D correspondences between each object
pixel in the image and the 3D location of the correspond-
ing point on the object’s surface. Those correspondences
are consecutively used either with PnP+RANSAC (Fischler
& Bolles, 1981; Lepetit et al., 2009), the Umeyama algo-
rithm (Umeyama, 1991), or direct regression to compute
the 6D object pose. Hierarchical feature representations are
proposed in ZebraPose (Su et al., 2022), and also zero-
shot methods are being investigated for the task of 6D
pose estimation (Shugurov et al., 2022). Many works on
correspondence-based methods (Hodan et al., 2020; Li et
al., 2019; Park et al., 2019; Shugurov et al., 2021; Zakharov
et al., 2019) are limited by the computationally expensive
post-processing for the RANSAC-based pose solver. GDR-
Net (Wang et al., 2021b) and its follower SO-Pose (Di et al.,
2021) use learning-based MLP networks to directly predict
the target pose from the predicted dense correspondences to
improve the computing efficiency. In S2P3 we build upon
these findings to directly regress the object pose.

2.3 Geometric Depth Information

FFB6D (He et al., 2021) introduces a tight coupling strategy
from cross-modal information exchanges with a keypoint
extraction (He et al., 2020) that leverages geometry from
depth. Also other methods like Uni6D (Jiang et al., n.d.),
ESA6D (Mo et al., 2022), FS6D (Yisheng et al., 2022) and
DGECN (Cao et al., 2022) include depth information into
their prediction pipelines. These approaches however, all
critically depend on depth quality which suffers for photo-
metrically challenging objects (Gao et al., 2022). Geometric
cues from polarization could mitigate such issues.

2.4 Self-Supervision

Self-supervised learning avoids the problem of lacking prop-
erly labeled data. In the realm of 6D pose estimation,
differentiable rendering is being used to render synthetic
images with a predicted pose to compare against input
images (Sock et al., 2020). Self6D (Wang et al., 2020) pro-
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poses such approach, where a network is first trained on
synthetic RGB data and then fine-tuned on real RGB-D data
without pose annotations in a self-supervised manner. They
use depth data to align the visual and geometric cues which
is the core part in the self-supervision stage. Building on top
of Self6D, Self6D++ (Wang et al., 2021a) replaces the one-
stage pose regression backbone to two-stageGDR-net (Wang
et al., 2021b) backbone, and additionally introduces a pose
refiner on top of the teacher network to improve the accuracy
and the robustness towards occlusions.

2.5 Polarimetric 6D Pose Prediction

With recently published annotated datasets for real-world
polarimetric category-level (Wang et al., 2022) and instance-
level (Gao et al., 2022) 6D pose estimation, it is now possible
to study methods with this mostly unexplored imaging
modality (Jung et al., n.d.). PPP-Net (Gao et al., 2022) inves-
tigates the advantages of using polarization for supervised
object pose estimation, and designs a hybrid pipeline lever-
aging polarization through a combination of physical model
cues with learning, yielding impressive performance for
photometrically challenging objects when compared against
RGB andRGB-D baselines. However, acquiring real training
data with accurate annotations is still difficult and not easily
reproducible for other scholars without complex and expen-
sive hardware (Gao et al., 2022; Wang et al., 2022). Inspired
by the strengths of polarimetric information in the supervised
learning, we investigate the logical, yet non-trivial, next step
towards exploring how this interesting modality can be inte-
grated into a self-supervised scheme to reduce the need for
annotated data. Different from Self6D (Wang et al., 2020)
and Self6D++ (Wang et al., 2021a), we leverage polarimetric
images, and extend the differentiable renderer to yield—
besides appearance information—geometric representations
in terms of normal maps of the object of interest. We further
utilize this representation to compute polarimetric properties
used for additional self-supervision through our proposed
invertible physical model. To the best of our knowledge, we
present the first method to utilize the geometric information
from polarization in a self-supervised learning scheme.

3 Polarimetric Physical Model

Commonly used sensors in computer vision send or receive
light to measure the wavelength and energy within some spe-
cific spectrum. Additionally to this information, the relative
oscillation of the electromagnetic wave defines its polariza-
tion. Emitted unpolarized natural light becomes polarized
after being reflected from a surface, hence it carries informa-
tion about the object’s surface characteristics. The utilization
of RGB-D sensors in pose estimation has gained popular-

Fig. 2 Polarization camera. When an unpolarized light source reflects
on an object surface, the resulting reflection comprises both a refracted
and a reflected part, both of which are partially polarized. A polarization
sensor captures this reflected light. In front of each pixel of the sensor,
there are four polarization filters (PF) arranged at different angles: 0◦,
45◦, 90◦, and 135◦. Additionally, a colour filter array (CFA) is used to
separate the reflected light into different wavebands

ity owing to their cost-effectiveness and easy integration
into various devices. These sensors utilize active illumina-
tion for depth measurement, either through projection of a
pattern or time-of-flight measurements. However, they are
prone to photometric challenges such as translucency and
reflections that can result in erroneous depth estimates. This
paper presents a solution to these challenges through the use
of surface normals derived from polarization of an RGB-P
sensor (refer to Fig. 2). After discussing some issus of RGB-
D sensors, this section will introduce how aforementioned
information can be measured with a passive sensor with inte-
grated polarization filters. Then we will introduce how the
physical model computes geometric shape priors from the
information encoded in the polarimetric images and how our
invertible formulation is integrated into our network archi-
tecture to enable direct self-supervision.

3.1 Photometric Challenges for RGB-D

Commercial depth sensors rely on photometric measure-
ments to estimate depth, by using active illumination either
by projecting a pattern (e.g. intel RealSenseD series) or using
time-of-flight (ToF) measurements (e.g. Kinect v2/Azure
Kinect, intel RealSense L series). This makes them sus-
ceptible to challenges such as reflections and translucency,
which can artificially extend the roundtrip time of photons
or deteriorate the projected pattern. As a result, accurate
depth estimation becomes infeasible in such scenarios, as
illustrated in Fig. 3 for a set of common household objects.
The ToF sensor (RealSense L515) used in the experiment
struggles to detect the semi-transparent vase, which appears
almost invisible to the sensor. Additionally, reflections on
the cutlery and can, cause the sensor to generate depth esti-
mates that are significantly further from the true value, while
strong reflections at boundaries result in pixel distances that
are invalidated.
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Fig. 3 Depth artifacts. The RealSense L515 depth sensor exhibits
miscalculations in depth values for common household objects. Specif-
ically, boundaries (1,3) invalidate pixels, and strong reflections (2,3)
lead to incorrect depth estimates that are too far from the true value. In
the case of semi-transparent objects like the vase (4), the depth sensor
has difficulty detecting them, resulting in partially invisible objects and
inaccurate measurements of the distance to objects behind them

3.2 Surface Normals from Polarization

Most artificial and natural light is unpolarized, meaning the
electromagnetic wave oscillates along all planes perpendic-
ular to the direction of propagation of the light (Fließbach,
2012). When unpolarized light passes through a linear polar-
izer or is reflected at Brewster’s angle from a surface, it
becomes perfectly polarized. The refractive index of a mate-
rial determines how fast light travels through it, howmuch of
it is reflected, and theBrewster’s angle of thatmedium.When
light is reflected at the same angle to the surface normal as
the incident ray, we call it specular reflection. The remaining
part penetrates the object as refracted light, which becomes
partially polarized as it traverses through the medium. This
light wave escapes from the object and creates diffuse reflec-
tion (Fliesßbach, 2012). We use Fig. 4 to provide an example
that illustrates these concepts.

For real physical objects, the resulting reflection is a com-
bination of specular and diffuse reflection, where the ratio
largely depends on the refractive index and the angle of inci-
dent light. We propose to use surface normals obtained from
polarization to overcome the photometric challenges faced
by RGB-D sensors. Our method can be applied to various
applications, including pose estimation, where accurate 3D
information is crucial.

3.3 Image FormationModel

We present the fundamental polarization image formation
model and our invertible physical model that links the polari-
metric and geometrical representations. When light with a
specific intensity I and wavelength λ reaches the sensor,
it passes through the color filter array (CFA), which sepa-

Fig. 4 Degree of polarization. The polarization of light changes when
it reflects off a translucent surface, resulting in differences in the polari-
metric image quadruplet, with different polarization angles (P0–P3),
that are directly related to the surface normal. In particular, the degree
of polarization (DoP) for both the translucent and reflective surfaces
is considerably higher than for the rest of the image, as shown in the
indicated areas in the image

rates the light into RGB wavebands, as shown in Fig. 2. The
incoming light also has a degree of polarization (DoP) ρ and
a direction (angle) of polarization (AoP) φ. As light passes
through a polarizer array on top of a pixel unit with four
different polarization angles ϕpol ∈ {0◦, 45◦, 90◦, 135◦}, the
oscillation state of light is recorded alongside its wavelength
and energy (Kalra et al., 2020). The polarization image for-
mation model in Eq.1 defines the underlying parameters that
contribute to the captured polarized intensities as:

Iϕpol = Iun · (1 + ρ cos(2(φ − ϕpol))), (1)

where the unpolarized intensity Iun can be computed via
averaging over polarized intensities Iϕpol under different
polarization filter angles ϕpol ∈ {0◦, 45◦, 90◦, 135◦}. The
degree of polarization (DoP) ρ and angle of polarization
(AoP) φ can be solved from a linear least squares sys-
tem (Huynh et al., 2010) from a set of polarization images
captured under different polarization filter angles as:

⎡
⎢⎣

Iϕpol,1
...

Iϕpol,4

⎤
⎥⎦ =

⎡
⎢⎣
1 cos 2ϕpol,1 sin 2ϕpol,1

...

1 cos 2ϕpol,4 sin 2ϕpol,4

⎤
⎥⎦

⎡
⎣

x1
x2
x3

⎤
⎦ , (2)

where the unknowns xi in the linear system represent x1 =
Iun , x2 = Iunρ cos 2φ, and x3 = Iunρ sin 2φ.

We findϕ andρ from the over-determined systemof linear
equations in 1 using linear least squares. Depending on the
surface properties, AoP is calculated as:

{
φd [π ] = α for diffuse reflection
φs[π ] = α − π

2 for specular reflection
, (3)

where [π ] indicates the π -ambiguity and α is the azimuth
angle of the surface normal n. We can further relate the
viewing angle θ ∈ [0, π/2] to the degree of polarization by
considering Fresnel coefficients, thus DoP is similarly given
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by (Atkinson & Hancock, 2006):

⎧⎪⎨
⎪⎩

ρd = (η−1/η)2 sin2(θ)

2+2η2−(η+1/η)2 sin2(θ)+4 cos(θ)
√

η2−sin2(θ)

ρs = 2 sin2(θ) cos(θ)
√

η2−sin2(θ)

η2−sin2(θ)−η2 sin2(θ)+2 sin4(θ)

, (4)

with the refractive index of the observed object material η.
Solving Eq.4 for θ , we retrieve three solutions θd , θs1, θs2,
one for the diffuse case and two for the specular case. For
each of the cases, we can now find the 3D orientation of the
surface by calculating the surface normals:

n = (cosα sin θ, sin α sin θ, cos θ)T . (5)

We use these plausible normals nd ,ns1,ns2 as physical
priors per pixel as input to the neural network.

With the help of the physical model defined by Eqs. 1 and
2, we can now derive physical polarimetric characteristics
which encode shape information as geometric normals.More
formally, when light gets reflected by the object’s surface, the
shape information is encoded in the captured polarization
intensities accordingly. The physical model in our pipeline
reveals the implicitly encoded shape information to provide
object-centric priors orthogonal to intensity information. We
derive a set of explicit object shape priors Ni based on polari-
metric intensities Iϕpol and properties ρ, φ as Ba et al. (2020)
and Zou et al. (2020). The ambiguities within this process
lead to non-unique solutions as in Ba et al. (2020), yet we
encode them in a pixel-exclusivemanner to guide the network
to distinguish between different priors and extract meaning-
ful geometrical features.

3.4 Invertible Physical Model

Inverting the model and assuming a given normal map of
an object, e.g., from a differentiable renderer with an esti-
mated 6D pose as in our training scheme, we define an
invertible solution to solve for the polarimetric represen-
tation analytically. This serves to close the loop from the
network’s prediction by transferring the information of the
object’s pose parameterized as 6D transformation through
a differentiable renderer into a geometric form and further
into encoded physical properties of light reflections that can
be compared against the original input information in a self-
supervised scheme.

The inverted physical model aims to bring a loop closure
from the other end by taking the rendered object surface nor-
mal map to analytical polarimetric parameters considering
different reflection properties. We obtain the viewing angle
θv from cos θv = n · v where n is the rendered object sur-
face normal map, and the viewing vector v is defined as
v = −π−1(u, v, K ) with π−1 which serves as backprojec-
tion operation for pixel (u, v) with camera intrinsics K . The

analytical DoP ρ̂ is then derived via formulations for diffuse
and specular reflection cases:

⎧⎪⎨
⎪⎩

ρ̂d = (η−1/η)2 sin2(θv)

2+2η2−(η+1/η)2 sin2(θv)+4 cos(θv)
√

η2−sin2(θv)

ρ̂s = 2 sin2(θv) cos(θv)
√

η2−sin2(θv)

η2−sin2(θv)−η2 sin2(θv)+2 sin4(θv)

, (6)

where η is a constant defined by the refractive index of object
materials. The inverted physical model offers the possibility
to optimize the model via object shape cues, which is more
robust in photometrically challenging scenarios compared to
active depth sensors.

4 Methodology

The objective of S2P3 is to achieve 6D object pose prediction
without relying on annotated real data. To accomplish this,
a teacher–student training approach is suggested, which uti-
lizes pre-training on synthetic data and pseudo-labels from
the teacher during self-supervision as depicted in Fig. 1.
By additionally incorporating the proposed invertible physi-
cal model for self-supervision, S2P3 makes full use of the
geometric data encoded in the polarimetric images. This
section outlines the hybrid polarization-based pipeline for
learning object pose and explains the physics-induced self-
supervision approach in detail.

4.1 S2P3 Network Architecture

S2P3, consisting of a teacher network (cf. Fig. 5) with a
larger capacity and a light student network (cf. Fig. 6), is
illustrated in Fig. 7 as a schematic overview. Both networks
are pre-trained on synthetic data, whereas the teacher later
provides pseudo labels on real data to guide the student
network in a self-supervised manner. The detailed archi-
tecture illustrates essential extensions, modifications, and
important design choices of S2P3 compared against estab-
lished student–teacher training schemes in the community
of 6D object pose estimation (Wang et al., 2021a). These are
explained in detail in the following and justified with abla-
tions in our experiments section.

4.1.1 Teacher Network

Inspired by the architecture of PPP-Net (Gao et al., 2022),
we propose our polarimetric network with an extended dif-
ferentiable renderer, as the teacher of S2P3 (cf. Fig. 5). Here,
the inputs of polarimetric intensities and geometrical shape
priors are encoded through separate input heads, followed
by an explicit decoder to predict an object mask M̃t, an
object normal map Ñt, and the dense correspondences as
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Fig. 5 S2P3 teacher network. The network takes the shape priors and
polarimetric representations, both derived from the analytical physical
model from four polarized images, as input. Before retrieving the 6D

object pose, intermediate geometrical representations are predicted. A
differentiable renderer utilizes the predicted pose to provide a rendered
normal map and object mask

Fig. 6 S2P3 student network. Different from the teacher network in Fig. 5, the student is more light-weight by neglecting the explicit decoding of
predicted geometric representations

normalized object coordinate map M̃xyzt . The spatial and
shape correlation of M̃xyzt and Ñt serve as inputs to an object
pose estimation module (Wang et al., 2021b), in which the
predicted rotation vector is parameterized in the form of
allocentric continuous 6D representation (Zhou et al., 2019)
and the predicted translation as scale-invariant vector (Li et
al., 2019). We further convert them into a standard rotation
matrix R̃t ∈ R

3×3 and a translation vector t̃t ∈ R
3 and

denote the final pose as P̃t = [R̃t | t̃t]. Here, we extend the
neural network of PPP-Net. To compute pixel-wise geomet-
rical pseudo labels from the predicted pose, a differentiable
renderer takes the object’s CAD model and P̃t as inputs to
render an object mask M̃R

t and an object normal map ÑR
t . All

the predicted and rendered quantities serve as weak pseudo
labels for the student network.

4.1.2 Student Network

We propose a lightweight student network without explicit
geometric decoder, different to Self6D++ (Wang et al.,
2021a), where the network directly regresses the predicted
pose for the student P̂s (cf. Fig. 6). This also favors fast
inference while maintaining high accuracy. Our ablations,
discussed later in Table4, indicate the superiority of our stu-
dent network design. The teacher network consists of about
5.5 million weights, whereas our lightweight teacher does

not need the explicit decoder, thus reducing the network
to about 5 million weights. While the number of parame-
ters is not significantly reduced, the inference time and also
pose prediction accuracy is greatly improved by not predict-
ing the intermediate geometric representations, as discussed
later in the results section. We test this against the design
choice of Self6D++ (Wang et al., 2021a) of having the stu-
dent network identical to the teacher butwithout a subsequent
pose refiner. Our student network converges towards bet-
ter predictions without the redundant explicit prediction of
intermediate geometric representations with our proposed
self-supervision. The final output of our student in S2P3,
thus only consists of the predicted pose P̂s. To link the predic-
tions with geometric and polarimetric properties, we render
an object normal map N̂s and an object mask M̂s given P̂s

via the differentiable renderer—analogous to the teacher net-
work. We will detail how this polarimetric representation of
the geometric information is utilized in a self-supervised loss
term in the following.

4.2 Physics-Induced Self-Supervised Training
Scheme

As detailed before, the polarimetric images contain rich
information that we provide as explicit representations to
the network to learn neural geometric encodings. This sec-
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Fig. 7 S2P3 pipeline overview. Our proposed teacher–student training
scheme takes four polarization images taken under different polariza-
tion filter angles as well as polarimetric and geometrical representations
derived from the physical model as inputs to both the teacher and stu-
dent networks. The student network is optimized not only towards the

pseudo labels generated from the teacher denoted as L pseudo, but also
by L physics whichminimizes the discrepancy between ρ from the phys-
ical model and ρ̂ from the inverted physical model. During inference,
the lightweight student network only predicts direct pose estimates as
indicated by the gray background color

tion defines how these representations are further leveraged
and integrated into our physically induced self-supervised
scheme, firstly through implicit and explicit weak pseudo-
labels of the teacher network, and second as direct coupling
by closing the loop towards the input information of the
pipeline.

4.3 Loss Formulations

Our proposed optimization scheme comprises two com-
plementary paradigms. The first passes knowledge of the
pre-trained teacher to the student in the form of weak
labels of the pose P̃t and related object shape knowledge
{M̃t, Ñt, M̃R

t , ÑR
t }, which we define as pseudo label loss

Lpseudo. The second is to utilize the inverted physical model
to optimize the student prediction P̂s via raw polarization
data in our physical loss term Lphysics detailed below.

Toaccount for potentialmisalignment between thedecoded
shape knowledge {M̃t, Ñt} and pose knowledge P̃t, we com-
pare the predicted mask M̃t and the rendered mask M̃R

t and
normalize the discrepancy to a scalar value of δ, which serves
as the criteria of choosing pseudo ground truth for the geo-
metrical regularization term Lgeo and a dynamic weighting
term in the overall learning objective. The final formulation
is then:

Lpseudo = λ1Lpose + Lgeo, (7)

with:

Lpose = avg
x∈M

‖(R̃tx + t̃t) − (R̂sx + t̂s)‖1, (8)

Lgeo = Lmask + Lnormals, (9)

in which we define the Lmask as mean squared error and
Lnormals as cosine similarity loss. The rendered represen-
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tations {M̃R
t , ÑR

t } are chosen as geometrical pseudo ground
truth if δ is within a predefined threshold r , otherwise the pre-
dicted representations are selected, also leading to a reduced
weighting factor λ1 = (1 − δ) on direct pseudo pose loss
Lpose.

4.3.1 Physical Constraints

To enable self-supervision via the invertible physical model,
the rendered geometric normal map N̂s serves as input to
solve for analytical diffuse and specularDoP {ρ̂d , ρ̂s} accord-
ing to Eq.6. To benefit from the underlying physical process
of polarimetric imaging, Lphysics deploys a pixel-wise min-
imum selection mechanism inspired by (Verdie et al., 2022):

Lphysics = min
x∈{ρ̂d ,ρ̂s }

‖ρ − x‖1. (10)

To avoid the domain gap between the analytically solved
intensity map and the real polarimetric images as in Verdie
et al. (2022), we directly formulate the loss function based
on polarimetric properties instead of polarimetric intensities.
Hence, the student’s output is optimized to align with raw
DoP ρ from real polarization images.

The overall loss combines the knowledge from the teacher
and the raw data as:

L = Lpseudo + Lphysics . (11)

5 Experimental Results

We perform extensive evaluations and ablations on the
instance-level polarimetric 6D pose dataset on which PPP-
Net (Gao et al., 2022) provides a strong baseline against
RGB-only (Wang et al., 2021b) and RGB-D (He et al., 2021)
state-of-the-art supervised methods (Wang et al., 2022). This
section first states implementation parameters for training,
outlines the synthetic dataset generation, and describes the
real polarimetric dataset. Detailed quantitative results on real
data are discussed, and extensive ablations on different loss
terms and modalities are analyzed. Our experiments specif-
ically study the influence of polarimetric physical cues in
a self-supervised scheme on objects of varying photomet-
ric complexity for instance-level 6D object pose prediction.
Polarimetric images and self-supervised schemes are both
mostly unexplored tracks in 6D pose estimation. As such,
we take the supervised PPP-Net (Gao et al., 2022), and the
self-supervised Self6D++ (Wang et al., 2021a) trained on
RGB and RGB-D data, as strong baselines for compari-
son. Self6D++ (Wang et al., 2021a) is the SOTA method
in self-supervised 6D object pose estimation with RGB-
D information, outperforming other baselines by a large

margin (Sock et al., 2020; Wang et al., 2020). As such, it
represents a valid comparison and justifies the improvements
of our method. Likewise, PPP-Net (Gao et al., 2022) outper-
forms state-of-the-artRGB-onlymethods onphotometrically
challenging objects as under consideration here. Hence, it
constitutes a legitimate representative of RGB-only methods
as strong baseline for the experiments under consideration
here.

5.1 Synthetic Data Generation

Given a CAD model of an object, we randomly sample
camera locations on its upper hemisphere for rendering. To
further enforce realistic renderings and to reduce the domain
gap, we set up backgrounds with different textures and light-
ing positions in Mitsuba2 renderer (Nimier-David et al.,
2019) to acquire 200–800 sets of polarization images for
each object.

We present illustrations of our synthetic dataset for differ-
ent viewpoints in Fig. 8 to illustrate the variety of sampled
poses, objects of different photometric complexity, and their
appearance in the image. The synthetic dataset is used to pre-
train the teacher and student networks.We render a set of four
polarimetric images with different angles of the polarization
filter according to the camera used in the real setup.

As rendering is very time-consuming, we provide the
dataset.2 We also train a customized object detector on syn-
thetic data to later provide predicted masks and bounding
boxes on the real domain.

We present samples of our real polarimetric dataset with
annotated object poses in Fig. 9. The objects rendered using
ground truth pose labels indicate the high quality of data
annotation, and the object models with white color rendering
indicate their textureless nature, which supports our design
of removing the need for color texture supervision.

5.2 S2P3 Training

We detail the two phases of the training: “Synthetic Pre-
training” on rendered data and “Self-supervised Training on
Real Data”. The former uses synthetic data with 6D pose
annotations for supervised pre-training of the teacher and the
student networks individually. In the latter phase, we use real
data to train the student network in a self-supervised fashion
by leveraging our proposed novel training scheme and loss
function.

5.2.1 Synthetic Pre-training

Both the teacher and studentmodels go through a pre-training
phase in which they receive supervision exclusively based on

2 https://daoyig.github.io/.
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Fig. 8 Synthetic dataset. Samples of objects with varying photometric complexity are illustrated from different viewpoints

Fig. 9 Real dataset. Samples of objects are illustrated from different viewpoints. The rendered objects using GT pose illustrate the white-color
rendered texture

the 6D pose information, derived from ground truth annota-
tions from synthetic data. During this phase, the loss function
has a two-part structure: an L1 loss is utilized for trans-
lation, while a point matching loss is applied for rotation.
Notably, the differentiable renderer is not integrated into this
pre-training stage. In terms of computational time, the pre-
training process takes several hours, typically ranging from
4 to 5h for each object. Subsequently, the self-supervised
phase is more time-intensive, demanding approximately 10h
per object.

5.2.2 Self-Supervised Training on Real Data

We evaluate our method on a specific data split of the
instance-level 6D pose estimation dataset introduced in Gao
et al. (2022) containing objects with varying photometric

complexity with highly accurate annotations from robotic
forward-kinematics. The RGB-P data is acquired with the
polarization camera Phoenix 5.0 MP PHX050S1-QC com-
prising a Sony IMX264MYR CMOS (Color) Polarsens
sensor (LUCID Vision Labs, Inc., Richmond B.C, Canada)
and a Universe Compact C-Mount 5MP 2/3′′ 6mm f/2.0 lens
(Universe, New York, USA).

As the amount of real data differs between objects, we
follow common practice in instance-level object pose esti-
mation literature by sampling around 15–20% of total data
for training, and the rest for testing (Gao et al., 2022), which
results in 200–300 sets of real polarization images as train-
ing data for each object, and 1000–2000 sets of images as
testing.

We ensure that the poses for the data split of the rendered
synthetic domain are similar to the poses of the real domain
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in terms of overall distribution, to ensure comparability when
analyzing the domain shift and the influence of our proposed
self-supervision scheme later. The predicted bounding box
crops out the region containing the object of interest and is
resized to 256×256 as inputs to the networks. The predicted
object mask serves as input to the physical model to produce
only object-related polarimetric parameters as well as shape
priors.

5.3 Implementation Details

We implement our model using Pytorch (Paszke et al., 2019)
and train on an NVIDIA 2080 GPU and using ADAM opti-
mizer (Kingma&Ba, 2014) on a commodity desktopPCwith
an Intel i7 CPU processor and 32GB RAM. The teacher and
student networks are trained for 100 epochs for each object
individually, both for synthetic and real data. The initial learn-
ing rate is set to 1 × 10−4, and halved every 25 epochs.
The weights for all encoders are initialized with ImageNet
weights. For synthetic pre-training, we use a batch size of 8,
and for the self-supervised training on real data a batch size
of 4.

5.4 Refractive Indices

As a material-related coefficient, the refractive index η for
each object is listed in Table1. The index serves as input to
both the forward and inverted physical model. The refractive
index is assumed to be known, but it has only a minor influ-
ence on object pose predictions [cf. also PPP-Net (Gao et al.,
2022)]. In terms of objects with different composite materi-
als, we can observe the plastic cup in our experiments, where
the plasticmaterial is slightly different for the beige andgreen
parts and the texture changes as well. Given the results for
the different refractive indices [cf. TableA6.Refractive Index
Ablation. in the Supp.Mat. of PPP-Net (Gao et al., 2022)],
we expect that objects with different composite materials can
still be handled. An extensive study of composite objects is
out of scope for this work, as the PhoCal dataset (Wang et
al., 2022) does not include other such objects.

Table 1 Refractive indices

Object Material Refractive index

Fork Stainless steel 2.75

Knife Stainless steel 2.75

Bottle Glass 1.52

Cup Plastics 1.50

5.5 EvaluationMetrics

The results are evaluated using the common Average Dis-
tance of Distinguishable Model Points (ADD) metric (Hin-
terstoisser et al., 2013) for non-symmetrical objects, inwhich
10% of the object’s diameter is set as the threshold to judge
the average deviation of the transformed model points. For
symmetric objects, the average deviation to the closest model
points is measured as in the Distance of Indistinguishable
Model Points (ADD-S) metric (Hodaň et al., 2016).

5.6 Quantitative Results: Baseline Comparisons

S2P3 proposes to leverage polarimetric information for
self-supervised 6D object pose estimation and focuses on
photometrically challenging objects, where self-supervised
RGB-D methods may fail due to inherent sensor data arti-
facts, and supervised approaches, eitherRGB-only orRGB-P
methods as e.g. PPP-Net (Gao et al., 2022), would require
a large amount of annotated real data. Therefore, the exper-
iments are deliberately chosen to analyse the multi-modal
self-supervision through the physical constraints, its loss
functions, as well as the architecture and design choices
for the student–teacher scheme in the ablation studies to
yield best scientific insights into self-supervised polarimet-
ric 6D pose estimation. As such, we compare S2P3 against
PPP-Net (Gao et al., 2022) on our data split, as a very
strong supervised baseline, in order to analyze the effect of
self-supervision. PPP-Net already outperforms other strong
state-of-the-art RGB-only methods as reported in Gao et al.
(2022), and is thus a valid upper threshold for comparison.
Self6D++ (Wang et al., 2021a) is the state-of-the-art self-
supervised RGB-D method on many standard benchmark
datasets, and is thus chosen for establishing polarimetric
self-supervision in S2P3 as a strong baseline. See also the
qualitative results in Figs. 10 and 11, also including occlu-
sions of the object as in Figs. 12 and 13, for visual results
which are discussed later in more detail.

We prove the effectiveness of the self-supervision pipeline
by quantitative results in Table2. Please note, that PPP-Net
(trained on annotated real data) is the identical network as
we use in our teacher model but without the differentiable
renderer. In our full model S2P3 however, we do not train
the teacher in a supervised manner on real data, but only
pre-train it on the synthetic data. Then, the weights of the
teacher are frozen and it only provides weak pseudo-labels
on real data for the teacher–student scheme.Ourmodel S2P3,
consistently outperforms the self-supervised learning-based
state-of-the-art RGB-D method Self6D++ by Wang et al.
(2021a),3 and even reaches comparable performance against

3 Self6D++ is trained and tested on our dataset, with RGB-D informa-
tion from Realsense L515 sensor.
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Fig. 10 S2P3 qualitative results before and after self-supervision. The projected bounding boxes in blue, red and green represent the ground-truth
6D object poses, the results before and after applying self-supervision, respectively

Fig. 11 S2P3 qualitative results before and after self-supervision (zoomed-in from Fig.10). The projected bounding boxes in blue, red and green
represent the ground-truth 6D object poses, the results before and after applying self-supervision, respectively

Fig. 12 S2P3 qualitative results before and after self-supervision with occlusions. The projected bounding boxes in blue, red and green represent
the ground-truth 6D object poses, the results before and after applying self-supervision, respectively
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Fig. 13 S2P3 qualitative results before and after self-supervision with occlusions (zoomed-in from Fig.12). The projected bounding boxes in blue,
red and green represent the ground-truth 6D object poses, the results before and after applying self-supervision, respectively

Table 2 S2P3 quantitative
results

Methods Training Cup Fork Knife Bottle Mean

PPP-Net Supervised 91.4 91.7 90.0 89.4 90.6

Self6D++ Self-supervised (RGB-D) 68.4 14.3 17.8 33.5 34.0

S2P3 (Ours) Self-supervised (RGB-P) 93.8 72.4 78.4 78.2 80.7

Average recall of ADD(-S) metric is reported for different objects with increasing photometric complexity.
Self6D++ from Wang et al. (2021a). PPP-Net from Gao et al. (2022)
Bold values indicate best results

the fully supervised upper bound baseline (Gao et al., 2022)
for photometrically complex objects.

5.7 Ablation Studies

Our evaluation comprises several ablation studies to analyze
the nuances of our model’s components. We assess perfor-
mance variations between synthetic and real data domains,
particularly in the absence of self-supervision, to answer the
question: how well can the student and the teacher network
perform on real data, when trained in a supervised fashion
on synthetic or real data, respectively, and how much perfor-
mance gain doesS2P3 achievewhen supervising on synthetic
data only and performing self-supervision with real data.
We further explore the impact of the student’s architecture
within the student–teacher paradigm, focusing on whether a
lightweight student could match or outperform the teacher
when refined on real data. Or to put it simple: Do we need
a large student model, identical to the teacher network with
a decoder and dedicated geometrical predictions? Or is the
design choice of S2P3 to directly regress the 6D pose for
the student beneficial? Additionally, we dissect the influence
of individual loss components, emphasizing the significance
of our physically-induced self-supervised loss. And finally
investigate the role of depth versus polarimetric information,
gauging their relative contributions to the model’s efficacy.

5.7.1 Ablation on Domain Shift: S2P3’s Self-supervision

Table3 summarizes the results when training the individ-
ual student and teacher network separately (not within the

S2P3 training scheme), without the differentiable renderer,
with supervision on the pose estimation as in the synthetic
pre-training. We differentiate whether training is performed
on annotated real or synthetic data, and test on real data. As
expected, the student and teacher networks, perform worse
on real data when trained on synthetic data only, due to the
domain shift, compared to training on real data (compare top
and lower rows of Table3 for student and teacher, respec-
tively). The larger teacher network with a dedicated decoder
and explicit intermediate geometrical representations, which
is identical to PPP-Net (Gao et al., 2022) and marked with †
in the table, outperforms the smaller student network when
trained in a supervised fashion in both scenarios. Our full
pipeline of S2P3(where the student is trained self-supervised
on real data and the teacher weights are fixed), with our pro-
posed small student network and a teacher, which are both
only pre-trained on synthetic data (i.e., the synthetically pre-
trained networks correspond to the numbers of the lower
part of Table3), achieves impressive results without being
trained on annotations from real images due to our proposed
self-supervision paradigm. S2P3 even partly outperforms the
fully supervised training on real data (cf. top rows against
S2P3) and achieves comparable results to PPP-Net as fully
supervised upper boundary (indicated by †). Notably, the
self-supervision of S2P3 improves the results against the syn-
thetically pre-trained student network (cf. Table3 “Student
�” against S2P3). While this trend holds true for all objects,
the observation from before is not as significant for the fork,
which may result from large occlusions for this object in the
majority of the data (cf. Figs. 12 and 13 where the fork is
inside the cup).
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Table 3 Domain shift and S2P3’s self-supervision

Configuration Supervised Self-supervised Tested on Cup Fork Knife Bottle Mean

Student Real – Real 86.4 88.0 91.1 80.4 86.5

Teacher † Real – Real 91.4 91.7 90.0 89.4 90.6

Student � Synthetic – Real 53.7 64.4 46.1 47.5 52.9

Teacher Synthetic – Real 72.3 75.0 67.3 76.2 72.7

S2P3 (Ours) Syn. (Pre-trained) Real Real 93.8 72.4 78.4 78.2 80.7

Average recall of ADD(-S) metric is reported for different objects with increasing photometric complexity for the student and teacher network
individually, when trained in a supervised setting on either real or synthetic data and tested on real data. The full S2P3 pipeline, with synthetic
pre-training, and self-supervised training of the student on non-annotated real data, is also reported for comparison. “Teacher †’ as upper bound is
identical to PPP-Net (Gao et al., 2022). “Student �” corresponds to the setting of S2P3 before applying our proposed self-supervision scheme
Bold values indicate best results

Table 4 Ablation on network architecture

Config Self-sup. Cup Fork Knife Bottle Mean

Our student None 53.7 64.4 46.1 47.5 52.9

Large student None 72.3 75.0 67.3 76.2 72.7

Our student � (S2P3) 93.8 72.4 78.4 78.2 80.7

Large Student � 88.6 55.9 69.4 77.8 73.0

We compare different architecture designs for the student network, i.e.,
our small student and a larger student which would be equivalent to
the teacher architecture. Our proposed self-supervised student network
(Ours) achieves best results across all objects. We report average recall
of ADD(-S) metric
Bold values indicate best results

5.7.2 Ablation on Network Architecture: Exchanging the
Student

We follow the motivation to utilize a lightweight student for
faster inference. We exchange the network architecture for
the student network in S2P3, with the one that is normally
used as teacher, i.e., instead of the network in Fig. 6 we use
the one of Fig. 5 as the student, to analyze the influence of the
larger network with its dedicated decoder and intermediate
geometrical representations.While intermediate geometrical
outputs of the large student are beneficial during pre-training
in a supervised fashion (cf. first two rows in Table4), those
outputs introducemore optimization objectives when used as
the student network to learn the 6D pose of the object. The
ablation in Table4 demonstrates that the lightweight student
(Our Student) can achieve better performance than a larger
student (Large Student) network after fine-tuning the stu-
dent on real data with our student–teacher training scheme
and self-supervision through physical constraints Lphysics .
The additional parameters and the intermediate geometri-
cal representations of the large student make convergence
more difficult. Still, the physical constraints improve the
large student significantly after self-supervision (cf. Large
student with None and with Self-Supervision). The ablations
demonstrate that the lightweight student can achieve better

performance than the larger student network after fine-tuning
on real data with our self-supervision scheme through phys-
ical constraints Lphysics , as employed in S2P3.

5.7.3 Ablation on Loss Terms

We first verify the influence of various loss terms by training
the network without each specific loss term for the self-
supervision stage as summarized in Table5. We find that
the direct geometrical point matching loss of Lpose is cru-
cial to self-supervision. Without enforcing Lpose for the
student against the weak pseudo-labels of the teacher, the
training would easily diverge. The physically-induced self-
supervised loss Lphysics , that is derived from our invertible
physical derivations, indicates a larger impact on training
results compared to geometrical supervision signals from the
teacher network, e.g., Lnormal and Lmask . The captured real
polarimetric images contain more robust underlying object
shape information compared to the output of the differen-
tiable renderer. The overall performance of themodel reaches
best accuracymetrics for all objectswith varying photometric
complexity when all loss ingredients are present, as indicated
in the last row of Table5.

These results indicate, that the convergence of the stu-
dent can only be guaranteed when weak labels of the teacher
network roughly guide the pose predictions. One reason
to explain such behavior, is that the differentiable renderer
would be completely unconstrained without Lpose, thus
potentially rendering outputs with pose predictions that are
out of the field of view. Dense supervision of the appearance
and geometric representations after differentiable render-
ing further improve the networks performance, while the
boost in pose accuracy is most noticeable with our pro-
posed self-supervised physically-induced loss formulation.
The contribution of the self-supervision is also apparent in the
qualitative results in Figs. 10 and 11. The projected bound-
ing boxes in green show better alignment with ground truth
(blue) after self-supervision, compared against predictions of
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Table 5 Ablation on loss terms

Methods Cup Fork Knife Bottle Mean

w/o Lpose 6.8 0.2 2.3 0.6 2.5

w/o Lphysics 71.8 72.1 70.8 74.4 72.3

w/o Lnormal 87.5 61.0 67.3 74.9 72.7

w/o Lmask 89.9 64.9 70.1 72.7 74.4

S2P3 (Ours) 93.8 72.4 78.4 78.2 80.7

Average recall of ADD(-S) metric is reported
Bold values indicate best results

Table 6 S2P3 ablations on depth modality

Ours with: Cup Fork Knife Bottle Mean

RGB-D chamfer 100.0 11.6 59.1 40.7 52.9

RGB-D pixel-wise 86.8 32.3 62.5 50.3 58.0

RGB-P (S2P3) 93.8 72.4 78.4 78.2 80.7

Average recall of ADD(-S) metric is reported
Bold values indicate best results

the pre-trained teacher (red). Figures12 and 13 show addi-
tional results for cases where part of the object, here fork and
knife, is occluded.

5.7.4 Ablation on Modalities

RGB-Texture Supervision For textureless and transparent
objects, the rendered object texture will only be white, since
it does not have any color [cf. also Figure 7 in PhoCal (Wang
et al., 2022) and Figure 5 in PPP-Net (Gao et al., 2022)].
This would reduce the RGB-texture loss essentially to the
mask loss in our pipeline. Hence, we eliminate the need for
texture rendering and instead rely on the physical properties
of polarized light.
Depth SupervisionTo analyze the importance of accurate and
reliable geometric representations for the task of 6D object
pose estimation,we train our pipelinewith depthmaps from a
direct time of flight (D-ToF) sensor and compare it against the
polarimetric S2P3 method with our physically-induced self-
supervised loss. For this purpose, we adapt our network to
have an additional loss term utilizing depth information aside
from having almost all other components unchanged. We let
the differentiable renderer of the student network addition-
ally render depth maps DR given the predicted pose P̂s, and
employ a chamfer distance loss Lcham f er between the point
cloud PR back-projected from the rendered depth DR and
the point cloud P back-projected from the depth map in the
polarization camera coordinate system, to optimize for align-
ments without explicit 3D–3D correspondence registrations
as:

Lcham f er = avg
p∈P

min
pr ∈PR

‖p − pr ‖2 + avg
pr ∈PR

min
p∈P‖p − pr ‖2. (12)

Besides adding Lcham f er to the pipeline, we remove the
Lphysics to have a fair comparison of the effectiveness of
direct spatial cues from depth and object shape cues from
polarimetric physical properties. The results listed in Table6
indicate the depth cues can be beneficial when the qual-
ity is reliable, i.e., the performance on the cup peeks when
Lcham f er is introduced to the pipeline.

We conduct additional ablations using a pixel-wise depth
loss instead of the chamfer distance loss, as reported in
Table6. The experiment illustrates that also with the pixel-
wise depth loss, inaccurate depth information would inject
incorrect geometric guidance into the pipeline, leading
to degraded performance on photometrically challenging
objects.

The inherent limitations of the depth sensor cause severe
degradation of the depth quality (Jung et al., 2022). The
reflective and semi-transparent objects are measured incor-
rectly due to reflective and translucent object materials. This
is also illustrated in detailed large figures of real examples in
Fig. 14. In such cases, the strong signal coming from depth
alignment loss introduces incorrect spatial awareness, lead-
ing to low pose prediction performance.

On the contrary, the shape of the object that is encoded
in the polarimetric image modality can provide stable geo-
metric information for objects of all material characteristics
presented here, across a variety of photometric complexity,
e.g., from a matte plastic cup, to reflective stainless steel cut-
lery, and translucent and transparent colored glass objects.
The analytically retrieved diffuse and specular solutions after
the differentiable renderer are stable across all discussed
objects. These polarization properties are computed through
our invertible model and then utilized in the physics-induced
self-supervision scheme against the raw DoP illustrated on
the top left in Fig. 14. Please note that Lphysics is a pixelwise
minimum loss of the diffuse and specular reflection.

5.7.5 Runtime Analysis

On a desktop PC with an Intel i7 4.20GHz CPU and an
NVIDIA 2080GPU, given a 512 × 612 image, our student
network takes≈ 7.3ms for inferring the 6D pose for a single
object, which is around 30% faster than the teacher model.
Additionally, the preprocessing for the physical prior calcu-
lation takes 13.0ms, and the object detection takes 15.4ms.

6 Conclusion

6.1 Limitations

The performed experiments highlight the importance of
reliable geometric priors for the task of 6D object pose esti-
mation. When the quality of the depth map is reliable and
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Fig. 14 Examples of polarimetric and depth quality

accurate, the spatial loss term introduced by the source depth
map may lead to better performance than pure object-shape-
based optimization through polarization. The current model
focuses on instance-level pose estimation and does not gener-
alize to unseen objects during training. An interesting future
direction is to include the idea in a category-level pipeline.

6.2 Self-Supervised Polarimetric Pose Prediction

This paper bridges two worlds and combines a hybrid model
for polarimetric pose estimation that fuses an invertible phys-

ical model with neural shape extraction from data within
a self-supervised framework. S2P3 solves instance-level
object pose estimation from polarimetric images without
annotated real data. In our proposed pipeline, a teacher
pre-trained on a small set of synthetic renderings ensures
convergence of a lightweight student network through weak
pseudo-labels. Our employed differentiable renderer addi-
tionally provides the appearance and geometric outputs and
enables self-supervision. S2P3 outperforms methods that
use depth measurements from active sensors for photomet-
rically challenging objects. We achieve this by carefully
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integrating distinct design choices in the student–teacher
architecture and proposing our invertible physical model for
self-supervision by leveragingXoP properties, instead of raw
polarimetric data as in Verdie et al. (2022), to reduce the
domain gap. Our contributions are validated through exten-
sive ablation studies.

Our experimental results show the importance of self-
supervision through geometric and physical cues for the
task of 6D pose estimation and yield scientific insights into
the robustness of polarimetric images. Such observations
are most noticeable for photometrically challenging, texture-
less, reflective, or translucent objects.
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