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Abstract
Soft prompt learning has emerged as a promising direction for adapting V&L models to a downstream task using a few
training examples. However, current methods significantly overfit the training data suffering from large accuracy degradation
when tested on unseen classes from the same domain. In addition, all prior methods operate exclusively under the assumption
that both vision and language data is present. To this end, we make the following 5 contributions: (1) To alleviate base
class overfitting, we propose a novel Language-Aware Soft Prompting (LASP) learning method by means of a text-to-text
cross-entropy loss that maximizes the probability of the learned prompts to be correctly classified with respect to pre-defined
hand-crafted textual prompts. (2) To increase the representation capacity of the prompts, we also propose grouped LASP
where each group of prompts is optimized with respect to a separate subset of textual prompts. (3) Moreover, we identify
a visual-language misalignment introduced by prompt learning and LASP, and more importantly, propose a re-calibration
mechanism to address it. (4) Importantly, we show that LASP is inherently amenable to including, during training, virtual
classes, i.e. class names for which no visual samples are available, further increasing the robustness of the learned prompts.
Expanding for the first time the setting to language-only adaptation, (5) we present a novel zero-shot variant of LASP where
no visual samples at all are available for the downstream task. Through evaluations on 11 datasets, we show that our approach
(a) significantly outperforms all prior works on soft prompting, and (b) matches and surpasses, for the first time, the accuracy
on novel classes obtained by hand-crafted prompts and CLIP for 8 out of 11 test datasets. Finally, (c) we show that our
zero-shot variant improves upon CLIP without requiring any extra data. Code will be made available.

Keywords Multimodal learning · Few-shot recognition · Zero-shot recognition · Prompting · Domain generalization

1 Introduction

Large-scale pre-training of neural networks has recently
resulted in the construction of amultitude of foundationmod-
els for Language (Devlin et al., 2018; Radford et al., 2019)
andVision&Language (V&L)understanding (Radford et al.,
2021; Jia et al., 2021; Yu et al., 2022; Alayrac et al., 2022).
Unlike the previous generationof neural networks, suchmod-
els can better capture the distribution of theworld fromwhich
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new favorable properties and characteristics emerge. Of par-
ticular interest to this work are V&L models trained with
contrastive learning (i.e. CLIP-like models (Radford et al.,
2021; Jia et al., 2021; Li et al., 2021; Yao et al., 2021; Yu et
al., 2022)), which have enabled seamless few-shot and even
zero-shot adaptation to new downstream tasks and datasets.
Specifically, this paper proposes a simple yet highly effective
way to drastically improve soft prompt learning for the few-
shot adaptation of the V&L model to a given downstream
task.

Similarly to their NLP counterparts (Radford et al., 2021;
Lester et al., 2021; Li & Liang, 2021), prompt engineering
and learning has emerged as one of the most powerful tech-
niques for adapting a V&L to new tasks. Initially, in Radford
et al. (2021), a set of manually-defined hand-engineered tem-
plates (or prompts) like a photo of a {cls_name},
or a black and white photo of a {cls_name}
were passed through the text encoder of the V&L model to
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create class-specific weights for category cls_name that
can be used for zero-shot recognition. Following research in
NLP (Lester et al., 2021; Li&Liang, 2021), subsequentwork
(Zhou et al., 2022, a) has proposed replacing the manually
picked templates with a sequence of learnable vectors, also
coined soft prompts, which are fed as input to the text encoder
along with the class name cls_name. The soft prompts are
learned from a few training examples, with the parameters
of the entire V&Lmodel kept frozen. The whole process can
be seen as parameter efficient fine-tuning of the V&L model
on a small training dataset.

However, a clearly identifiable problem with prompt
learning is base class overfitting: while the accuracy on
the classes used for training (base classes) significantly
increases, the accuracy on unseen, during training, (novel)
classes significantly drops. This is to some extent expected,
as soft prompts are learned from few examples belonging to
the base classes. Notably, on novel classes, direct, zero-shot
recognition using hand-engineered prompts outperforms all
existing soft prompt learning methods.

In addition to this, for adaptation, all prior works assume
the existence of paired vision and language data. Herein,
we seek to relax this setting and advance the idea of
vision-language adaptation without images, i.e. using solely
language data, namely the class names of interest.
Key ideas: Firstly, to alleviate base class overfitting, in this
work, we propose a solution motivated by the following
observation: since prompt learning improves the accuracy
on base classes, but prompt engineering is significantly bet-
ter on novel classes, we propose to learn the soft prompts
by adding a cross entropy text-to-text loss that enforces the
learned prompts to be close, in embedding space, to the tex-
tual ones, thus exploiting the intrinsic information captured
by the text encoder. The proposed text-to-text loss enables
language-only optimization for vision-language adaption for
the first time. This is in contrast with prior soft-prompt learn-
ing methods that only capture vision-language interactions.

Secondly, as CLIP learns a joint shared representation for
the two domains, i.e. vision and language, one can approx-
imate, to some extent, the vision domain with language
(limited by the induced contrastive domain gap). Hence, by
exploiting this, we devise a prompt learning framework for
vision language adaptation that can learn solely based on the
class names.
Key contributions: Based on the above, we propose a
novel framework for soft prompt learning which we call
Language-Aware Soft Prompting (LASP) trained either with
labeledvision-languagedata or solely in the languagedomain
(LASP-Z). Our main contributions within the LASP frame-
work are as follows:

• We propose, for the first time, language-only opti-
mization for vision-language adaption. Specifically, we

propose a novel text-to-text cross-entropy loss that max-
imizes the probability of the learned prompts to be
correctly classified with respect to the hand-engineered
ones and show its effectiveness in terms of alleviating
base-class overfitting.

• To increase the representation capacity of the prompts,
and inspired by grouped convolution and multi-head
attention, we propose a grouped language-aware prompt
representation where each group of prompts specializes
to a different subset of the pre-defined manual templates.

• We identify a visual-language misalignment introduced
by prompt learning and LASP which impacts the gener-
alization. More importantly, we propose a re-calibration
mechanismbased on (a) LayerNormalization fine-tuning
and (b) learning a class-agnostic bias to address it.

• Thanks to our language-only learning framework, we
propose training LASP with virtual classes by including,
during training, class names for which no visual sam-
ples are available. Importantly, we show that this further
increases the robustness of the learned prompts.

• Finally, by capitalizing on our language-only optimiza-
tion framework, we present a zero-shot variant of LASP
where no visual samples at all are available for the down-
stream adaptation task and show its superiority upon
CLIP with prompt engineering. Effectively, this accom-
plishes vision-language adaptation without vision data.

Main results: Our methods set a new state-of-the-art for
few-shot and zero-shot image classification on 11 datasets,
significantly outperforming all soft prompting prior works.
Importantly, we present, for the first time, a prompt learning
method that outperforms, for the majority of the test datasets
(8 out of 11), the very strong baseline based on hand-crafted
prompts and CLIP for the recognition of novel classes (i.e.
zero-shot setting). Moreover, our zero-shot V&L adaptation
approach, LASP-Z, improves upon zero-shot CLIP without
requiring any images at train time.

2 RelatedWork

Contrastive Vision-Language Models: Recently, large
scale V&L pre-training with contrastive learning has been
used to train foundation models resulting in robust represen-
tations, transferable to new tasks both under few-shot and
zero-shot settings (Radford et al., 2021; Jia et al., 2021; Li et
al., 2021; Yao et al., 2021; Yu et al., 2022). Such networks
consist of a vision encoder (typically a ViT (Dosovitskiy et
al., 2020)) and a Transformer-based text encoder (Vaswani et
al., 2017). Highly parameterized instantiations of such archi-
tectures are trained on large corpora of image-caption pairs
(e.g. Radford et al. (2021) uses 400M and Jia et al. (2021)
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1B pairs) using contrastive learning.We used CLIP (Radford
et al., 2021) as the foundation model for our method.
Domain generalization aims to learn models that generalize
to out-of-domain data. Current approaches attempt to per-
form data alignment (Hu et al., 2020; Mahajan et al., 2021;
Shao et al., 2019), augmentation (Shi et al., 2020; Zhou et al.,
2023), meta-learning (Balaji et al., 2018; Dou et al., 2019),
self-supervised learning (Albuquerque et al., 2020) or rein-
forcement learning (Laskin et al., 2020; Yarats et al., 2021).
As our approach can generalize outside of the source data,
either via few-shot adaptation (LASP) or more extremely,
using solely the class names (LASP-Z), it can be also con-
sidered as a domain-generalization method.
Zero/few-shot learning is concerned with the construction
of models that can be adapted to downstream tasks using
few or even no labeled samples. Both scenarios are currently
dominated by large-scale constrastively pretrained vision-
language models (Radford et al., 2021; Yao et al., 2021), a
line of work which our approach builds upon too. While a
full review goes beyond the scope of this work, we note that
this is a vast research field (Nichol et al., 2018; Rajeswaran
et al., 2019; Li et al., 2017), referring the reader to (Song et
al., 2023).
Prompt Learningis about adapting pre-trained foundational
models on (downstream) tasks, typically in a zero-shot or
few-shot setting. Firstly proposed in the context of Language
Models (LM), prompting was initially about prepending
hand-crafted instructions/examples to the task input so that
the LM generates the appropriate output conditioned to the
input (Radford et al., 2019; Brown et al., 2020). In (Schick
& Schutze, 2020a, b), the main idea is to reformulate the
downstream task as a cloze task using hand-crafted patterns
(or templates), thus avoiding the need to train a task-specific
classifier. As finding the optimal patterns is laborious, recent
works have attempted to address this by learning a set of
soft (continuous) prompts (Lester et al., 2021; Li & Liang,
2021).

In V&L foundationmodels, like CLIP, the class names are
used to create hand-crafted prompts (Radford et al., 2021)
that are fed as input to the text encoder, enabling zero-shot
visual recognition. CoOp (Zhou et al., 2022) extends work
on soft prompt optimization to the V&L domain by learn-
ing a set of M prompts which are used as input to the text
encoder alongside the class name. The prompts are learned
by minimizing the classification error on a training set con-
sisted of the given base classes.Onemajor limitation ofCoOp
is weak generalization: the learned prompts overfit the base
classes and do not work well when tested on novel classes.
To alleviate this, CoCoOp (Zhou et al., 2022a) proposes a
dynamic version of Zhou et al. (2022) where a small net-
work is trained to produce a visual feature from the input
image that is added to the learned prompts, hence making
them input specific (i.e. dynamic). ProDA (Lu et al., 2022)

adopts a probabilistic approach bymodelling the distribution
of the prompts at the output of the text encoder as a multi-
variate Gaussian distribution. The estimated mean is used
during inference. UPL (Huang et al., 2022) uses CLIP to
generate pseudo-labels on the target dataset and then self-
training to learn the soft prompts. Finally, ProGrad (Zhu
et al., 2022) aims to adapt the V&L model to each target
domain by encouraging it “not to forget” CLIP’s zero-shot
predictions using a KL visual-text loss between the CLIP’s
logits and their model’s logits (i.e. they use visual features).
The weights are then updated in the direction perpendicular
to CLIP gradients. In contrast, our loss is a pure text-to-
text loss, further allowing for the incorporation of virtual
classes. Unlike (Zhu et al., 2022), we outperform CLIP on
novel classes.

The proposed LASP framework alleviates base class
overfitting and significantly improves upon the previously
reported best results without resorting to a dynamic approach
as in CoCoOp (Zhou et al., 2022a). In its basic version, LASP
deploys a text-to-text loss that enforces the learned prompts
to be “close” to a set of manually defined textual prompts in
the text encoder space. Importantly, the basic LASP can be
extended in three important ways: (1) by allowing the incor-
poration of virtual classes i.e. novel class name information
for which no (visual) training data is available (LASP-V).
This is shown to significantly improve the robustness of the
learned prompts at no extra cost during inference; (2) by
allowing the use of a grouped prompt representation within
the proposed language-aware training which is shown to
increase the representation capacity of the learned prompts;
(3) by performing further optimization of the visual encoder
so that the visual and text embeddings are realigned resulting
in significant accuracy gains. Finally, we present a zero-shot
variant of LASP where no training images at all are available
for the downstream adaptation task. Notably, our approach is
very efficient (as efficient as Zhou et al. (2022)) as opposed
to Zhou et al. (2022a) which requires recomputing all the
class-related text embeddings every time a new image is to
be classified.

3 Method

3.1 Background

Prompt engineering enables zero-shot visual recognition
using V&L models trained with contrastive learning (CLIP
in this work) as follows: Given a set V of C class names,
class_namec, c ∈ {1, . . . , C}, a prompt, i.e. a manu-
ally designed template concatenated with the class name like
hc =a photo of a {class_namec}, is passed through
the V&L’s text encoder gT (.) to compute the class specific
text feature (weight) th

c = gT (hc). Moreover, an image x
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to be classified is passed through the V&L’s image encoder
gI (.) to compute image specific feature f = gI (x). A proba-
bility distribution over the class labels is given by:

Ph(y|x) =
exp

(
cos(th

y , f)/τ
)

∑C
c=1 exp

(
cos(th

c , f)/τ
) , (1)

where τ is a temperature factor andcos the cosine similarity.
Finally, the class for x is given by ỹ = argmax Ph(y|x). Note
that, to compute th

c , no training with class specific image data
is required, thus enabling zero-shot recognition for any given
class name.
Soft prompt learning (Lester et al., 2021; Li & Liang, 2021;
Zhou et al., 2022) is concerned with parameter efficient fine-
tuning of a pre-trained V&Lmodel by learning a sequence of
M learnable vectors pm ∈ R

d , m = {1, . . . , M} using a few
labeled samples. Specifically, the manually picked prompt
hc is replaced by a new learnable one rc formed by con-
catenating the sequence of pm with the word embedding wc

of class_namec, that is: rc = {p1,p2, . . . ,pM ,wc}, and,
finally, a class specific text feature trc = gT (rc) is obtained.
A probability distribution over the class labels is:

Pr (y|x) =
exp

(
cos(try, f)/τ

)

∑C
c=1 exp

(
cos(trc, f)/τ

) . (2)

The prompts can be learned by minimizing the cross-entropy
loss:

LV L = −
C∑

c=1

log Pr (c|x)yc. (3)

Note that the V&L model remains entirely frozen during
training. Moreover, as the soft prompts are typically shared
across all classes, they can be directly used for zero-shot
evaluation on additional novel classes.

3.2 Language-Aware Soft Prompting (LASP)

Despite its strong performance on base classes, vanilla soft
prompt learning (see Sect. 3.1) under-performs on novel
classes (i.e. zero-shot setting). While CoCoOp (Zhou et al.,
2022) partially alleviates this by conditioning on the image
feature, its accuracy for the zero-shot setting is still trailing
that ofCLIPwith hand-crafted prompts.Moreover, it requires
passing the prompts for all classes through the text encoder
every time a new image is to be classified.

In this work, we propose, for the first time, language-only
optimization for vision-language downstream adaption. This
is in contrast with prior soft-prompt learning methods that
only capture vision-language interactions. Specifically, since

the hand-engineered textual prompts outperform the learn-
able soft prompts for the zero-shot setting, then, in order
to avoid base-class overfitting and strengthen generalizabil-
ity, we propose that the learnable ones should be trained so
that they can be correctly classified in language space where
the class weights are given by the textual prompts. In other
words, the model is forced to correctly classify the learnable
prompts into the corresponding hand-crafted ones.

To this end, a second cross entropy loss is used to mini-
mize the distance between the encoded learned soft prompts
and the encoded textual ones. Specifically, recall that th

c =
gT (hc) is the class weight for class c obtained by encod-
ing the corresponding textual prompt. Assuming that L
manually defined textual prompts are available,1 we have
th,l
c , l = 1, . . . , L. Moreover, tr is an encoded learnable
prompt to be classified in one of the C classes. Finally, the
probability of prompt tr being classified as class y is:

Prh(y|tr) = 1

L

L∑
l=1

exp
(
cos(th,l

y , tr )/τ
)

∑C
c=1 exp

(
cos(th,l

c , tr )/τ
) . (4)

The language-aware training loss is computed similarly
to the vision-language loss:

LT T = −
C∑

c=1

log Prh(c|tr )yc, (5)

with the overall training objective defined as:

L = αV LLV L + αT TLT T , (6)

where αV L and αT T are user-defined scaling coefficients
controlling themagnitude of theLV L andLT T losses, respec-
tively. Overall, we call the proposed learning formulation
Language-Aware Soft Prompting (LASP). See also Fig. 1.
Interpretations: LASP can be interpreted in a number of
ways:
LASPas a regularizer:Although the learned prompts consti-
tute a small number of parameters, especially in the few-shot
setting, the resulting models (prompts) are prone to over-
fitting to base classes (Zhou et al., 2022). As the proposed
language-aware loss encourages the learned prompts to be
close in embedding space to the textual ones, LASP can be
naturally viewed as a regularizer that prevents the learned
prompt-conditioned features from diverging too much from
the hand-crafted ones.
LASP as language-based augmentation: Current soft
prompt learning methods restrict augmentation to the vision

1 The original CLIP prompts serve as textual prompts without any
tweaking or change. Note, that our method can even work with ran-
dom sentences (see Sect. 5.3).
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Fig. 1 Overall idea.While standard prompt learning is based on image-
text interactions (LV L loss; Eq. 3), LASP additionally models text-text
interactions using the proposed Text-to-Text loss LT T (Eq. 5). There
are G groups of learned prompts p j

i passed through the text encoder
to form G text embeddings t j summarizing the input. The LT T loss
is then applied over the different groups of the text embeddings and

the textual prompts. Moreover, to alleviate data distribution shift and
visual-language misalignment, the LN layers of the visual encoder are
fine-tuned and the embeddings are “corrected” at the output space by
the learnable vector b, shared for all classes. The text encoder remains
entirely frozen. Notably, LASP can be trained with virtual classes by
including, during training, class names for which no visual samples are
available

domain, where random transformations, such as rotation,
colour jittering or scaling, increase the robustness of the sys-
tem, especially for cases with limited number of training
samples. However, no augmentations are performed in the
language domain. Ideally, we want the prompt-conditioned
text embedding to be robust too, capturing the full space
of each class. In practice, we can achieve this by targeted
prompting, where we can specify certain characteristics
and/or apply text-based transformations to the class name,
e.g.: “A sketch of dog” or “A rotated photo of a dog”.

At train time, as reflected by Eq. 4, we compute the class
label distribution per l-th template and then average over all
templates. Hence, we opt not to mix across templates during
training as we want the model to focus on class informa-
tion solely. For example, the model could distinguish easier
between a “a sketch of a dog” and “a photo of a wolf” com-
pared to “a sketch of a dog” and “a sketch of a wolf”, as in the
former case, the style could be used as an additional queue.
We validated this in preliminary experiments (intermixing
the templates was found to hurt performance).
LASP for discriminative class centroids:Byoptimizingw.r.t
both image and text, ourmethod produces class centroids that
are more discriminative and have a higher separation margin.
This can be visualized in Fig. 2 where we plot the cosine
distance between the embeddings of each class.Our approach
learns class centroids that have a higher cosine distance than
those of our baseline, CoOp.
LASP as data-free distillation: Typically, knowledge dis-
tillation requires a training set of images where a teacher

network provides a training signal for the student (Hinton,
2015). LASP’s text-to-text loss can be also interpreted as a
data-free distillation (i.e. does not use any image data) where
the learnable prompts define the “samples”. As CLIP learns
a joint vision-language space, similar concepts are close
together across both domains. Hence, optimizing against a
concept or object in the language domain, using the pro-
posed loss, should also helpmake a step in the visual domain,
improving the classification of the images.

3.3 Grouped LASP

Grouped convolutions (Krizhevsky et al., 2017) and multi-
head attention (Vaswani et al., 2017) have been shown to
learn strong representations. The groups or the number of
heads, respectively, can be also interpreted as a set of experts
that are then combined to produce a strong feature. Drawing
inspiration from this, we propose a grouped prompt repre-
sentation, where each group is optimized with respect to a
separate subset of textual prompts. Effectively, the prompts
from each group will learn a transformation specialized to its
corresponding subset (analogous to the aforementioned tech-
niques that also specialize to a part of the signal). In particular,
we split the set of L templates into G equally sized sub-sets.
Moreover, each sub-set is associated with a sequence of M
prompts rg

c = {pg
1, . . . ,p

g
M ,wc}, g = 1, . . . , G each pro-

ducing a class specific text feature tr ,g
c = gT (rg

c ). Finally,
our text-to-text loss in Eq. 5 becomes:
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Fig. 2 Cosine distance between
the class embeddings produced
by the CLIP text encoder on
Eurosat, DTD, Flowers102 and
Food101 for LASP and CoOp.
Class centroids situated further
apart are more separable, as the
underlying image features are
identical across both methods.
Brighter colors indicate bigger
distances. The numbers shown
are the average cosine distance
between the classes

LT T −G = −
G∑

g=1

C∑
c=1

log Pg
rh(c|tg)yc, (7)

with Pg
rh computed for each group similarly to Eq. 4. At test

time, the final result is computed by taking the average of the
cosine similarity scores between each group and the visual
feature f .

3.4 Re-aligning LASP

Combating data distribution shift: for some downstream
tasks, it is possible that there is a data distribution shift
between the downstream image dataset and the one used by
CLIP during training. Hence, we would like this aspect to be
captured by the downstream adaptation method. To this end,
some optimization of the visual encoder can be performed;
nevertheless this can very easily result in base class overfit-
ting if, after the training, the V&L embeddings are pushed
away from the joint space learned by CLIP. For example,
preliminary results with visual adapters have shown that they
hurt zero-shot accuracy. On the contrary, we found that Layer
Normalization (LN) (Ba et al., 2016) fine-tuning is a much
more robust way to adapt the visual encoder. Overall, we
propose fine-tuning the LN of the CLIP encoder as a way to
combat distributional shift.
Combating V&L misalignment: Because after LN fine-
tuning the V&L are not guaranteed to continue to be aligned,
we also propose to learn a “correction” at the output of the
text encoder in the form of a learnable offset (bias) that aims
to re-align the two modalities. LetW be the set of weights of
the linear classifier obtained by passing the learned prompts
from the text encoder. We propose to learn a vector b ∈ R

d

that is simply added toW, that isW = W + b. Importantly,

the learned offset is shared among all classes, and in this way
it can be readily applied for the case of novel classes too.

3.5 LASP with Virtual Classes (LASP-V)

A direct observation that can be drawn from Eq. 4 is that,
in practice, we do not have to use only the class names for
which we have labelled image data, as the value of LT T

is independent of the input image. To this end, we propose
to learn the prompts using both annotated image-text pairs
and class names outside of the base set (for which we have
no images available). We call this setting as training LASP
with virtual classes. Our setting combines the best of both
words: the guidance from the few annotated image samples
and the zero-shot generalizability of language-based training.
As our results show, LASP with virtual classes can signif-
icantly improve the robustness of the prompts learned. We
refer to this variant of our method as LASP-V.

Note that training with virtual classes does not violate
the zero-shot setting (Xian et al., 2017).2 Moreover, from a
practical perspective, if the novel class names are not known
during initial training, the model can be simply retrained in
a zero-shot manner when they become available.

4 Zero-Shot LASP (LASP-Z)

The LASP framework presented so far combines vision-
language and language-language optimization for both few-
shot and in-domain zero-shot accuracy. However, as LV T

and LT T can be applied independently, one can fully tran-
sition from the few-shot setting to the zero-shot one, where

2 according to Xian et al. (2017) “Zero-shot learning aims to recognize
objects whose instances may not have been seen during training.”
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Fig. 3 LASP-Z is a pure zero-shot variant of LASP which does not
use visual samples at all for downstream adaptation. LASP-Z exclu-
sively operates within the language domain by optimizing the prompts
using the proposed Text-to-Text loss LT T (Eqs. 5, 8). During training,
in order to explicitly alleviate the domain gap and explore the vicinity

of the class embeddings, we propose a to augment the input space using
a series of randomly sampled adjectives/attributes and b to augment the
output space by injecting additive Gaussian noise to the class embed-
ding. Note in the figure above, the text encoder remains entirely frozen,
and its weights are shared

no visual examples at all are available, just the class names.
Herein, we attempt to study this zero-shot setting, introduc-
ing LASP-Z, a visual data-free approach capable of zero-shot
in-domain specialization.

Not entirely surprising, a naive, direct application of Eq. 5
is heavily sensitive to overfitting: Firstly, there is an implicit
domain gap between the vision and language modalities
within the CLIP embedding space (Liang et al., 2022), hence
overly specializing to the textual data amplifies and fur-
ther expose this dissimilarity. Secondly, for image data, it
is common practice to apply random train-time augmenta-
tions with the goal of alleviating overfitting. In fact, image
augmentation has been shown to be a key component inmany
state-of-the-art self-supervised representation learningmeth-
ods (Chen et al., 2020; Caron et al., 2020). Hence, to optimize
Eq. 5 without overfitting, one should aim at applying inex-
pensive, yet effective augmentations in the language domain.

Specifically, we define two “augmentation” inducing
functions, applied pre- and post-encoding: f pre(.) and
f post (.), respectively. The goal of f pre inserts a set of
adjectives or attributes before the class name (e.g. large,
small, rotates, pixelated, colorful etc.).
This explores, in essence, class-generic appearance varia-
tions directly in the text domain, analogous to the image
ones. Moreover, f post (t) = t + x, x ∼ N (μ, σ 2) adds to
the text feature descriptor t a noise vector sampled from a
normal distribution. Depending on its magnitude, this allows
the model to explore the immediate vicinity of the prompt in
the CLIP embedding space, increasing the chance of match-

ing points located in the proximity of true visual samples,
mitigating to some extent the domain gap.

Recall that th,l
c = gT (hl

c) is a feature descriptor obtained
by encoding the c−th class name with the l-th predefined
textual template (l = 1, . . . , L), and tr is an encoded learn-
able prompt to be classified in one of the C classes. Then,
the probability of prompt tr being classified as class y is:

Prh(y|tr) = 1

L

L∑
l=1

exp
(
cos(t̂h,l

y , tr )/τ
)

∑C
c=1 exp

(
cos(t̂h,l

c , tr )/τ
) , (8)

where t̂h,l
y = f post

(
gT ( f pre(t l

y))
)
. We call this variant of

LASP Zero-shot LASP (LASP-Z) as no visual samples at
are used for the downstream adaptation. See Fig. 3 for an
overview of LASP-Z.

5 Experiments

Following (Radford et al., 2019; Zhou et al., 2022a), we
mainly evaluated the accuracy of our approach on gener-
alization to novel classes (i.e. zero-shot recognition) for 11
datasets in total. Each dataset is split into two equal parti-
tions with disjoint classes, named base and new. We trained
our model using text-image pairs from the base classes and
test on both base and new classes. To further analyze the
performance of our approach, we also report results for the
cross-dataset transfer and domain generalization settings.
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Fig. 4 Comparison between LASP and CoCoOp in terms of number
of FLOPs. While the inference cost of LASP remains largely constant
with respect to the number of classes, CoCoOp’s cost increases linearly
(from around≈20 GFLOPs for 1 class to over 2500 GFLOPs for 1000)

Datasets: We used 11 in total, namely: ImageNet (Deng et
al., 2009), Caltech101 (Fei-Fei et al., 2004),
Oxford-Pets (Parkhi et al., 2012), Stanford Cars (Krause
et al., 2013), Flowers102 (Nilsback & Zisserman, 2008),
Food101 (Bossard et al., 2014), FGVC Aircraft (Maji et al.,
2013), SUN397 (Xiao et al., 2010), DTD (Cimpoi et al.,
2014), EuroSAT (Helber et al., 2019) and UCF-101 (Soomro
et al., 2012).
Models: For all experiments, unless otherwise specified,
we used a pretrained CLIP model with a ViT-B/16 image
encoder, M = 4 learnable prompts and 16 samples per class.
The number of groups G (when used) is set to 3. In all exper-
iments, we report the average across 3 runs.
Training: For LASP and LASP-V, largely, we followed the
training procedure described in CoOp (Zhou et al., 2022)
and CoCoOp (Zhou et al., 2022a) (i.e. same image augmen-
tation, SGD with initial learning rate of 0.002 and a cosine
annealing scheduler with 1 epoch of warm-up). In Eq. 6, αV L

was set to 1 and αT to 20. The number of textual templates
L was set to 34. The templates were taken from CoOp and
CLIP. For LASP-Z, as no images are used during training, we
increase the scheduler length to 50 epochs-equivalent and re-
adjust the learning rate to 0.08. All training and testing was
done on a single NVIDIA V100 GPU (except for ImageNet
where 4 GPUs were used). The code was implemented using
PyTorch (Paszke et al., 2017).
Methods compared: We report the performance of LASP
and its improved version trained with virtual classes (LASP-
V). For LASP-V, the class names only of the novel classes
are used during training as virtual classes. We also study the
impact of adding other types of virtual classes. The direct
baseline that our method is compared with is CoOp (Zhou
et al., 2022), as we add the proposed components on top of

it. Note that both methods have exactly the same inference
(as our method adds in addition a text-to-text loss during
training). We also compare with ProDA (Lu et al., 2022) and
CoCoOp (Zhou et al., 2022a) which conditions the prompts
on image features and hence induces significant additional
computation during inference. See also Fig. 4 for a compar-
ison.

5.1 Comparison with State-of-the-Art

Standard setting of Zhou et al. (2022a): Table 1 compares
our approach with the current state-of-the-art. We conclude:

• Conclusion 1: In terms of harmonic mean, LASP out-
performs all methods by large margin. It outperforms,
on average, the second best (ProDA) by > 2%. The
improvement on specific datasets is even bigger (e.g.
> 3% on Flowers102, > 11% on EuroSAT, > 3% on
UCF101).

• Conclusion 2: On the novel classes, LASP outper-
forms all methods by large margin. It is the first
reported method outperforming CLIP by 0.68% (but
notice that CLIP performs very poorly on the bases
classes). It also outperforms ProDA (third best) by >

2.5%. Again, compared to ProDA, the improvement on
specific datasets is even bigger (e.g. > 5% on Flow-
ers102, > 3% on Food101, > 11% on EuroSAT, > 6%
on UCF101).

• Conclusion 3: On new classes, LASP with virtual
classes has significant impact for specific datasets.
These include datasets with informative class names like
EuroSAT and DTD where the improvement over LASP
is ∼ 5.5% and ∼ 4.0%, respectively.

Generalized zero-shot setting: The current evaluation pro-
tocol used in Zhou et al. (2022), Zhou et al. (2022a) computes
accuracy, considering the base and new classes in isola-
tion. That is, the two disjoint sets, consisting of Cbase and
Cnovel classes (i.e., C = Cbase + Cnovel ), are each evaluated
using aCbase-way and aCnovel -way classifier, respectively.A
more realistic evaluation protocol should consider the classes
across both subsets, base and novel, jointly as in practice one
would expect to run the same classifier across the combined
sets. In this instance, a C-way classifier, that includes the
class prototypes from both the base and new subsets would
be used when evaluating either of them. Beyond increasing
the difficulty, this setting better expose cases where overfit-
ting to base classes occurs.

We report results using this setting in Table 3. To ground
the results, as no pretrainedmodels were available, we retrain
CoCoOp using the official code released by the authors. As
it can be observed, the same conclusions, previously made
using the protocol proposed in Zhou et al. (2022) hold true.
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Table 1 Comparison with the
state-of-the-art on 11 datasets Dataset Set CLIP CoOp CoCoOp ProDA LASP LASP-V Δ(Ours) (Ours)

Average
Base 69.34 82.69 80.47 81.56 82.70 83.18 +0.49
New 74.22 63.22 71.69 72.30 74.90 76.11 +1.89
H 71.70 71.66 75.83 76.65 78.61 79.48 +2.83

ImageNet
Base 72.43 76.47 75.98 75.40 76.20 76.25 −0.22
New 68.14 67.88 70.43 70.23 70.95 71.17 +0.74
H 70.22 71.92 73.10 72.72 73.48 73.62 +0.52

Caltech101
Base 96.84 98.00 97.96 98.27 98.10 98.17 −0.10
New 94.00 89.91 93.81 93.23 94.24 94.33 +0.33
H 95.40 93.73 95.84 95.86 96.16 96.21 +0.35

OxfordPets
Base 91.17 93.67 95.20 95.43 95.90 95.73 +0.30
New 97.26 95.29 97.69 97.83 97.93 97.87 +0.04
H 94.12 94.47 96.43 96.62 96.90 96.79 +0.16

Stanford
Cars

Base 63.37 78.12 70.49 74.70 75.17 75.23 −2.89
New 74.89 60.40 73.59 71.20 71.60 71.77 −3.12
H 68.85 68.13 72.01 72.91 73.34 73.46 +0.55

Flowers102
Base 72.08 97.60 94.87 97.70 97.00 97.17 −0.53
New 77.80 59.67 71.75 68.68 74.00 73.53 −4.27
H 74.83 74.06 81.71 80.66 83.95 83.71 +2.00

Food101
Base 90.10 88.33 90.70 90.30 91.20 91.20 +0.50
New 91.22 82.26 91.29 88.57 91.70 91.90 +0.61
H 90.66 85.19 90.99 89.43 91.44 91.54 +0.55

FGVC
Aircraft

Base 27.19 40.44 33.41 36.90 34.53 38.05 −2.39
New 36.29 22.30 23.71 34.13 30.57 33.20 −3.09
H 31.09 28.75 27.74 35.46 32.43 35.46 0.00

SUN397
Base 69.36 80.60 79.74 78.67 80.70 80.70 +0.10
New 75.35 65.89 76.86 76.93 78.60 79.30 +2.37
H 72.23 72.51 78.27 77.79 79.63 80.00 +1.73

DTD
Base 53.24 79.44 77.01 80.67 81.40 81.10 +1.53
New 59.90 41.18 56.00 56.48 58.60 62.57 +3.10
H 56.37 54.24 64.85 66.44 68.14 70.64 +4.20

EuroSAT
Base 56.48 92.19 87.49 83.90 94.60 95.00 +2.81
New 64.05 54.74 60.04 66.00 77.78 83.37 +17.37
H 60.03 68.9 71.21 73.88 85.36 88.86 +14.98

UCF101
Base 70.53 84.69 82.33 85.23 84.77 85.53 +0.30
New 77.50 56.05 73.45 71.97 78.03 78.20 +0.70
H 73.85 67.46 77.64 78.04 81.26 81.70 +3.66

We provide the results of LASP and LASP trained with virtual classes (LASP-V). � denotes the absolute
improvement of our best variant, LASP-V, over the previous best result

Cross-Dataset Transfer setting: Following (Zhou et al.,
2022a), we measure how well the soft prompts learned on
ImageNet perform when evaluated on different datasets. In
this setting, the training is performed on images from all
1,000 classes, using 16 images for each class. As the results
from Table 5 show, our approach surpasses CoOp by 2.5%
while outperforming the more computationally demanding
CoCoOp (0.8% better on average).
Domain generalization setting: Following the encourag-
ing results reported in Zhou et al. (2022), Zhou et al.
(2022a) on domain generalization, herein, we attempt to

evaluate whether our approach can improve the quality of
the leaned prompts under domain shift too. To this end, we
trained LASP on all classes from ImageNet (16-shot set-
ting) and evaluate the learned prompts on 5 datasets with
class names compatible with those of ImageNet, but dif-
ferent data distribution. Following (Zhou et al., 2022), we
used ImageNet (Deng et al., 2009) as the source dataset, and
ImageNetV2 (Recht et al., 2019), ImageNet-Sketech (Wang
et al., 2019), ImageNet-A (Hendrycks et al., 2021) and
ImageNet-R (Hendrycks et al., 2021) as the test datasets.
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Table 2 Performance analysis
for LASP-Z Dataset Set CLIP LASP-Z LASP-Z ΔZhou et al. (2022b) w/o fpre/post (Ours)

Average
Base 69.34 65.21 70.33 +0.99
New 74.22 71.58 75.54 +1.32
H 71.70 68.24 72.84 +1.14

ImageNet
Base 72.43 67.90 73.61 +1.18
New 68.15 65.98 69.72 +1.57
H 70.22 66.92 71.61 +1.39

Caltech101
Base 96.84 92.85 96.81 −0.03
New 94.00 93.77 95.23 +1.23
H 95.40 93.31 96.01 +0.61

OxfordPets
Base 91.17 91.00 91.46 +0.29
New 97.26 95.97 97.40 +0.14
H 94.12 93.41 94.33 +0.21

Stanford
Cars

Base 63.37 57.38 64.57 +1.20
New 74.89 65.33 75.53 +0.64
H 68.85 61.09 69.62 +0.77

Flowers102
Base 72.08 58.11 72.50 +0.42
New 77.80 74.63 77.13 −0.67
H 74.83 65.34 74.74 −0.09

Food101
Base 90.10 89.05 89.28 −0.82
New 91.22 90.85 91.47 +0.25
H 90.66 89.94 90.36 −0.30

FGVC
Aircraft

Base 27.19 13.14 27.23 +0.04
New 36.29 26.83 34.19 −2.10
H 31.09 17.64 30.31 −0.78

SUN397
Base 69.36 67.03 73.05 +3.69
New 75.35 74.05 77.81 +2.46
H 72.23 70.36 75.35 +3.12

DTD
Base 53.24 56.94 57.33 +4.09
New 59.90 59.00 60.53 +0.63
H 56.37 57.95 58.88 +2.51

EuroSAT
Base 56.48 55.96 56.62 +0.14
New 64.05 69.60 73.80 +9.75
H 60.02 62.03 64.07 +4.05

UCF101
Base 70.53 68.01 71.19 +0.66
New 77.50 71.19 78.20 +0.70
H 73.85 69.56 74.53 +0.68

As the results from Table 6 show, with the exception
of ImageNet-V2, our approach outperforms all prior work,
showing strong domain generalization capabilities.

5.2 Zero-Shot Adaptation Setting

Departing from the few-shot adaptation experiments of the
previous section, herein, we evaluate the zero-shot V&L
learning capabilities of the proposed image-free LASP-Z on

the same set of 11 datasets used for few-shot evaluation.
While the base/new partitions are no longer meaningful in
this case, as no images are used, we report results preserving
the data split structure to facilitate comparisons across dif-
ferent settings (i.e. few-shot and zero-shot adaptation). The
results reported in Table 2 show that our zero-shot adaptation
approach improves upon CLIP by +1.14% on average across
11 datasets, outperforming it on 8/11 datasets by up to 4% (on
EuroSAT). Moreover, Table 2 shows the importance of the
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Table 3 Comparison with the state-of-the-art for the generalized zero-
shot setting

Base New H

(a) Average over 11 datasets

CoCoOp 72.46 64.77 68.39

LASP 76.59 67.55 71.78

LASP-V 77.23 68.52 72.61

(b) ImageNet

Base New H

CoCoOp 71.90 67.50 69.63

LASP 72.00 67.33 69.51

LASP-V 71.90 68.00 69.78

(c) Caltech101

Base New H

CoCoOp 95.20 90.67 92.87

LASP 94.87 92.20 93.51

LASP-V 95.54 92.78 94.13

(d) OxfordPets

Base New H

CoCoOp 91.01 93.10 92.04

LASP 91.53 92.87 92.19

LASP-V 92.23 93.17 92.69

(e) StanfordCars

Base New H

CoCoOp 67.26 69.43 68.33

LASP 72.27 68.73 70.45

LASP-V 71.00 68.50 69.27

(f) Flowers102

Base New H

CoCoOp 86.73 64.63 74.06

LASP 90.97 68.80 78.34

LASP-V 92.20 69.93 79.53

(g) Food101

Base New H

CoCoOp 85.73 85.50 85.61

LASP 87.53 87.17 87.34

LASP-V 87.73 87.17 87.45

(h) FGVCAircraft

Base New H

CoCoOp 24.50 25.93 25.19

LASP 24.33 27.03 25.61

LASP-V 28.77 27.80 28.27

(i) SUN397

Base New H

CoCoOp 71.13 67.76 69.40

LASP 72.60 67.21 69.80

LASP-V 72.55 69.11 70.79

Table 3 continued

Base New H

(j) DTD

Base New H

CoCoOp 59.33 42.70 49.65

LASP 67.53 46.93 55.37

LASP-V 65.67 49.90 56.71

(k) EuroSAT

Base New H

CoCoOp 69.20 39.23 50.14

LASP 89.38 54.87 67.99

LASP-V 90.80 56.80 69.88

(l) UCF101

Base New H

CoCoOp 75.16 66.10 70.34

LASP 79.57 70.00 74.47

LASP-V 81.20 70.60 75.52

We have re-trained CoCoOp using the officially released code
Best method for each dataset and testing setting (base, new and H (har-
monic mean))

proposed augmentations in LASP-Z. As it can be observed,
without the augmentations, the accuracy of LASP-Z signifi-
cantly deteriorates. Overall, we conclude:

• Conclusion 4: Zero-shot LASP (LASP-Z) signifi-
cantly outperformsCLIP for the zero-shot adaptation
setting. For this purpose, the proposed language-based
augmentations are necessary.

5.3 Ablation Studies

Effect of different LASP components: LASP proposes a
number of contributions which are evaluated incrementally.
The start point is the proposed Text-to-Text loss of Eq. 5.
On top of this, we incrementally apply the grouped prompt
representation (Eq. 7), and then the re-alignment module
(Sect. 3.4). This gives rise to LASP. Finally, we add virtual
classes giving rise to LASP-V. Our baseline is CoOp. From
the results of Table 4, we conclude:

• Conclusion 5: Our idea in its plain form (Text-to-Text
loss) outperforms its direct baseline (CoOp) by large
margin. Specifically, it improves upon CoOp by∼ 4.5%
on average, demonstrating its effectiveness.

• Conclusion 6: All components are needed to obtain
high accuracy.

Effect of size and content of the textual prompts: Herein,
we study the effect of the size L and the content of the set
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Table 4 Effect of different
LASP components

Dataset Set Baseline Text-to-Text +Grouped +Align + Virtual
Zhou et al. (2022) (LASP) (LASP-V)

Average Base 82.69 81.26 81.87 82.70 83.18

New 63.22 71.54 73.48 74.90 76.11

H 71.66 76.09 77.44 78.61 79.48

ImageNet Base 76.47 75.97 76.20 76.20 76.25

New 67.88 70.31 70.70 70.95 71.17

H 71.92 73.03 73.34 73.48 73.62

Caltech101 Base 98.00 97.70 97.97 98.10 98.17

New 89.91 94.08 94.27 94.24 94.33

H 93.73 95.85 96.08 96.16 96.21

OxfordPets Base 93.67 95.13 95.63 95.90 95.73

New 95.29 96.23 97.87 97.93 97.87

H 94.47 95.68 96.73 96.90 96.79

Stanford Cars Base 78.12 72.46 73.50 75.17 75.23

New 60.40 71.80 72.10 71.60 71.77

H 68.13 72.19 72.93 73.34 73.46

Flowers102 Base 97.60 96.47 96.80 97.00 97.17

New 59.67 70.70 74.00 74.00 73.53

H 74.06 81.59 83.87 83.95 83.71

Food101 Base 88.33 90.30 91.00 91.20 91.20

New 82.26 90.73 90.87 91.70 91.90

H 85.19 90.51 90.93 91.44 91.54

FGVC Aircraft Base 40.44 32.63 33.05 34.53 38.05

New 22.30 30.46 31.80 30.57 33.20

H 28.75 31.57 32.41 32.43 35.46

SUN397 Base 80.60 80.20 80.55 80.70 80.70

New 65.89 75.56 77.11 78.60 79.30

H 72.51 77.81 78.79 79.63 80.00

DTD Base 79.44 79.13 80.50 81.40 81.10

New 41.18 52.10 56.20 58.60 62.57

H 54.24 62.82 66.19 68.14 70.64

EuroSAT Base 92.19 91.23 91.90 94.60 95.00

New 54.74 63.16 66.37 77.78 83.37

H 68.90 74.64 77.07 85.36 88.86

UCF101 Base 84.69 82.70 83.47 84.77 85.53

New 56.05 71.80 77.07 78.03 78.20

H 67.46 76.86 80.14 81.26 81.70

Text-to-Text is Eq. 5, only. On top of this, we incrementally apply the grouped prompt of Eq. 7, and the
re-alignment module of Sect. 3.4. Up to this point, this is equiv. to LASP. Finally, we add virtual classes
(equiv. to LASP-V). Baseline is CoOp

of the textual prompts used by our method in Eq. 4. For sim-
plicity, we report results using our Text-to-Text loss (Eq. 5),
only. The hand-crafted templates are increased to 100 by
including the rest of the prompts defined in CLIP (Radford
et al., 2021), while their number is reduced to 1 by using
the following template only: a photo of {}. Random
templates are produced by sampling grammatically plausi-
ble random sentences that contain incoherent words, with

length between 5 and 20 words. The class names are inserted
at the end of these random templates. All variations use the
same training scheduler and hyperparameters, except for the
case of random templates, where αT T = 5.

Table 10 shows our results. We importantly note that the
accuracy on the base classes remains similar across all set-
tings (not shown in the table). Moreover, we conclude:
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2 • Conclusion 7: The exact choice of the templatesmight

not be so significant for the few-shot setting.
• Conclusion 8: For the case of novel classes, both the
number and the content of the templates are impor-
tant to obtain high accuracy.

Effect of type of loss: In Table 7, we vary the choice of loss
in LASP, i.e. we replace the Cross-Entropy (CE) with an L2

and L1 loss. Again, for simplicity, we report results using our
Text-to-Text loss (Eq. 5), only.

• Conclusion 9: The proposed CE loss based formula-
tion outperforms other losses for LASP.

Effect of out-domain distractors: Motivated by the recent
work ofRen et al. (2022) suggesting that CLIP’s performance
drops as the number of classes used for testing increases,
we introduce a new evaluation setting: Firstly, we select 4
test datasets with clear disjoint domains: EuroSAT (10 satel-
lite terrain types), Food101 (101 food names), Flowers102
(102 flower names) and OxfordPets (37 dog and cat breed
names). At test time, we define the classifier across the union
of classes across all 4 datasets (250 classes in total). Note that
LASP-V is the only method that benefits from knowledge
of this expanded vocabulary during training. From Table 8,
we can conclude:

• Conclusion 10: The models are somewhat robust to
out-of-domain distractors. Specifically, the drop in
accuracy is moderate (typically 1-2%). The exception
is EuroSAT where the number of classes increases 25×.
Importantly, LASP-Vmanages to largely recover the lost
accuracy.

Effect of in-domain distractors: Expanding on the idea
from the previous section, herein, we propose to test the
performance of the current soft prompting methods with
in-domain distractors. Unlike the case of out-of-domain dis-
tractors, the in-domain distractors are selected such that they
are closely related to the current dataset/classes, being part
of the same super-category. We performed experiments on
two datasets: Food101 and Flowers102. For Flowers102,
we added 65 new class names while, for Food101, 53 new
classes. Note again that, with the exception of LASP-V, the
classes are only used at test time as distractors expanding the
C-way classifier by 65 and 53, respectively. From the results
of Table 9, we conclude:

• Conclusion 11: In-domain distractors significantly
increase the problem difficulty. Specifically, the drop
in accuracy is large (4-7%). LASP-Vmanages to recover
part of the lost accuracy.
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Table 6 Comparison with state-of-the-art for the domain generalization setting

Learnable? Source Target

ImageNet ImageNetV2 ImageNet-Sketch ImageNet-A ImageNet-R

CLIP 66.73 60.83 46.15 47.77 73.96

CoOp � 71.51 64.20 47.99 49.71 75.21

CoCoOp � 71.02 64.07 48.75 50.63 76.18

LASP � 71.10 63.96 49.01 50.70 77.07

Table 7 Effect of type of loss Set CE L1 L2

Base 81.26 81.50 81.47

New 71.54 66.01 65.80

H 76.09 73.54 72.80

For simplicity, we report results
using our Text-to-Text loss
(Eq. 5), only

Table 8 Effect of out-domain distractors

(a) EuroSAT
Method w/o distractors with distractors

Base New H Base New H

LASP 86.25 64.63 73.89 86.00 55.80 67.68

LASP-V 90.00 65.73 75.97 90.80 59.87 72.16

(b) Food101

Method w/o distractors with distractors

Base New H Base New H

LASP 87.17 87.53 87.34 87.01 86.90 86.95

LASP-V 87.17 87.63 87.39 86.99 87.10 87.04

(c) Flowers102

Method w/o distractors with distractors

Base New H Base New H

LASP 90.97 67.8 77.69 90.0 67.10 76.68

LASP-V 93.20 69.93 79.9 92.05 69.08 78.92

(d) OxfordPets

Method w/o distractors with distractors

Base New H Base New H

LASP 92.53 94.20 91.52 91.53 92.60 92.06

LASP-V 92.25 93.97 93.10 92.23 93.17 92.69

w/o distractors are the results on the generalized zero-shot setting

Effect of text-basedaugmentations:Asdetailed inSect. 3.2,
one way to view the proposed text-to-text component is as
a direct extension of image-style augmentations to the lan-
guage domain. To explore this, we construct a variation of
the Oxford Pets dataset in which all test images are rotated by
90 or 180o. We select Oxford Pets as the rotated pets images
are far from the natural distribution of photos. During the
training of the LASP model the images are kept under their
original rotation (i.e. none) while the textual prompts are

Table 9 Effect of in-domain distractors

Method w/o distractors with distractors

Base New H Base New H

(a) Food101.

LASP 87.17 87.53 87.34 82.70 83.47 83.08

LASP-V 87.17 87.63 87.39 83.11 83.95 83.52

(b) Flowers102.

Method w/o distractors with distractors

Base New H Base New H

LASP 90.97 67.80 77.69 80.16 62.50 70.23

LASP-V 93.20 69.93 79.90 83.95 65.31 73.47

w/o distractors are the results on the generalized zero-shot setting eval-
uation

Table 10 Effect of dictionary size and content on new classes

#Templates 1 34 100

(a) DTD

Text-to-Text (R) 49.02 51.63 52.64

Text-to-Text 50.73 52.10 56.53

(b) EuroSAT

#Templates 1 34 100

Text-to-Text (R) 55.01 59.90 62.10

Text-to-Text 56.97 63.16 65.13

(c) UCF101

#Templates 1 34 100

Text-to-Text (R) 67.50 68.60 70.03

Text-to-Text 71.36 71.80 72.77

Accuracy on the base classes remains similar across all settings, hence
it is omitted. 34 templates were used for the paper’s main results. For
simplicity, we report results using our Text-to-Text loss (Eq. 5), only.
Text-to-Text (R) denotes models trained using randomly constructed
templates
Best method per dataset, within each setting defined by the number of
textual prompts

Table 11 Impact of noise value τ on the overall performance of LASP-
Z

s 0 0.05 0.15 0.3

LASP-Z 70.81 71.90 72.84 72.70

Results aggregated across 10 datasets
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Table 12 Impact of number of augmentations on the overall perfor-
mance of LASP-Z

s 0 10 15 20

LASP-Z 69.70 71.73 72.40 72.45

Results aggregated across 10 datasets

augmented with extra keywords such as: “rotate”, “upside
down”, “angled” etc. Based on the results from Table 13, we
can conclude:

• Conclusion 12:Text-based augmentations are a viable
solution for increased robustness.

Effect of noise level and transformation on LASP-Z. To
alleviate the issue that the text features are not a perfect proxy
for the vision domain, we explore the points located in their
vicinity, hence, increasing the likelihood of overlapping with
the data distribution from the vision domain. This is achieved,
in practice, by addingGaussian noise in the output space or by
adjusting the prompts in the input space. In Table 11,we anal-
yse the impact of the noisemagnitude s (i.e, x ∼ sN (μ, σ 2))
on the performance of the model. While the model is overall
resilient to the exact value of s, removing it completely leads
to performance inferior to that of CLIP. We conclude that
adding noise does not only help bridge the domain gap, but
also alleviate overfitting.

Similar results can be observed for varying the number of
augmentations. Here, we note that a higher number leads to
better results as intuitively they allow for the exploration of
more points around the class centroid.
Can LASP-Z be used as initialisation for LASP? LASP-Z
tries to fully leverage the joint vision-language embedding
space learned byCLIP,moving the optimization process fully
in the text domain. While the text alone is a good proxy for
representing visual data, due to the domain gap that natu-
rally occurs as part of the contrastive training, it is not a full
substitute for the visual data. Due to the above, when initial-
ising LASP/LASP-V fromLASP-Zweights, we observed no
additional gains as the visual samples provided include the
queues provided by the text training.

6 Conclusions

In this paper, we introduced LASP - a language aware soft
prompting method for V&L adaptation that is shown to
outperform prior work by large margin. Specifically, we
made the following contributions: Firstly, we introduced a
novel text-to-text loss that largely alleviates the problem
of base-class overfitting. Secondly, we proposed a grouped
language-aware prompting for learningmore specialized and
stronger prompt representations. Thirdly, we identified a
visual-language misalignment within LASP and propose a
re-calibration mechanism to address it. Fourthly, we showed
that our approach, unlike prior work, is amenable to, includ-
ing during training, virtual classes, i.e. class names for which
no visual samples are available, significantly increasing the
robustness of the learned prompts. Fifthly, we presented
a zero-shot variant of LASP (LASP-Z) where no visual
samples at all are available for the downstream task and
showed its superiority over CLIP.We hope that LASP/LASP-
V/LASP-Z will serve as a strong baseline for future works
in the area of few-shot adaptation for V&L models.

Data Availability The datasets used and/or analyzed during the current
study are available from their respective authors: ImageNet (Deng et
al., 2009), Caltech101 (Fei-Fei et al., 2004),
Oxford-Pets (Parkhi et al., 2012), Stanford Cars (Krause et al., 2013),
Flowers102 (Nilsback & Zisserman, 2008), Food101 (Bossard et al.,
2014), FGVC Aircraft (Maji et al., 2013), SUN397 (Xiao et al., 2010),
DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019) and UCF-
101 (Soomro et al., 2012).
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Table 13 Effect of text-based
positional augmentations

Dataset Text clean rotated

Augm Base New H Base New H

Oxford pets ✗ 95.73 97.87 96.79 71.20 72.41 71.79

� 95.64 97.85 96.73 72.14 72.70 72.41
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Appendix A: Training and Inference Speed
Considerations

Once trained, LASP is as fast as CoOp. In terms of training
time, the cost of adapting the text encoder for LASP, CoOp
andCoCoOp isG ·M ·CT , M ·CT and B ·M ·CT , respectively,
where B is the batch size, M is the number of classes and CT

is the text encoder’s cost for 1 sample. In practice, for B = 32
and G = 4 LASP is, on average, 2.3× slower than CoOp and
up to 10× faster than CoCoOp. Note that these numbers are
subject to the implementation optimizations made for each
method. For G=1, LASP’s training cost is similar with that
of CoOp’s while losing only 0.5% on average, being slightly
(1.05–1.2×) slower due to the additional gradients computed
with respect to theweights of the layer norms inside the vision
transformer.

Appendix B: Implementation Details

Hand-engineered prompts set ζ : Unless otherwise speci-
fied, we used the following set of hand-engineered templates
(borrowed from CLIP and CoOp):

"a photo of a {}, a type of flower.",
"a photo of a person doing {}.",
"a centered satellite photo of {}.",
"a photo of a {}, a type of aircraft.",
"{} texture.",
"itap of a {}.",
"a bad photo of the {}.",
"a origami {}.",
"a photo of the large {}.",
"a {} in a video game.",
"art of the {}.",
"a photo of the small {}.",
"a photo of a {}.",
"a photo of many {}.",
"a photo of the hard to see {}.",
"a low resolution photo of the {}.",
"a rendering of a {}.",
"a bad photo of the {}.",
"a cropped photo of the {}.",
"a pixelated photo of the {}.",
"a bright photo of the {}.",
"a cropped photo of a {}.",
"a photo of the {}.",
"a good photo of the {}.",
"a rendering of the {}.",
"a close-up photo of the {}.",
"a low resolution photo of a {}.",
"a rendition of the {}.",
"a photo of the clean {}.",

"a photo of a large {}.",
"a blurry photo of a {}.",
"a pixelated photo of a {}.",
"itap of the {}.",
"a jpeg corrupted photo of the {}.",
"a good photo of a {}."

Note that {} represent the placeholder for the location of
the class name w.

Randomprompts:For the experiments involving random
prompts, we list bellow a few such examples:

"Ports, waterways, the subfield that {}.",
"In TCP, prepared mind, but some others, Milatiai, appear
to have {}.",
"Iron Age, The Eastern Shore of Virginia residents age 5
and {}.",
"Cat mostly all with {}.",
"Wind erosion. go unnoticed-it was {}.",
"River Delta, on six different {}.",
"12 hours. few times every million {}.",
etc.

Additional class names for in-domain ablation: Below,
we list themanually defined in-domain class namedistractors
used to produce the results forwith in-domain distractors. For
Food-101, we added the following classes:

[’aroma’, ’bagel’, ’batter’, ’beans’, ’biscuit’, ’broth’,
’burger’, ’burrito’, ’butter’, ’candy’, ’caramel’, ’caviar’,
’cheese’, ’chili’, ’chimichanga’, ’cider’, ’cocoa’, ’coffee’,
’cobbler’, ’empanada’, ’fish’, ’flour’, ’ketchup’, ’margarine’,
’mousse’, ’muffin’, ’mushrooms’, ’noodle’, ’nuts’, ’oil’,
’olives’, ’pudding’, ’raclette’, ’rice’, ’salad’, ’salsa’, ’sand-
witch’, ’soda’, ’tea’, ’stew’, ’toast’, ’waffles’, ’yogurt’,
’wine’, ’sopapillas’, ’chilli con carne’, ’banana bread’,
’yorkshire pudding’, ’spaghetti carbonara’, ’roast potatoes’,
’sausage ragu’, ’avocado panzanella’, ’lamb biryani’]

Respectively, for Flowers102 dataset:
[’Agapanthus’, ’Allium’, ’Alstroemerias’, ’Amaranthus’,

’Astilbe’, ’Begonia’, ’brunia’, ’California poppy’, ’Calla
lily’, ’Campanula’, ’Carnations’, ’Celosia’, ’Chrysanthe-
mum’, ’Cornflower’, ’Delphinium’, ’Dianthus’,
’Dusty Miller’, ’Eryngium’, ’Freesia’, ’Gardenias’, ’Ger-
bera daisies’, ’Gladiolus’, ’Gypsophila’, ’Hydrangea’,
’Hypericum’, ’Kale’, ’Larkspur’, ’Liatris’, ’Lilies’,
’Lisianthus’, ’Orchids’, ’Peony’, ’Periwinkle’, ’Ranunculus’,
’Scabiosa’, ’Sunflowers’, ’Yarrow’, ’Zinnia’, ’Bellflower’,
’Bleeding Heart’, ’Browallia’, ’Bugleweed’, ’Butterfly
Weed’, ’Calendula’, ’Cardinal Flower’, ’Celosia’, ’Clary
Sage’, ’Coreopsis’, ’Forget-Me-Not’, ’Freesias’, ’Gaillar-
dia’, ’Glory of the Snow’, ’Heather’, ’Hollyhock’, ’Hyssop’,
’Impatiens’, ’Jack-in-the-Pulpit’, ’Lilac’, ’Lilies’, ’Lobelia’,
’Periwinkle’, ’Rue’, ’Thunbergia’, ’Verbena’, ’Wisteria’]

Attribute selection: For simplicity we selected (rela-
tively) generic attributes, i.e. attributes that are class agnostic.
The attributes were sampled automatically by prompting a
LLMmodel for suggestions (i.e. To list a set of possible trans-
formations that could be applied to a given image). Examples
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of attributes: blurred image, sharpened image, sepia- toned
image, high contrast image, tilted image, vignette effect
image, pencil sketch image, rotated image, duotone image,
posterized image etc.
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