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Abstract
This paper investigates the capability of plain Vision Transformers (ViTs) for semantic segmentation using the encoder–
decoder framework and introduce SegViTv2. In this study, we introduce a novel Attention-to-Mask (ATM) module to design
a lightweight decoder effective for plain ViT. The proposed ATM converts the global attention map into semantic masks
for high-quality segmentation results. Our decoder outperforms popular decoder UPerNet using various ViT backbones
while consuming only about 5% of the computational cost. For the encoder, we address the concern of the relatively high
computational cost in the ViT-based encoders and propose a Shrunk++ structure that incorporates edge-aware query-based
down-sampling (EQD) and query-based up-sampling (QU) modules. The Shrunk++ structure reduces the computational
cost of the encoder by up to 50% while maintaining competitive performance. Furthermore, we propose to adapt SegViT
for continual semantic segmentation, demonstrating nearly zero forgetting of previously learned knowledge. Experiments
show that our proposed SegViTv2 surpasses recent segmentation methods on three popular benchmarks including ADE20k,
COCO-Stuff-10k and PASCAL-Context datasets. The code is available through the following link: https://github.com/zbwxp/
SegVit.
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1 Introduction

Semantic segmentation is a pivotal computer vision task
that aims to assign labels to every pixel on the image.
Widely adopted state-of-the-art methods like Fully Convo-
lutional Networks (FCN) (Long et al., 2015) utilize deep
convolutional neural networks (ConvNet) as encoders and
incorporate segmentation decoders for dense predictions.
Prior works (Wang et al., 2020; Yuan et al., 2020; Chen
et al., 2018) have aimed to enhance performance by aug-
menting contextual information or incorporating multi-scale
information, leveraging the inherent multi-scale and hierar-
chical attributes of the ConvNet architectures.

The advent of the Vision Transformer (ViT) (Dosovit-
skiy et al., 2021) has offered a paradigm shift, serving as
a robust backbone for numerous computer vision tasks.ViT,
distinct from ConvNet base models, retains a plain and
non-hierarchical architecture while preserving the resolu-
tion of the feature maps. To conveniently leverage existing
segmentation decoders for dense prediction, such as U-Net
(Ronneberger et al., 2015) or DeepLab (Chen et al., 2018),
recent Transformer-based approaches, includingSwinTrans-
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former (Liu et al., 2021) and PVT (Wang et al., 2021), have
developed a hierarchical ViT to extract hierarchical feature
representations.

However, modifying the original ViT structures requires
training the networks from scratch rather than using off-the-
shelf plain ViT checkpoints due to the discrepancy between
the hierarchical and plain architectures, such as spatial down-
sampling (Xu et al., 2022).Altering the plainViT architecture
compromises the use of rich representations from vision-
language pre-training methods like CLIP (Radford et al.,
2021), BEiT (Bao et al., 2022), BEiT-v2 (Peng et al., 2022),
MVP (Wei et al., 2022), and COTS (Lu et al., 2022).

Hence, there is a clear advantage to developing effec-
tive decoders for the original ViT structures in order to
leverage those powerful representations. Previous works,
such as UPerNet (Xiao et al., 2018) and DPT (Ranftl et
al., 2021), have primarily focused on hierarchical feature
maps and neglected the distinctive characteristics of the plain
Vision Transformer. Consequently, these methods introduce
computation-intensive operations while offering limited per-
formance gains, as shown in Fig. 1.

A recent trend in several works, such as SETR (Zheng
et al., 2021) or Segmenter (Strudel et al., 2021), aims to
develop decoders specifically tailored for the PlainViT archi-
tecture. However, these designs are often an extension of
per-pixel classification techniques derived from traditional
convolution-based decoders. For example, SETR’s decoder
(Zheng et al., 2021) uses a sequence of convolutions and
bilinear up-sampling to increase the ViT’s extracted fea-
ture maps gradually. It then applies a naive MLP to the
extracted features to perform pixel-wise classification, which
isolates the neighboring contexts surrounding the pixel. Cur-
rent pixel-wise classification decoder designs overlook the

Fig. 1 Comparison with previous methods in terms of performance
and efficiency on ADE20K dataset. The and bubbles in the accompany-
ing graph represent the ViT Base and ViT Large models, respectively,
with the size of each bubble corresponding to the FLOPs of the variant
segmentation methods. SegViT-BEiT v2 Large achieves state-of-the-
art performance with a 58.0% mIoU on the ADE20K validation set.
Additionally, our efficient, optimized version, SegViT-Shrunk-BEiT v2
Large, saves half of the GFLOPs compared to UPerNet, significantly
reducing computational overhead while maintaining a competitive per-
formance of 55.7%

importance of contextual learning when assigning labels to
each pixel.

Another prevalent issue in deep networks, including
Transformer, is ‘catastrophic forgetting’ (French, 1999;
Kirkpatrick et al., 2017), where the model’s performance
on previously learned tasks deteriorates as it learns new
ones (Shao & Feng, 2022; Wang et al., 2022, ?; Phan et
al., 2022). This limitation poses significant challenges for
the application of deep segmentation models in dynamic
real-world environments. Recently, the rapid development
of the foundation model pre-trained on large-scale data has
sparked interest among researchers in studying its transfer-
ability across various downstream tasks (Ostapenko et al.,
2022). These models are capable of extracting powerful and
generalized representations, which has led to a growing inter-
est in exploring their extensibility to new classes and tasks
while retaining the previously learned knowledge represen-
tations (Ramasesh et al., 2022; Wu et al., 2022).

Inspired by these challenges, this paper aims to develop
plain Vision Transformer-based model for effective seman-
tic segmentation without resorting to hierarchical backbone.
As self-supervision andmulti-modality pre-training continue
to evolve, we anticipate that the plain vision transformer
will learn enhanced visual representations. Consequently,
decoders for dense tasks are expected to adapt more flexi-
bly and efficiently to these representations.

In light of these research gaps, we propose SegViTv2—a
novel, efficient segmentation network that features a plain
Vision Transformer and exhibits robustness against forget-
ting.We introduce a novel Attention-to-Mask (ATM)module
that operates as a lightweight component for the SegViT
decoder. Leveraging the non-linearity of cross-attention
learning, our proposed ATM employs learnable class tokens
as queries to pinpoint spatial locations that exhibit high com-
patibility with each class. We advocate for regions affiliated
with a particular class to possess substantial similarity values
that correspond to the respective class token.

As depicted in Fig. 2, the ATM generates a meaningful
similarity map that accentuates regions with a strong affin-
ity towards the ‘Table’ and ‘Chair’ categories. By simply
implementing aSigmoid operation, we can transform these
similarity maps into mask-level predictions. The computa-
tion of the mask scales linearly with the number of pixels, a
negligible cost that can be integrated into any backbone to
bolster segmentation accuracy. Building upon this efficient
ATM module, we present a novel semantic segmentation
paradigm that utilizes the cost-effective structure of plain
ViT, referred to as SegViT. Within this paradigm, multiple
ATM modules are deployed at various layers to extract seg-
mentation masks at different scales. The final prediction is
the summation of the outputs derived from these layers.

To alleviate the computational burdens of plain Vision
Transformers (ViTs),we introduce theShrunk andShrunk++
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Fig. 2 The overall concept of our Attention-to-Mask decoder. ATM
learns the similarity map for each category by capturing the cross-
attention between the class tokens and the spatial feature map (Left).
Sigmoid is applied to produce category-specific masks, highlighting

the area with high similarity to the corresponding class (Middle). ATM
enhances the semantic representations by encouraging the feature to be
similar to the target class token and dissimilar to other tokens

structures, which incorporate query-based downsampling
(QD) and query-based upsampling (QU). The proposed QD
employs a 2x2 nearest neighbor downsampling technique to
obtain a sparser token mesh, reducing the number of tokens
involved in attention computations. In Shrunk++, we extend
QD to edge-aware query-based downsampling (EQD). EQD
selectively preserves tokens situated at object edges, as they
possess more discriminative information. Consequently, QU
recovers the discarded tokens within the object’s homoge-
neous body, reconstructing high-resolution features crucial
for accurately dense prediction. Integrating the Shrunk++
structurewith theATMmodule as the decoder, our SegViTv2
achieves computational reductions of up to 50%while main-
taining competitive performance.

We further adapt our SegViTv2 framework for continual
learning. Leveraging the robust, generalized representation
of the foundational model, this paper investigates its adapt-
ability to new classes and tasks, ensuring retention of prior
knowledge. Recent techniques in continual semantic seg-
mentation (CSS) aim to replay old data (Maracani et al.,
2021; Cha et al., 2021) or distill knowledge from the pre-
vious model to mitigate model divergence (Cermelli et al.,
2020; Phan et al., 2022; Zhang et al., 2022). These methods
fine-tune parameters related to old tasks, which can disrupt
the previously learned solutions and result in forgetting. In
contrast, our proposed SegViT supports learning new classes
without interfering with previously acquired knowledge. We
strive to establish a forget-free SegViT framework, achieved
by incorporating a new ATMmodule dedicated to new tasks
while freezing all old parameters. Consequently, the pro-
posed SegViT architecture has the potential to eliminate the
issue of forgetting.

Our key contributions can be summarized as follows:

– We introduce the Attention-to-Mask (ATM) decoder
module, a potent and efficient tool for semantic segmen-
tation. For the first time, we exploit spatial information
present in attention maps to generate mask predictions

for each category, proposing a new paradigm for seman-
tic segmentation.

– We present the Shrunk++ structure, applicable to any
plain ViT backbone, which alleviates the intrinsically
high computational expense of the non-hierarchical ViT
while maintaining competitive performance, as illus-
trated in Fig. 1.We are the first work capitalizing on edge
information to decrease and restore tokens for efficient
computation. Our Shrunk++ version of SegViTv2, tested
on the ADE20K dataset, achieves a mIoU of 55.7%,
with a computational cost of 308.8 GFLOPs, marking
a reduction of approximately 50% compared to the orig-
inal SegViT (637.9 GFLOPs).

– We propose a new SegViT architecture capable of con-
tinual learning with nearly zero forgetting. To our knowl-
edge, we are the first work seeking to completely freeze
all parameters for old classes, thereby nearly obliterating
the issue of catastrophic forgetting.

2 RelatedWork

2.1 Semantic Segmentation

Semantic segmentation aims to partition an image into
regions with meaningful categories. Fully Convolutional
Networks (FCNs) used to be the dominant approach to this
task. To enlarge the receptive field, several approaches (Zhao
et al., 2017; Chen et al., 2018) propose dilated convolu-
tions or apply spatial pyramid pooling to capture contextual
information at multiple scales. Most semantic segmentation
methods aim to classify each pixel directly using a classifi-
cation loss. This paradigm naturally partitions images into
different classes.

Various methods have achieved significant advancements
by integrating Transformers into the semantic segmentation
task. Early works (Liu et al., 2021; Dong et al., 2022) directly
adapt the transformer encoder, designed for classification,
into semantic segmentation by fine-tuning it together with
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segmentation decoders such as UPerNet (Xiao et al., 2018).
Recent approaches (Xie et al., 2021; Strudel et al., 2021;
Cheng et al., 2021) have focused on designing the overall
segmentation framework to achieve better adaptation. For
instance, SETR (Zheng et al., 2021) views semantic segmen-
tation as a sequence-to-sequence task and proposes a pure
Transformer encoder combined with a standard convolution-
based decoder. SegFormer (Xie et al., 2021) employs a
hierarchical encoder design to extract features from fine-to-
coarse levels and a lightweight decoder design for efficient
prediction. However, the SegFormer decoder adopts the
pyramid structure by fusing multi-scale features, which
is specialized for hierarchical ViTs such as Swin Trans-
former (Liu et al., 2021). The above-mentioned methods
aim to design either a naive convolution-based decoder or
a pyramid-structure decoder for hierarchical base models.
Nonetheless, designing an effective decoder specialized for
plain ViTs remains an open research question.

Recently, several segmentationmethods propose a univer-
sal framework that unifies multiple tasks, including instance
segmentation, semantic segmentation, and object detection.
For example, Mask DINO (Li et al., 2022) extends DINO
with a mask prediction branch, achieving promising results
in the instance, panoptic, and semantic segmentation tasks.
Mask2Former (Cheng et al., 2022) enhances MaskFormer
(Cheng et al., 2021) by introducing deformable multi-scale
attention in the decoder and a masked cross-attention mech-
anism. OneFormer (Jain et al., 2022) represents a universal
image segmentation framework with a multi-task train-once
design, outperforming specialized models in various tasks.

Recent methods (Cheng et al., 2021; Strudel et al., 2021;
Zhang et al., 2021) propose decoupling the per-pixel clas-
sification into image partitioning and region classification.
For image partitioning, they use learnable tokens as mask
embeddings and associate them with the extracted feature
map to generate object masks. For region classification, the
learnable tokens are fed to a classifier to predict the class
corresponding to each mask. This paradigm enables global
segmentation and alleviates the burden on the decoder to
perform per-pixel classification, resulting in state-of-the-art
performance (Cheng et al., 2021). While previous works use
generic tokens for mask generation, this work explicitly uti-
lizes class-specific tokens to enhance the semantics of mask
embeddings, thereby improving segmentation accuracy.

2.2 Mask-Oriented Segmentation

Compared to previous mask-oriented segmentation tech-
niques such as MaskFormer (Cheng et al., 2021) and
Mask2Former (Cheng et al., 2022), our method presents
several novel conceptual differences and advantages. Specif-
ically, our approach is tailored to address semantic segmen-
tation problems by assigning each class to a fixed token

and generating the corresponding mask directly. In con-
trast, MaskFormer relies on Hungarian matching, with each
learnable query corresponding to spatial information instead
of category information. Our Attention-to-Mask (ATM)
approach eliminates the need for positional embedding, as
we utilize the attention map between the class token and the
feature map. Our overarching goal is to adapt Plain Vision
Transformers for dense prediction, as recent studies have
demonstrated that self-supervised learning (He et al., 2022;
Chen et al., 2022; Touvron et al., 2022; Peng et al., 2022) and
multimodal learning (Radford et al., 2021) are enhanced by
hierarchical ViT structures. Our approach enhances the rep-
resentation ability of class tokens by applying transformer
blocks.

Previous CNN-based decoders, such as OCRNet (Yuan et
al., 2019) and K-Net (Zhang et al., 2021), have demonstrated
the effectiveness of the attention mechanism in modeling
contextual information. For example, K-Net utilizes seman-
tic kernels (one kernel for each class) and performs convo-
lution operations to generate the semantic mask. In contrast,
our proposed ATMmodule integrates cross-attentionmecha-
nisms, allowing formore effective contextual learning.While
OCRNet (Yuan et al., 2019) applies cross-attention from
the class token to the feature map to enhance feature rep-
resentations, it still employs a standard linear predictor in
the decoder to produce the segmentation map. On the other
hand, our proposed ATM module is specifically designed
for generating segmentation outputs, paving the way for
future research on effective decoders for plain ViT. Addi-
tionally, existing convolution-based attention networks such
as OCRNet (Yuan et al., 2019), K-Net (Zhang et al., 2021),
and DANet (Fu et al., 2019) adopt the traditional per-pixel
classification framework for segmentation generation. In
contrast, our proposed SegViT decouples segmentation into
mask prediction and classification, which proves advanta-
geous for establishing connections between the class proxy
and language representations (Zhou et al., 2022), as well as
facilitating continual learning.

2.3 Transformers for Vision

In the realm of image classification tasks, attention-based
transformer models have emerged as powerful alternatives
to standard convolution-based networks. The original ViT
(Dosovitskiy et al., 2021) represents a plain, non-hierarchical
architecture. However, there have been several advancements
in the field of hierarchical transformers, such as PVT (Wang
et al., 2021), Swin Transformer (Liu et al., 2021), Twins (Chu
et al., 2021), SegFormer (Xie et al., 2021), and P2T (Wuet al.,
2022). These hierarchical transformer models inherit certain
design elements fromconvolution-based networks, including
hierarchical structures, pooling, anddownsamplingwith con-
volutions. Consequently, they can be seamlessly employed
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as direct replacements for convolutional-based networks and
can be coupled with existing decoder heads for tasks such as
semantic segmentation.

2.4 Self-SupervisedVision Transformers

Self-supervised learning has emerged as a powerful techni-
que for pretraining visual models, eliminating the need for
labeled data. One notable self-supervised method is MAE
(He et al., 2022) (Masked Autoencoder), which trains a
vision transformer to reconstruct masked regions of input
images. This approach results in a high generalization capac-
ity. Another significantmethod is CLIP (Radford et al., 2021)
(Contrastive Language-Image Pre-Training), which involves
joint training of a vision transformer and a language model
on a large corpus of text and images, leading to the cre-
ation of a comprehensive knowledge store. CAE (Chen et al.,
2022) aims to learn image representations that are invariant
to context changes and effectively capture underlying seman-
tic content. Furthermore, iBot (Zhou et al., 2022) performs
masked visual learning using an online tokenizer and self-
distillation mechanism, facilitating semantic representation
learning. In our approach, we leverage attention to masks
to optimize the extraction of dense hidden representations,
thereby enhancing the segmentation capability of our model.

2.5 Plain-Backbone Decoders

For dense prediction tasks, such as semantic segmentation,
the high-resolution feature maps produced by the backbone
are vital for preserving spatial details. In typical hierar-
chical transformer models, techniques such as FPN (Lin
et al., 2017) or dilated backbone are employed to gener-
ate high-resolution feature maps by merging features from
different levels. However, when it comes to a plain, non-
hierarchical transformer backbone, the resolution remains
the same across all layers. SETR (Zheng et al., 2021) pro-
posed a straightforward approach to address segmentation
tasks by treating transformer outputs from the base model in
a sequence-to-sequence perspective. Segmenter (Strudel et
al., 2021) combines class embeddings and transformer patch
embeddings and applies several self-attention layers on the
combined tokens to learn discriminative embeddings. In their
approach, the class tokens are used as input to the ViT back-
bone, resulting in increased computational complexity. In
contrast, our SegViT introduces the class tokens as input to
the ATM, the Attention-to-Mask module, thereby reducing
computational costs while still benefiting from the integra-
tion of class tokens.

2.6 Continual Learning

Continual learning (CL) aims to address the issue of forget-
ting, ensuring consistent performance on previously learned
classes while adapting to new ones (Chen and Liu, 2016).
Most CL methods propose regularization techniques for
convolution-based networks (Li & Hoiem, 2018; Douillard
et al., 2020; Kang et al., 2022; Peng et al., 2021) or expand
the network architectures to accommodate new tasks (Yan
et al., 2021), thereby avoiding the need to store and replay
old data. In recent years, efforts have also emerged to pre-
vent forgetting in Transformer models. Dytox (Douillard et
al., 2022) dynamically learns new task tokens, which are
then utilized to make the learned embeddings more relevant
to the specific task. Lifelong ViT (Wang et al., 2022) and
contrastive ViT (Wang et al., 2022) introduce cross-attention
mechanisms between tasks through external key vectors, and
they slow down the changes to these keys to mitigate for-
getting. Despite the use of complex mechanisms to prevent
forgetting, these methods still require fine-tuning of the net-
work for new classes, which can result in interference with
previously learned knowledge.

In the field of semantic segmentation, recent research has
been devoted to addressing the forgetting issue in contin-
ual learning. However, in addition to forgetting, continual
semantic segmentation (CSS) also encounters the problem
of "background shift." This refers to the situation where
foreground object classes from previous tasks are mistak-
enly classified as background in the current task (Cermelli
et al., 2020). REMINDER (Phan et al., 2022) tackles for-
getting in CSS by utilizing class similarity to identify the
classes that are more likely to be forgotten. It then focuses
on revising those specific classes to mitigate the forgetting
problem. RCIL (Zhang et al., 2022) introduces a two-branch
convolutional network, with one branch frozen and the other
trained to prevent forgetting. At the end of each learning step,
the trainable branch is merged with the frozen branch, which
can introducemodel interference. However, it is worth noting
that existing CSS and CL techniques typically involve fine-
tuning certain parts of the network dedicated to the old tasks.
Unfortunately, this fine-tuning process can lead to forgetting
as the model diverges from the previously learned solution.

3 Method

In this section, we first introduce the overall architecture
of our proposed SegViT model for semantic segmentation.
Then, we discuss the Shrunk and Shrunk++ architectures
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Fig. 3 The overall SegViT structure with the ATM module. The
Attention-to-Mask (ATM) module inherits the typical transformer
decoder structure. It takes in randomly initialized class embeddings
as queries and the feature maps from the ViT backbone to generate
keys and values. The outputs of the ATM module are used as the input
queries for the next layer. The ATM module is carried out sequentially
with inputs from different layers of the backbone as keys and values in

a cascade manner. A linear transform is then applied to the output of
the ATM module to produce the class predictions for each token. The
mask for the corresponding class is transferred from the similarities
between queries and keys in the ATM module. We have removed the
self-attention mechanism in ATM decoder layers further improve the
efficiency while maintaining the performance

designed to reduce the model’s computational cost. Lastly,
we explore the adaptation of our SegViT model for the
context of continual semantic segmentation to minimize for-
getting.

3.1 Overall SegViT Architecture

SegViT comprises a ViT-based encoder responsible for fea-
ture extraction and a decoder used to learn the segmentation
map. For the encoder, we designed the ‘Shrunk’ structure
to reduce the computational overhead associated with the
plain ViT. Regarding the decoder, we introduce a novel
lightweight module named Attention-to-Mask (ATM). This
module generates class-specific masks denoted as M and
class predictions denoted as P , which determine the presence
of a particular class in the image. The mask outputs from a
stack of ATM modules are combined and then multiplied by
the class predictions to obtain the final segmentation output.
Figure3 illustrates the overall architecture of our proposed
SegViT.

3.1.1 Encoder

Given an input image I ∈ R
H×W×3, the plain vision trans-

former backbone reshapes it into a sequence of tokens F0 ∈

R
L×C , where L = HW

P2 , P is the patch size, andC is the num-
ber of channels. To capture positional information, learnable
position embeddings of the same size asF0 are added. Subse-
quently, the token sequenceF0 is processed bym transformer
layers to produce the output. The output tokens for each
layer are defined as [F1,F2, . . . ,Fm] ∈ R

L×C . For a plain
vision transformer like ViT, the number of tokens are high
and remains constant for each layer. Processing a substantial
number of tokens for every layer results in elevated com-
putational costs for plain ViT. We denote a plain ViT-based
encoder as the ’Single’ structure. To mitigate computational
costs, we introduce the Shrunk and Shrunk++ structures, tai-
lored to create a more computationally efficient ViT-based
encoder. Further details regarding the Shrunk structure can
be found in Sect. 3.2.

3.1.2 Decoder

Attention-to-Mask (ATM) Cross-attention can be described
as the mapping between two sequences of tokens, denoted
as {v1, v2}. In our case, we define two token sequences:
G ∈ R

N×C with a length N equal to the number of classes,
and Fi ∈ R

L×C . To enable cross-attention, linear transfor-
mations are applied to each token sequence, resulting in the
query (Q), key (K), and value (V) representations. This pro-
cess is described by Eq. (1).
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Q = φq(G) ∈ R
N×C ,

K = φk(Fi ) ∈ R
L×C ,

V = φv(Fi ) ∈ R
L×C .

(1)

The similarity map is calculated by computing the dot
product between the query and key representations. Fol-
lowing the scaled dot-product attention mechanism, the
similarity map and attention map are calculated as follows:

S(Q, K ) = QKT

√
dk

∈ R
N×L ,

Attention(G,Fi ) = Softmax
(
S(Q, K )

)
V ∈ R

N×C ,

(2)

where
√
dk is a scaling factor with dk equals to the dimension

of the keys.
The shape of the similaritymap S(Q, K ) is determined by

the lengths of the two token sequences, N and L . The atten-
tion mechanism updates G by performing a weighted sum
of V , where the weights are derived from the similarity map
after applying the softmax function along the L dimension.

In dot-product attention, the softmax function is used
to concentrate attention exclusively on the token with the
highest similarity. However, we believe that tokens other
than those with maximum similarity also carry meaning-
ful information. Based on this intuition, we have designed a
lightweightmodule that generates semantic predictionsmore
directly. To this end, we assign G as the class embeddings for
the segmentation task, and Fi as the output of layer i of the
ViT backbone. A semantic mask is paired with each token
in G to represent the semantic prediction for each class. The
binary mask M is defined as follows:

Mask(G,Fi ) = Sigmoid(S(Q, K )) ∈ R
N×L . (3)

The masks have a shape of N × L , which can be reshaped to
N × H

P × W
P and bilinearly upsampled to the original image

size N×H×W . As depicted in the right section of Fig. 3, the
ATM mechanism produces masks as an intermediate output
during cross-attention.

The final output tokens Z ∈ R
L×C from the ATMmodule

are utilized for classification. A fully connected layer (FC)
parameterized byW ∈ R

C×2 followed by the Softmax func-
tion is used to predictwhether the object class is present in the
image or not. The class predictions P ∈ R

N×2 are formally
defined as:

P = Softmax(WZ). (4)

Here, Pc,1 indicates the likelihood of class c appearing in the
image. For simplicity, we refer to Pc as the probability score
for class c.

The output segmentation map for class Os ∈ R
H×W

is obtained by element-wise multiplication of the reshaped
class-specific mask Mc and its corresponding prediction
score Pc: Oc = Pc � Mc. During inference, the label is
assigned to each pixel i by selecting the class with the high-
est score using argmaxcOi,c.

Indeed, plain base models like ViT do not inherently
possess multiple stages with features of different scales.
Consequently, structures such as Feature Pyramid Networks
(FPN) that merge features frommultiple scales are not appli-
cable to them.

Nevertheless, features from layers other than the last one in
ViT contain valuable low-level semantic information, which
can contribute to improving performance. In SegViT,wehave
developed a structure that leverages featuremaps fromdiffer-
ent layers of ViT to enrich the feature representations. This
allows us to incorporate and benefit from the rich low-level
semantic information present in those feature maps.

SegViT is trained via the classification loss and the binary
mask loss. The classification loss (Lcls) minimizes cross-
entropy between the class prediction and the actual target.
The mask loss (Lmask) consists of a focal loss (Lin et al.,
2017) and a dice loss (Milletari et al., 2016) for optimizing
the segmentation accuracy and addressing sample imbal-
ance issues in mask prediction. The dice loss and focal loss
respectively minimize the dice and focal scores between the
predictedmasks and the ground-truth segmentation. Thefinal
loss is the combination of each loss, formally defined as:

L = Lcls + λfocalLfocal + λdiceLdice (5)

where λfocal and λdice are hyperparameters that control the
strength of each loss function. Previous mask transformer
methods such asMaskFormer (Cheng et al., 2021) andDETR
(Carion et al., 2020) have adopted the binary mask loss and
fine-tuned their hyperparameters through empirical exper-
iments. Hence, for consistency, we directly use the same
values as MaskFormer and DETR for the loss hyperparame-
ters: λfocal = 20.0 and λdice = 1.0.

3.2 Shrunk Structure for Efficient Plain ViT Encoder

Recent efforts, such as DynamicViT (Rao et al., 2021),
TokenLearner (Ryoo et al., 2021), and SPViT (Kong et al.,
2022), propose token pruning techniques to accelerate vision
transformers. However, most of these approaches are specif-
ically designed for image classification tasks and, as a result,
discard valuable information. However, when adapting these
techniques to semantic segmentation tasks, they may fail to
preserve high-resolution features that are necessary for accu-
rate dense prediction tasks.

In this paper, we introduce the Shrunk structure. This
method employs query-based down-sampling (QD) to prune
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Fig. 4 Architecture of the proposed query-downsapling (QD) layer
(blue block) and the query-upsampling (QU) layer (block). The QD
layer uses an efficient down-sampling technique (green block) and
removes less informative input tokens used for the query. The QU layer
takes a set of trainable query tokens and learns to recover the discarded
tokens using multi-head attention (Color figure online)

the input token sequence Fi and uses query up-sampling
(QU) to retrieve the discarded tokens, ensuring preservation
of fine-detail features vital for semantic segmentation. The
overall architecture of QD and QU is illustrated in Fig. 4.

For QD, we have re-designed the Transformer encoder
block (Vaswani et al., 2017) and incorporated efficient down-
sampling operations to specifically reduce the number of
query tokens. In a Transformer encoder layer, the compu-
tational cost is directly influenced by the number of query
tokens, and the output size is determined by the query token
size. To mitigate the computational burden while maintain-
ing information integrity, a viable strategy is to selectively
reduce the number of query tokens while preserving the key

and value tokens. This approach allows for an effective reduc-
tion in the output size of the current layer, leading to reduced
computational costs for subsequent layers.

For QU, we perform up-sampling using a token sequence
- either predefined or inherited - that has a higher resolution
than the query tokens. The key and value tokens are taken
from the token sequence obtained from the backbone, which
typically has a lower resolution. The output size is dictated by
the query tokens with higher resolution. Through the cross-
attention mechanism, information from the key and value
tokens is integrated into the output. This process facilitates
a non-linear merging of information and demonstrates an
upsampling behavior, effectively increasing the resolution
of the output.

As illustrated in Fig. 5, our proposed Shrunk structure
incorporates the QD and QU modules. Specifically, we inte-
grate aQDoperation at themiddle depth of theViTbackbone,
precisely at the 8th layer of a 24-layer backbone. The QD
operation downsamples the query tokens using a 2×2 nearest
neighbor downsampling operation, resulting in a featuremap
size reduction to 1/32. However, such downsampling can
potentially cause information loss and performance degra-
dation. To mitigate this issue, prior to applying the QD
operation,we employ aQUoperation to the featuremap. This
involves initializing a set of query tokens with a resolution of
1/16 to store the information. Subsequently, as the downsam-
pled featuremap progresses through the remaining backbone
layers, it is merged and upsampled using another QU oper-
ation alongside the previously stored 1/16 high-resolution
feature map. This iterative process ultimately generates a

Fig. 5 Illustrations of the Shrunk and Shrunk++. In the diagram, the
and boxes respectively refer to the transformer encoder block and
the patch embedding block. In SegVit (Zhang et al., 2022), the pro-
posed Shrunk structure employs query downsampling (QD) on the
middle-level features to preserve the information. In the new Shrunk++
architecture,we introduce theEdgedQueryDownsampling (EQD) tech-

nique which consolidates every four adjacent tokens into one token and
additionally includes the tokens that contain edges. This enhancement
enables downsampling operations to take place before the first layer
without significant performance degradation, offering computational
savings for the initial layers of the Shrunk model. The edge information
is extracted using a lightweight parallel edge detection head
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1/16 high-resolution feature map enriched with semantic
information processed by the backbone.

Despite the effectiveness of the proposed Shrunk approach
in maintaining performance, it requires the integration of the
QD operation within the intermediate layers of the back-
bone. This necessity arises due to the fact that shallow layers
primarily capture low-level features, and applying downsam-
pling to these layers would result in significant information
loss. Consequently, these low-level layers continue to be
computed at a higher resolution, limiting the potential reduc-
tion in computational cost.

To address this limitation and further optimize the back-
bone, we introduce SegViTv2 using a novel architecture
called Shrunk++. In this architecture, we incorporate an edge
detection module in the QD section and introduce an Edged
Query Downsampling (EQD) technique to update the QD
process. In addition to the 2×2 nearest downsampling opera-
tion that eliminates every 4 consecutive tokens, our approach
aims to retain tokens that contain multiple categories, specif-
ically tokens that contain an edge. By preserving the 2 × 2
sparse tokens, we retain important semantic information,
while also preserving the edge tokens to retain detailed spa-
tial information. By retaining both types of information, we
minimize the loss of valuable information and overcome the
limitations associatedwith low-level layers. To extract edges,
we add a separate branch using a lightweight multilayer per-
ceptron (MLP) termed as the edge detection head that learns
to detect edges from the input image. The edge detection
head operates as an auxiliary branch, trained simultaneously
with the main ATM decoder. This head processes the input
image, which has the same dimensions as the backbone. Let
the input image haveC channels, aligned with the backbone.
The Multi-Layer Perceptron (MLP) in this head consists of
three layers, with dimensionsC ,C/2, and 2, respectively. Let
I represent the input image, and the output of theMLP can be
defined as E = MLP(I ;W1,W2,W3), where W1,W2,W3

are the weights for the three layers. The output E is then
passed through a softmax activation function, resulting in
S = Softmax(E). To determine the confidence level of a
token belonging to an edge, we apply a threshold τ . In our
implementation, we set τ to 0.7. To obtain the ground-truth
(GT) edge, we perform post-processing on the GT segmenta-
tion map Y . Since the input has been tokenized with a patch
size of P , we tokenize the GT and reshape it into a sequence
of tokens denoted asY ∈ R(HW/P2)×P×P , where the last two
dimensions correspond to the patch dimensions.We consider
a patch to contain an edge if there exists any edge pixel within
the patch. We define the edge mask Maski as follows:

Maski =
{
1 if

∑
j,k Yi, j,k > 0,

0 otherwise.
(6)

For each element si in S, we create a binary edge mask
Mi : Mi = 1, if si ≥ τ . The cross-entropy loss is computed
between the generated edge mask Mi and the ground-truth
edge mask Yi : Ledge = −∑

iYi log(Mi ) + (1− Yi ) log(1−
Mi ). By incorporating the Edge Detection head as an aux-
iliary branch, the Shrunk++ architecture effectively retains
detailed spatial contexts throughout the query downsam-
pling process, forming anEdgeQueryDownsampling (EQD)
structure. This EQD structure effectively captures and retains
edge information during sparse downsampling, significantly
reducing computational overhead while maintaining per-
formance. The integration of EQD enables the Shrunk++
architecture to strike a remarkable balance between compu-
tational efficiency and maintaining high-performance levels.

3.3 Exploration on Continual Semantic
Segmentation

Continual semantic segmentation aims to train a segmenta-
tion model in T steps without forgetting. At step t , we are
given a dataset Dt which comprises a set of pairs (Xt , Y t ),
where Xt is an image of size H × W and Y t is the ground-
truth segmentation map. Here, Y t only consists of labels in
current classes Ct , while all other classes (i.e., old classes
C1:t−1 or future classes Ct+1:T ) are assigned to the back-
ground. In continual learning, the model at step t should be
able to predict all classes C1:t in history.

3.3.1 SegViT for Continual Learning

Existing continual semantic segmentationmethods (Zhang et
al., 2022; Phan et al., 2022) propose regularization algorithms
to preserve the past knowledge of a specific architecture,
DeepLabV3. These methods focus on continual seman-
tic segmentation for DeepLabV3 with a ResNet backbone,
which has a less robust visual representation for distin-
guishing between different categories. Consequently, these
methods require fine-tuning model parameters to learn new
classes while attempting to retain knowledge of old classes.
Unfortunately, adapting the old parameters dedicated to the
previous task inevitably interfereswith past knowledge, lead-
ing to catastrophic forgetting. In contrast, our proposed
SegViT decouples class prediction from mask segmentation,
making it inherently suitable for a continual learning setting.
By leveraging the powerful representation capability of the
plain vision transformer, we can learn new classes by solely
fine-tuning the class proxy (i.e., the class token) while keep-
ing the old parameters frozen. This approach eliminates the
need for fine-tuning old parameters when learning new tasks,
effectively addressing the issue of catastrophic forgetting.

During training on the current task t , we add a new
sequence of learnable tokens Gt ∈ R

|Ct |×C , where |Ct | is the
number of classes in the current task. To learn new classes,
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Fig. 6 Overview of SegViT adapted for continual semantic segmenta-
tion. When learning a new task t , we grow and train a separate ATM
and fully-connected layer to produce mask and class prediction. All the
parameters dedicated to the old task t − 1, including ATM, FC layers,
and the ViT encoder, are frozen. This prevents interfering with the old
knowledge, which guarantees no forgetting

we grow and train new ATM modules and a fully-connected
layer for mask prediction and mask classification. For sim-
plicity, we ignore the parallel structure of ATM modules. A
single ATM module refers to multiple ATM modules. Let
At and Wt denote the ATM module and the weights of the
fully connected (FC) layer for task t . All parameters for
prior tasks, including the ViT encoder, the ATMmodule, and
the FC layer, are completely frozen. Figure 6 illustrates the
overview of our SegViT architecture adapted for continual
semantic segmentation.

Given the encoder extracted features FT and the class
tokens Gt , the ATM produces the mask predictions Mt and
the output tokens Zt corresponding to the mask:

Mt , Zt = ATM(Gt ,FT ). (7)

Based on Eq. (4), the class predictionP is obtained by apply-
ing FC on the class token Zt .

The prediction score Stc for each class c is multiplied by
the corresponding mask Mt

c to get the segmentation map Ot
c

for class c:

Ot
c = Stc � Mt

c, (8)

where � denotes the element-wise multiplication. The seg-
mentation Ôt is obtained by taking the class c having the
highest score in every pixel, defined as

Ôt = argmax
c∈Ct

Ot
i,c (9)

Based on the ground truth Y t for task t , SegViT is trained
using the loss function defined in Eq. (5). To produce the final
segmentation across all tasks, we concatenate the individual
outputs Ot from each task.

4 Experiments

4.1 Datasets

ADE20K (Zhou et al., 2017) is a challenging scene parsing
dataset which contains 20, 210 images as the training set and
2, 000 images as the validation set with 150 semantic classes.
COCO-Stuff-10K (Caesar et al., 2018) is a scene pars-
ing benchmark with 9, 000 training images and 1, 000 test
images. Even though the dataset contains 182 categories, not
all categories exist in the test split. We follow the implemen-
tation of mmsegmentation (MMSegmentation, 2020) with
171 categories to conduct the experiments.
PASCAL-Context (Mottaghi et al., 2014) is a dataset with
4, 996 images in the training set and 5, 104 images in the
validation set. There are 60 semantic classes in total, includ-
ing a class representing ‘background’.

4.2 Implementation Details

4.2.1 Transformer Backbone

We employ the naive ViT (Dosovitskiy et al., 2021) as the
backbone for our method. For our ablation studies, we pri-
marily utilize the ‘Base’ variation, while also presenting
results based on the ‘Large’ variant. Notably, variations in
performance can arise due to different pre-trained weights,
as indicated by Segmenter (Strudel et al., 2021). To ensure
equitable comparisons, we adopt the pre-trained weights
provided by Augreg (Steiner et al., 2021), aligning with
practices employed in Strudel (Strudel et al., 2021) and
StructToken (Lin et al., 2022). These weights stem from
training on ImageNet-21kwith strong data augmentation and
regularization techniques (Steiner et al., 2021). To explore
the maximum capacity and assess the upper bound of our
method, we also conduct experiments using stronger base
models such as DEiT v3 (Touvron et al., 2022) and BEiT v2
(Peng et al., 2022).

4.2.2 Training Settings

WeuseMMSegmentation (MMSegmentation, 2020) and fol-
low the commonly used training settings. During training,
we apply sequential data augmentation techniques, includ-
ing random horizontal flipping, random resizing within a
ratio of 0.5 to 2.0, and random cropping. For most settings,
the cropping dimensions are set to 512 × 512, except for
PASCAL-Context where we use 480 × 480, and for ViT-
large backbone on ADE20K where we use 640 × 640. The
batch size is set to 16 for all datasets with a total iteration
of 160k, 80k, and 80k for ADE20k, COCO-Stuff-10k, and
PASCAL-Context respectively.
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Table 1 Experiment results on the ADE20K val. split

Method Backbone Crop size GFLOPs mIoU (ss) mIoU (ms) Inf time (fps)

UPerNet (Xiao et al., 2018) ViT-Base 512 × 512 443.9 46.6 47.5 16.07

DPT* (Ranftl et al., 2021) ViT-Base 512 × 512 219.8 47.2 47.9 23.63

SETR-MLA* (Zheng et al., 2021) ViT-Base 512 × 512 113.5 48.2 49.3 −
Segmenter* (Strudel et al., 2021) ViT-Base 512 × 512 129.6 49.0 50.0 20.46

StructToken (Lin et al., 2022) ViT-Base 512 × 512 171.5 50.9 51.8 14.22

MaskFormer (Cheng et al., 2021) Swin-B(21K) 640 × 640 198.3 52.7 53.9 −
Mask2Former (Cheng et al., 2022) Swin-B(21K) 640 × 640 223.4 53.9 55.1 12.43

SegViT (ours) ViT-Base 512 × 512 120.9 51.3 53.0 31.52

SegViT (Shrunk++, Ours) BEiTv2-Base 512 × 512 74.4 52.9 53.3 25.03

SegViT (ours) BEiTv2-Base 512 × 512 120.9 54.0 54.9 23.59

DPT* (Ranftl et al., 2021) ViT-Large† 640 × 640 800.0 49.2 49.5 9.38

UPerNet (Xiao et al., 2018) ViT-Large† 640 × 640 1993.9 48.6 50.0 3.88

SETR-MLA (Zheng et al., 2021) ViT-Large 512 × 512 368.6 48.6 50.3 5.17

MCIBI (Jin et al., 2021) ViT-Large 512 × 512 > 400 – 50.8 −
Segmenter (Strudel et al., 2021) ViT-Large† 640 × 640 671.8 51.8 53.6 4.73

StructToken (Lin et al., 2022) ViT-Large† 640 × 640 774.6 52.8 54.2 4.1

KNet+UPerNet (Zhang et al., 2021) Swin-L(21K) 640 × 640 659.3 52.2 53.3 11.28

MaskFormer (Cheng et al., 2021) Swin-L(21K) 640 × 640 378.1 54.1 55.6 10.21

Mask2Former (Cheng et al., 2022) Swin-L(21K) 640 × 640 402.7 56.1 57.3 8.81

SegViT (ours) ViT-Large† 640 × 640 637.9 54.6 55.2 9.37

SegViT(Shrunk, ours) ViT-Large† 640 × 640 373.5 53.9 55.1 10.18

SegViT(Shrunk++, ours) ViT-Large† 640 × 640 209.1 53.0 54.9 10.26

SegViT (Shrunk++, ours) BEiTv2-Large 512 × 512 210.3 55.1 56.1 9.82

SegViT (ours) BEiTv2-Large 512 × 512 374.0 56.5 58.0 9.39

SegViT (Shrunk++, ours) BEiTv2-Large 640 × 640 308.8 55.7 57.0 9.38

SegViT (ours) BEiTv2-Large 640 × 640 637.9 58.0 58.2 6.25

We have utilized bold text in the tables to highlight the best or state-of-the-art (SOTA) benchmarks. ‘ms’ means that mIoU is calculated using
multi-scale inference. ‘†’ means the models use the backbone weights pre-trained by AugReg (Steiner et al., 2021). ‘*’ represents the model
reproduced under the same settings as the official repo. The GFLOPs are measured at single-scale inference with the given crop size. We report
inference speed for our SegViT and reproduce previous methods in terms of Frame Per Second (FPS) on a single A100 device

4.2.3 Evaluation Metric

We use the mean Intersection over Union (mIoU) as the
metric to evaluate the performance. ‘ss’ means single-scale
testing and ‘ms’ test time augmentation with multi-scaled
(0.5, 0.75, 1.0, 1.25, 1.5, 1.75) inputs. All reported mIoU
scores are in a percentage format. All reported computational
costs in GFLOPs are measured using the fvcore1 library.

4.3 Comparisons with the State-of-the-Art Methods

4.3.1 Results on ADE20K

Table 1 reports the comparisonwith the state-of-the-artmeth-
ods on ADE20K validation set using ViT backbone. The
SegViT uses the ATM module with multi-layer inputs from

1 https://github.com/facebookresearch/fvcore

the original ViT backbone, while the Shrunk is the one that
conducts QD to the ViT backbone and saves 50% of the com-
putational cost without sacrificing too much performance.
Our approach achieves a state-of-the-art mIoU of 58.2%
(MS)with the BEiTv2 Large backbone. To ensure a fair com-
parison, we evaluate our SegViT module with the BEiT-v2
large backbone on a crop size of 512 × 512, which con-
sumes 374.0GFlOPs. Our approach achieves a slightly better
performance of 56.5% mIoU compared to Mask2former-
Swin-L, which achieves 56.1% with 402.7 GFlops on a
crop size of 640 × 640. Additionally, our Shrunk version
offers around a 50% reduction in computational cost (308.8
GFLOPs), while delivering competitive performance with a
mIoU of 57.0% (MS). Optimizing SegViT with ViT-Large
using the proposed Shrunk++ reduces the computational
cost of Shrunk by 3.05 times, while preserving the mIoU.
Figure7 shows the visual results of different segmentation
methods. In contrast to other methods that often confuse
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Fig. 7 Visuals results of
different segmentation networks
and plain ViT backbones on the
ADE20K validation set (Zhou et
al., 2017). It includes the
following models: a Segmenter
(Strudel et al., 2021) with ViT
large, b StructToken (Lin et al.,
2022) with ViT large, c UPerNet
(Xiao et al., 2018) with BEiT
large, and d SegViT V2 with
BEiTv2 large. The results
demonstrate that our methods
effectively generate accurate
segmentation masks and unlock
the potential of plain ViT. Zoom
in for a better view

similar classes and misclassify related concepts, our SegViT
stands out by more precise object boundary delineation and
achieving accurate segmentation of complete objects, even
in cluttered scenes.

4.3.2 Results on COCO-Stuff-10K

Table 2 shows the result on theCOCO-Stuff-10Kdataset.Our
method achieves 50.3% which is higher than the previous
state-to-the-art StrucToken by 1.2% with less computational
cost. Our Shrunk version achieves 49.4% mIoU with 224.8

GFLOPs, which is similar to the computational cost of a
dilated ResNet-101 backbone but with much higher perfor-
mance. By extending SegViT with the effective Shrunk++,
we significantly decrease its GFLOPs by 1.82 times, while
retaining a competitive mIoU.

4.3.3 Results on PASCAL-Context

Table 3 shows the results on the PASCAL-Context dataset.
We follow HRNet (Sun et al., 2019) to evaluate our method
and report the results under 59 classes (without background)
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Table 2 Experiment results on
the COCO-Stuff-10K test.
split

Method Backbone GFLOPs mIoU (ms)

DANet (Fu et al., 2019) Dilated-ResNet-101 289.3 39.7

MaskFormer (Cheng et al., 2021) ResNet-101-fpn 81.7 39.8

EMANet (Li et al., 2019) Dilated-ResNet-101 247.4 39.9

SpyGR (Li et al., 2020) ResNet-101-fpn >80 39.9

OCRNet (Yuan et al., 2020) HRNetV2-W48 167.9 40.5

GINet (Wu et al., 2020) JPU-ResNet-101 >200 40.6

RecoNet (Chen et al., 2020) Dilated-ResNet-101 >200 41.5

ISNet (Jin et al., 2021) Dilated-ResNeSt-101 228.3 42.1

MCIBI (Jin et al., 2021) ViT-Large >380 44.9

StructToken (Lin et al., 2022) ViT-Large >400 49.1

SenFormer (Bousselham et al., 2021) Swin-Large >400 50.1

SegViT (Shrunk, ours) ViT-Large 224.8 49.40

SegViT (ours) ViT-Large 383.9 50.30

SegViT (Shrunk++, ours) BEiTv2-Large 213.3 50.54

SegViT (ours) BEiTv2-Large 388.2 53.46

We have utilized bold text in the tables to highlight the best or state-of-the-art (SOTA) benchmarks. Following
published methods, we report the results with multi-scale inference (denoted by ‘ms’). The GFLOPs is
measured at single scale inference with a crop size of 512 × 512

Table 3 Experimental results on the PASCAL-Context val. split

Method Backbone GFLOPs mIoU59 (ms) mIoU60 (ms)

RefineNet (Lin et al., 2017) ResNet-152 − – 47.3

UNet++ (Zhou et al., 2018) ResNet-101 − 47.7 –

PSPNet (Zhao et al., 2017) Dilated-ResNet-101 157.0 47.8 –

Ding et al. (Ding et al., 2018) ResNet-101 − 51.6 –

EncNet (Zhang et al., 2018) Dilated-ResNet-101 192.1 52.6 –

HRNet (Sun et al., 2019) HRNetV2-W48 82.7 54.0 48.3

NRD (Zhang et al., 2021) ResNet-101 42.9 54.1 49.0

GFFNet (Li et al., 2020) Dilated-ResNet-101 − 54.3 –

EfficientFCN (Liu et al., 2020) ResNet-101 52.8 55.3 –

OCRNet (Yuan et al., 2020) HRNetV2-W48 143.9 56.2 –

SETR-MLA (Zheng et al., 2021) ViT-Large 318.5 – 55.8

Segmenter (Strudel et al., 2021) ViT-Large 346.2 – 59.0

SenFormer (Bousselham et al., 2021) Swin-Large − 64.0 –

SegViT (Shurnk, ours) ViT-Large 186.9 62.3 57.40

SegViT (ours) ViT-Large 321.6 65.3 59.30

SegViT (Shurnk++, ours) BEiTv2-Large 179.3 64.91 59.92

SegViT (ours) BEiTv2-Large 329.7 67.14 61.63

We have utilized bold text in the tables to highlight the best or state-of-the-art (SOTA) benchmarks. Following published methods, we report the
results with multi-scale inference (denoted by ‘ms’). mIoU59: mIoU averaged over 59 classes (without background). mIoU60: mIoU averaged over
60 classes (59 classes plus background). Both metrics were used in the literature, and we report for the 60 classes. The GFLOPs are measured at
single scale inference with a crop size of 480 × 480

and 60 classes (with background). Using full SegViT struc-
ture without adopting Shrunk or Shrunk++, we reach mIoU
of 67.14% and 61.63% respectively for those two met-
rics, outperforming the state-of-the-art methods using the
ViT backbones with less computational cost. By applying

Shrunk and Shrunk++ architecture, the computational cost
in terms of GLOPs is reduced by 42% and 45%, respectively.
Among all approaches evaluated on the PASCAL-Context
dataset, SegViTv2 with Shrunk++ achieves the best trade-
off between accuracy and efficiency.
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Table 4 Comparisons between our proposed ATMmodule with SETR
(Zheng et al., 2021)

Decoder Loss mIoU (ss)

SETR CE loss 46.5

ATM CE loss 47.0 (+ 0.5)

ATM Lmask loss 49.6 (+ 3.1)

We have utilized bold text in the tables to highlight the best or state-
of-the-art (SOTA) benchmarks. ‘CE loss’ indicates the cross-entropy
loss commonly used in semantic segmentation. The experiments on the
ADE20k dataset are carried out using the ViT-Base backbone

4.4 Ablation Study

In this section, we conduct extensive ablation studies to show
the effectiveness of our proposed methods.

4.4.1 Effect of the ATMModule

We conducted an analysis to evaluate the impact of using
the proposed ATM module as an encoder. The results are
summarized in Table 4. To establish a baseline for compar-
ison, we introduced SETR-naive, which utilizes two 1 × 1
convolutions to directly derive per-pixel classifications from
the final layer of the ViT-Base transformer output. From the
results, it is evident that applying the ATM module under
the supervision of a conventional cross-entropy loss leads
to a performance improvement of 0.5%. However, the per-
formance gains become much more substantial when we
decouple the classification and mask prediction processes,
supervising each separately. This approach results in a sig-
nificant performance boost of 3.1%, highlighting the efficacy
of theATMmodule in enhancing semantic segmentation per-
formance.

4.4.2 Ablation of the Feature Levels

The effects of using multiple-layer inputs from the back-
bone to the ATM modules are presented in Table 5. The
incorporation of feature maps from lower layers leads to a
notable performance improvement of 1.3%.We further inves-
tigated the impact of including more layers of features and
observed additional gains in performance. After empirical
testing,we determined that utilizing three layers yielded opti-
mal results, resulting in an overallmIoUboost of 1.7%.These
ablation studies confirm the effectiveness of our proposed
ATM decoder and highlight the advantage of incorporat-
ing multi-layer features into the segmentation structure. This
integration significantly enhances the performance of seman-
tic segmentation tasks.

Table 5 Results of using different layer inputs to the SegViT structure
on ADE20K dataset using ViT-Base as the backbone

Used layers mIoU (ss)

Single layer [12] 49.6

Cascade [6, 12] 50.9 (+ 1.3)

Cascade [6, 8, 12] 51.3 (+ 1.7)

Cascade [3, 6, 9, 12] 51.2 (+ 1.6)

We have utilized bold text in the tables to highlight the best or state-
of-the-art (SOTA) benchmarks. Involving multi-layer features leads to
obvious performance gains

Table 6 The experiments use the Swin-Tiny (Liu et al., 2021) backbone
and are carried out on the ADE20K dataset

Method mIoU (ss) GFLOPs

Maskformer (Cheng et al., 2021) 46.7 57.3

Mask2former (Cheng et al., 2022) 47.7 73.7

SegViT (ours) 47.1 48.0

We have utilized bold text in the tables to highlight the best or state-of-
the-art (SOTA) benchmarks. The GFLOPs are measured at single-scale
inference with a crop size of 512 × 512

4.4.3 SegViT on Hierarchical Base Models

We conducted an analysis to evaluate the performance of
SegViT on hierarchical base models. For comparison, we
selected two competitive methods, Maskformer (Cheng et
al., 2021) andMask2former (Cheng et al., 2022). The results
presented in Table 6 indicate that, even though our method
was not specifically designed for hierarchical base models,
we are still able to achieve competitive performance while
maintaining computational efficiency. This demonstrates the
applicability of our SegViT approach to various types of ViT-
Base models.

4.4.4 Ablation of Shrunk and Shrunk++ Strategies

In this section, we analyze the effectiveness of the different
SegViT structures. Table 7 presents the effects of various
techniques employed in each SegViT structure, including
query upsampling (QU), query downsampling (QD), token-
squeezing (TS) techniques, and segmentation heads. Apply-
ing the ATM head to the ’Single’ structure yields a notable
performance improvement of 6.67%comparedwith using the
SETR head. This demonstrates the effectiveness of the ATM
head in enhancing the performance of the baseline struc-
ture. However, applying QD to the ’Single’ structure with the
ATM head leads to a performance drop of 2.7%, suggesting
the occurrence of information loss during the downsampling
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Table 7 Ablation results of
Shrunk and Shrunk++ version
on the ADE20K dataset

Structure QD QU QDlayer QDmethod Head mIoU (ss) GFLOPs

Single – – – – SETR 46.5 107.3

Single – – – – ATM 49.6 (+ 3.1) 115.8

Naive Shrunk � – 6 2 × 2 ATM 46.9 (+ 0.4) 74.1

Shrunk � � 6 2 × 2 ATM 50.0 (+ 3.5) 97.1

Nearest-TS � � 0 3 × 3 ATM 38.9(− 7.6) 32.8

Nearest-TS � � 0 2 × 2 ATM 43.3(−3.2) 46.1

Shrunk++ � � 0 3 × 3-Edge ATM 47.9(+ 1.4) 69.3

Shrunk++ � � 0 2 × 2-Edge ATM 49.9(+ 3.4) 74.6

We have utilized bold text in the tables to highlight the best or state-of-the-art (SOTA) benchmarks. We
explored various shrink strategies. The GFLOPs are measured at single-scale inference with a crop size of
512×512 on theViT-Base backbone. QD: query-based downsampling. QU: query-based upsampling. QDlayer
indicates which layer to apply the QD. QDmethod indicates the downsampling method for QD

Table 8 Ablation results of different decoder methods with their corresponding feature merge types and loss types

Multi-level Features Loss Types

Decoder FPN Token Merge Pixel level Dot product Attention Mask mIoU (ss)

SETR-MLA (Zheng et al., 2021) � � 48.2

Segmenter (Strudel et al., 2021) � 49.0

MaskFormer (Cheng et al., 2021) � � 46.7

Ours-Variant 1 � 49.6

Ours-Variant 2 � � 50.6

Ours � � 51.2

ViT-Base is employed as the backbone for all the variants

phase. Importantly, incorporating QU restores the perfor-
mance. QU helps recover the discarded information fromQD
and reconstructs the high-resolution feature map, which is
crucial for dense prediction tasks. Jointly leveraging QU and
QD, the Shrunk architecture achieves optimal performance
while reducing computational costs by 16.15% in compari-
son to the ‘Single’ structure.

In the proposed Shrunk++ structure, we analyze the per-
formance of two main token-squeezing techniques: nearest
downsampling and edge-aware downsampling. It is impor-
tant to note that token squeezing is directly applied to the
first layer of the network for optimal computational effi-
ciency. Applying naive nearest downsampling with a 3x3
kernel reduces the GFLOPs of the Shrunk structure with-
out token-squeezing by a factor of 2.97. However, reducing
the computational cost with 3x3 and 2x2 nearest downsam-
pling leads to a performance drop of 13%. In contrast, by
incorporating an additional edge extractor into our Shrunk++
architecture, we significantly improve the mIoU, achieving
performance on par with Shrunk, i.e., 49.9% mIoU, with
a minor increase in computational cost to 74.6 GFLOPs.
The edge-aware downsampling technique preserves the edge
details, thereby preserving discriminative features for dense
predictions. Among the different settings, the 2x2 + Naive
MLP Edge setting achieves an optimal balance between per-
formance and efficiency.

4.4.5 Ablation Studies on Decoder Variances

Different decoder methods are associated with specific fea-
ture merge types and loss types. In Table 8, we compare
the designs of various decoders on a plain ViT backbone.
For hierarchical base models like Swin, the resolution of
the feature maps in each stage is reduced. Consequently, the
adoption of a Feature PyramidNetwork (FPN) is necessary to
obtain feature maps with larger resolutions and rich seman-
tic information. However, in Table 8, we observe that the
FPN structure does not perform well with plain vision trans-
formers. With plain ViT base models, the resolution remains
constant, and the feature map of the final layer encapsulates
the most comprehensive semantic information. Hence, our
proposed method, which utilizes tokens to merge features
fromdifferent levels, achieves superior performance.By sim-
ply replacing the FPN structure with the ATM-based token
merge, we improve the performance from 46.7% to 50.6%.
Regarding the loss type, the pixel-level loss refers to the con-
ventional cross-entropy loss applied to the feature map. The
dot product loss corresponds to the loss utilized in Carion et
al. (2020) and Cheng et al. (2021). Attention mask loss indi-
cates the direct application ofmask supervision to the similar-
ity map generated by the ATM during attention calculation.
Incorporating loss supervision on the attention mask, as in
our method, leads to a performance improvement of 0.6%.
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Table 9 Ablation of the QDmodule in terms of the targets andmethods
to down-sample

Applied to Methods mIoU (ss)

Q Conv 44.5

Q, K, V Nearest 52.6

Q Nearest 53.9

We have utilized bold text in the tables to highlight the best or state-
of-the-art (SOTA) benchmarks. The experiments are carried out on the
ViT-Large backbone of ADE20K dataset

4.4.6 Ablation for the QDModule

The motivation behind using QD is to leverage the pre-
trainedweights of the backbone. As shown in Table 9, using a
stride-2 convolution with learnable parameters to downsam-
ple the query will disturb the pre-trained weights, leading to
a notable decline in performance. Applying down-sampling
to both the query and the key-value pairs would inevitably
lead to information loss during the down-sampling process,
which is evident in the lower performance. Our results show
that applying 2×2 nearest down-sampling exclusively to the
query in the QD module yields better results. This approach
allows us to preserve the pre-trained weights of the backbone
while achieving the desired down-sampling effect.

4.5 Application 1: A Better Indicator for Feature
Representation Learning

4.5.1 Background

Semantic segmentation serves as a fundamental vision task
that has been extensively employed in previous research
to assess the representation learning capabilities of weakly,
fully, and self-supervised base models (He et al., 2022; Chen
et al., 2022; Touvron et al., 2022; Peng et al., 2022). In prior

work, the UPerNet decoder structure has been commonly
used for semantic segmentation. However, the UPerNet
decoder may not be a suitable indicator for evaluating the
feature representation ability of the base model. This is pri-
marily due to its heavier computational requirements and
slower convergence rate. Additionally, variations in feature
representation acquired by the base model can be substantial
due to diverse training strategies during the fine-tuning pro-
cess on semantic segmentation datasets Consequently, the
task of semantic segmentation may not adequately evaluate
the feature representation ability of pre-trained models.

4.5.2 Experiment Settings

In this section, we extensively evaluate our proposed SegVit
across diverseweakly, fully, and self-supervised vision trans-
formers, including those proposed by He et al. He et al.
(2022), Chen et al. Chen et al. (2022), Touvron et al. Tou-
vron et al. (2022), and the BEiT model Peng et al. (2022).
We demonstrate that our method outperforms UPerNet Xiao
et al. (2018) in both self-supervised and multi-modality base
models, achieving state-of-the-art performance. Notably, our
approach achieves superior performance to UPerNet while
utilizing only 5% of the computational cost in terms of the
decoder head. Table 10 illustrates that our proposed SegViT
head consistently outperforms UPerNet across all base mod-
els. For the ViT-Base, our method improves the performance
of UPerNet on the CLIP model by 1.16% while significantly
reducing the computational cost. Similar findings are evi-
dent for ViT-Large base models. Furthermore, compared to
UPerNet, our proposed SegViT’s decoder head exhibits a
better alignment between the growth trend of segmentation
accuracy and the classification accuracy on ImageNet. This
clearly demonstrates the superior efficiency of our SegViT

Table 10 Comparisons for various ViT pre-training schedules on the validation set of ADE20K

Backbone SegViT mIoU Head FLOPs UPerNet mIoU Head FLOPs ImageNet Acc

MAE Base (He et al., 2022) 49.22 (� 1.12) 6.89 (� 329.73) 48.1 336.62 83.66

CLIP Base (Radford et al., 2021) 50.76 (� 1.16) 6.89 (� 329.73) 49.6 336.62 80.20

CAE Base (Chen et al., 2022) 50.42 (� 0.22) 6.89 (� 329.73) 50.2 336.62 83.90

iBot Base (Zhou et al., 2022) 50.58 (� 0.58) 6.89 (� 329.73) 50.0 336.62 84.00

Augreg Base*† (Steiner et al., 2021) 51.30 (� 2.66) 6.89 (� 329.73) 48.6 336.62 85.49

DEiT v3 Base† (Touvron et al., 2022) 52.40 (� 0.60) 6.89 (� 329.73) 51.8 336.62 85.70

BEiT v2 Base† (Peng et al., 2022) 53.97 (� 0.47) 6.89 (� 329.73) 53.5 336.62 86.50

Augreg Large*† (Steiner et al., 2021) 54.60 (� 2.50) 16.36 (� 1,366.33) 52.1 1382.69 85.59

DEiT v3 Large*† (Touvron et al., 2022) 55.81 (� 1.21) 16.36 (� 1,366.33) 54.6 1382.69 87.70

BEiT v2 Large† (Peng et al., 2022) 58.00 (� 1.30) 16.36 (� 868.28) 56.7 884.64 87.30

All results are reported in single-scale inference. The default configuration for these base models is pre-trained on ImageNet-1K with 224*224
resolutions. ‘*’ means the models use the backbone weights pre-trained with 384 * 384 resolutions. ’†’ means the base models pre-trained on
imagenet-21K. The proposed SegVit head has a less computational cost and performs better than UPerNet among all pre-training variants
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head compared to UPerNet, making it a more suitable indi-
cator for representation learning in base models.

4.6 Application 2: Continual Semantic Segmentation

The decoupling of class prediction andmask segmentation in
our proposed SegVit decoder makes it inherently well-suited
for continual learning settings. This characteristic allows us
to learn new classes by solely fine-tuning the class proxy (the
class token), leveraging the powerful representation ability of
the plain vision transformerwhile keeping the old parameters
frozen. To validate the effectiveness of this new approach
to continual learning, we conducted experiments following
standard settings adopted by prior studies.

4.6.1 Experiment Settings

Continual Semantic Segmentation (CSS) has two settings
(Cermelli et al., 2020; Douillard et al., 2021): disjoint and
overlapped. In the disjoint setup, all pixels in the images
at each step belong to the previous classes or the current
class. In the overlapped setting, the dataset of each step con-
tains all the images that have pixels of at least one current
class, and all pixels fromprevious and future tasks are labeled
as background. The overlapped setting is more realistic and
challenging, thus we evaluate the performance of the over-
lapped setup on the ADE20k dataset.

Following prior studies (Phan et al., 2022; Cermelli et al.,
2020; Douillard et al., 2021), we perform three experiments:
adding 50 classes after training with 100 classes (100–50
setting with 2 steps), adding 50 classes each time after train-
ing with 50 classes (50–50 setting with 3 steps), adding 10
classes each time sequentially after training with 100 classes
(100–10 setting with 6 steps).

4.6.2 Baselines

We conducted a comprehensive comparison of our pro-
posed method against state-of-the-art Continual Semantic
Segmentation (CSS) techniques, including RCIL (Zhang et
al., 2022), PLOP (Douillard et al., 2021), REMINDER (Phan
et al., 2022), SDR (Michieli & Zanuttigh, 2021), and MiB
(Cermelli et al., 2020). To ensure fair comparisons, exist-
ing methods were evaluated using DeepLabV3 (Chen et al.,
2017) with ResNet101 and ViT-Base backbones that were
pre-trained on ImageNet-21k. The reported results for PLOP,
RCIL, and REMINDER were obtained based on the code-
bases provided by the respective authors. Furthermore, we
included the performance of the Oracle model, which rep-
resents the upper bound achieved by jointly training on all
available data, serving as a benchmark for each method.

4.6.3 Metrics

We evaluate the model performance by five mIoU metrics.
First, we compute mIoU for the base classes C0, which
reflects model rigidity: the model’s resilience to catastrophic
forgetting. Second, we compute mIoU for all incremented
classesC1:T ,whichmeasures plasticity: themodel capacity in
learning new tasks. Third,we compute themIoUof all classes
in C0:T (all), which shows the overall performance of mod-
els. Fourth, we report the average of mIoU (avg) measured
step after step as proposed by Douillard et al. (2021), which
evaluates performance over the entire continual learning pro-
cess. To ensure fair comparisons, we evaluate the relative
performance of each CSS method in terms of relative mIoU
reduction compared with its Oracle model, jointly trained on
all data.

5 Results and Discussion

Table 11 shows the results of different CSS methods on
ADE20k. Our SegViT-CL consistently outperforms exist-
ing methods in all mIoU for both settings. In terms of
mIoU reduction, the proposed SegViT-CL only decreases
the mIoU of the Oracle model by 2.2% on the 100–50 set-
ting, which is two times better than the second-best method,
RCIL with ResNet backbone with 4.6% reduction. This sub-
stantial enhancement over existing methods underlines the
effectiveness of our proposedmethod in the continual seman-
tic segmentation paradigm.On a longCL setting 100–10with
6 tasks, ours is almost forgetting-free with a marginal mIoU
reduction of 0.3%, while recent CSS methods significantly
suffer from forgetting with at least 5.4% mIoU reduction.
Using the ViT backbone, existing methods including MiB,
REMINDER, and PLOP still suffer from high mIoU reduc-
tions. Comparedwith theOracle,MiB (Cermelli et al., 2020),
PLOP (Douillard et al., 2021), and REMINDER (Phan et al.,
2022) decrease the mIoU by 8.6%, 6.5% and 5.6% respec-
tively on the 100–10 setting, demonstrating the sub-optimal
performance of current CSS methods for ViT architecture.
This highlights the need for developing a specialized ViT
architecture that is robust to forgetting.

To evaluate the forgetting of every task on the 100–10
setting, we compute the performance drop at the last step
compared with its initial mIoU when the model first learns
the task. For example, the initialmIoUof task 2 is themIoUof
class 101–110 evaluated at step 2. Similarly, that of task 3 is
themIoU of class 111–120 reported at step 3. Table 12 shows
the performance drop at the last step comparedwith the initial
mIoU of each task. Averaged across 5 tasks, the mIoU only
drops by 0.45%, which shows that SegViT is robust to for-
getting across all tasks on the 100–10 setting. Figure8 shows
the mIoU on the base classes after incrementally training on
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Table 12 Performance drop
(degree of forgetting) of all
classes grouped by tasks on the
100–10 setting

Tasks 101–110 111–120 121–130 131–140 141–150 Avg

First time 34.93 39.78 41.10 36.22 27.95 35.99

Last time 34.51 39.30 40.86 35.09 27.95 35.54

Forgetting � 0.42 � 0.48 � 0.24 � 1.12 � 0 � 0.45

We have utilized bold text in the tables to highlight the best or state-of-the-art (SOTA) benchmarks. We report
the class mIoU when the model first learns the task, and the mIoU when the model last learns it

Fig. 8 mIoU of recent CSS methods on the first 100 base classes after
incrementally learning new tasks on 100–5 settings with 11 tasks

many tasks in 100–5, which is a long continual learning set-
ting with 11 tasks. Overall, our SegViT achieves nearly zero
forgetting for almost all tasks at the last step. In contrast to
previous CSS methods which require partial fine-tuning, the
proposed SegViT supports completely freezing old parame-
ters, effectively eliminating any interference with previously
acquired knowledge.

6 Conclusion

This paper presents SegViTv2, a novel approach for semantic
segmentation using plain ViT transformer base models. The
proposed method introduces a lightweight decoder head that
incorporates the Attention-to-mask (ATM) module. Addi-
tionally, a Shrunk++ structure is proposed to reduce the
computational cost of the ViT encoder by 50% while main-
taining competitive segmentation accuracy. Moreover, this
work extends the SegViT framework to address the chal-
lenge of continual semantic segmentation, aiming to achieve
nearly zero forgetting. By protecting the parameters of old
tasks, SegViT effectivelymitigates the impact of catastrophic
forgetting. Extensive experimental evaluations conducted on
various benchmarks demonstrate the superiority of SegViT
over UPerNet, while significantly reducing computational
costs. The introduced decoder head provides a robust and

cost-effective avenue for future research in the field of ViT-
based semantic segmentation.

Acknowledgements This work was in part supported by the National
Key R&D Program of China (No. 2022ZD0118700). Y. Liu’s partici-
pation was in part supported by the start-up funding of The University
of Adelaide. We express our gratitude to The University of Adelaide
High-Performance Computing Services for providing the GPU Com-
pute Resources, and to Mr. Wang Hui and Dr. Fabien Voisin for their
valuable technical support for the training infrastructure.

Funding Open Access funding enabled and organized by CAUL and
its Member Institutions.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Bao, H., Dong, L., Piao, S., Wei, F. (2022). BEiT: BERT pre-training of
image transformers, in International conference on learning rep-
resentations, [Online]. Available: https://openreview.net/forum?
id=p-BhZSz59o4

Bousselham, W., Thibault, G., Pagano, L., Machireddy, A., Gray, J.,
Chang, Y. H., Song, X. (2021). Efficient self-ensemble framework
for semantic segmentation, arXiv preprint arXiv:2111.13280

Caesar, H., Uijlings, J., Ferrari, V. (2018). Coco-stuff: Thing and stuff
classes in context, in Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 1209–1218.

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A.,
Zagoruyko, S. (2020). End-to-end object detectionwith transform-
ers, in Proceedings European conference on computer vision (pp.
213–229), Springer.

Cermelli, F., Mancini, M., Bulò, S. R., Ricci, E., Caputo, B. (2020).
Modeling the background for incremental learning in semantic
segmentation, in Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 9230–9239.

Cha, S., Yoo, Y., Moon, T., et al. (2021). Ssul: Semantic segmenta-
tion with unknown label for exemplar-based class-incremental
learning, in Proceedings of the advances in neural information
processing systems, vol. 34, pp. 10919–10930.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://openreview.net/forum?id=p-BhZSz59o4
https://openreview.net/forum?id=p-BhZSz59o4
http://arxiv.org/abs/2111.13280


International Journal of Computer Vision (2024) 132:1126–1147 1145

Chen,X.,Ding,M.,Wang,X.,Xin,Y.,Mo,S.,Wang,Y.,Han, S., Luo, P.,
Zeng,G.,Wang, J. (2022). Context autoencoder for self-supervised
representation learning, arXiv preprint arXiv:2202.03026.

Chen, Z., Liu, B. (2016). Lifelong machine learning. Synthesis lectures
on artificial intelligence and machine learning.

Chen, L. -C., Papandreou, G., Schroff, F., Adam, H. (2017) Rethink-
ing atrous convolution for semantic image segmentation, arXiv
preprint arXiv:1706.05587

Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H. (2018).
Encoder-decoder with atrous separable convolution for semantic
image segmentation, in Proceedings of the European conference
on computer vision, pp. 801–818.

Chen, W., Zhu, X., Sun, R., He, J., Li, R., Shen, X., Yu, B. (2020).
Tensor low-rank reconstruction for semantic segmentation, inPro-
ceedings European conference on computer vision (pp. 52–69)
Springer.

Cheng, B., Misra, I., Schwing, A. G., Kirillov, A., Girdhar, R. (2022).
Masked-attention mask transformer for universal image segmen-
tation.

Cheng, B., Schwing, A., Kirillov, A. (2021). Per-pixel classification is
not all you need for semantic segmentation, Proceedings of the
advances in neural information processing systems, vol. 34.

Cheng, B., Schwing, A. G., Kirillov, A. (2021). Per-pixel classification
is not all you need for semantic segmentation.

Chu, X., Tian, Z., Wang, Y., Zhang, B., Ren, H., Wei, X., Xia, H., Shen,
C. (2021). Twins:Revisiting the design of spatial attention in vision
transformers, Proceedings of the advances in neural information
processing systems, vol. 34.

Ding, H., Jiang, X., Shuai, B., Liu, A. Q., Wang, G. (2018). Context
contrasted feature and gatedmulti-scale aggregation for scene seg-
mentation, in Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2393–2402.

Dong, X., Bao, J., Chen, D., Zhang, W., Yu, N., Yuan, L., Chen, D.,
Guo, B. (2022). Cswin transformer: A general vision transformer
backbone with cross-shaped windows, in Proceedings of the IEEE
conference on computer visionandpattern recognition, pp. 12124–
12134.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X.,
Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly,
S., et al. (2021). An image is worth 16x16 words: Transformers for
image recognition at scale, Proceedings International Conference
on Learning Representations

Douillard, A., Chen, Y., Dapogny, A., Cord, M. (2021). Plop: Learning
without forgetting for continual semantic segmentation, in Pro-
ceedings of the IEEE conference on computer vision and pattern
recognition

Douillard, A., Cord, M., Ollion, C., Robert, T., Valle, E. (2020). Podnet:
Pooled outputs distillation for small-tasks incremental learning, in
Proceedings European conference on computer vision (pp. 86–
102), Springer.

Douillard, A., Ramé, A., Couairon, G., Cord, M. (2022). Dytox: Trans-
formers for continual learning with dynamic token expansion, in
Proceedings of the IEEE conference on computer vision and pat-
tern recognition, pp. 9285–9295.

French, R. M. (1999). Catastrophic forgetting in connectionist net-
works. Trends in Cognitive Sciences, 3(4), 128–135.

Fu, J., Liu, J., Tian, H., Li, Y., Bao, Y., Fang, Z., Lu, H. (2019) Dual
attention network for scene segmentation, in Proceedings of the
IEEE conference on computer vision and pattern recognition, pp.
3146–3154.

He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R. (2022). Masked
autoencoders are scalable vision learners, in Proceedings of the
IEEE/CVFconference on computer vision and pattern recognition,
pp. 16000–16009.

Jain, J., Li, J., Chiu, M., Hassani, A., Orlov, N., Shi, H. (2022). One-
former: One transformer to rule universal image segmentation,
arXiv preprint arXiv:2211.06220

Jin, Z., Liu, B., Chu, Q., Yu, N. (2021). Isnet: Integrate image-level
and semantic-level context for semantic segmentation, inProceed-
ings of the IEEE international conference on computer vision, pp.
7189–7198.

Kang, M., Park, J., Han, B. (2022). Class-incremental learning by
knowledge distillation with adaptive feature consolidation, in Pro-
ceedings of the IEEE conference on computer vision and pattern
recognition, pp. 16071–16080.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G.,
Rusu,A.A.,Milan,K.,Quan, J., Ramalho, T.,Grabska-Barwinska,
A., et al. (2017). Overcoming catastrophic forgetting in neural net-
works.Proceedings of the National Academy of Sciences, 114(13),
3521–3526.

Kong, Z., Dong, P.,Ma, X.,Meng, X., Niu,W., Sun,M., Shen, X., Yuan,
G., Ren, B., Tang, H. et al. (2022). Spvit: Enabling faster vision
transformers via latency-aware soft token pruning, in Proceedings
European conference on computer vision (pp. 620–640), Springer.

Li, X., Yang, Y., Zhao, Q., Shen, T., Lin, Z., Liu, H. (2020). Spatial
pyramid based graph reasoning for semantic segmentation, in Pro-
ceedings of the IEEE conference on computer vision and pattern
recognition, pp. 8950–8959.

Li, F., Zhang, H., Liu, S., Zhang, L., Ni, L. M., Shum, H. -Y.
et al. (2022). Mask dino: Towards a unified transformer-based
framework for object detection and segmentation,” arXiv preprint
arXiv:2206.02777

Li, X., Zhao, H., Han, L., Tong, Y., Tan, S., Yang, K. (2020). Gated
fully fusion for semantic segmentation, inProceedings of the AAAI
conference on artificial intelligence, vol. 34, no. 07, pp. 11418–
11425.

Li, X., Zhong, Z., Wu, J., Yang, Y., Lin, Z., Liu, H. (2019). Expectation-
maximization attention networks for semantic segmentation, in
Proceedings of the IEEE international conference on computer
vision, pp. 9167–9176.

Li, X., Zhong, Z., Wu, J., Yang, Y., Lin, Z., Liu, H. (2019). Expectation-
maximization attention networks for semantic segmentation, in
Proceedings of the IEEE international conference on computer
vision, pp. 9167–9176.

Li, Z., & Hoiem, D. (2018). Learning without forgetting. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 40,
2935–2947.

Lin, T. -Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie,
S. (2017). Feature pyramid networks for object detection, in Pro-
ceedings of the IEEE conference on computer vision and pattern
recognition, pp. 2117–2125.

Lin, T. -Y., Goyal, P., Girshick, R., He, K., Dollár, P. (2017). Focal loss
for dense object detection, in Proceedings of the IEEE interna-
tional conference on computer vision, pp. 2980–2988.

Lin, F., Liang, Z., He, J., Zheng, M., Tian, S., Chen, K. (2022). Struct-
token: Rethinking semantic segmentation with structural prior.

Lin, G., Milan, A., Shen, C., Reid, I. (2017). RefineNet: Multi-path
refinement networks for high-resolution semantic segmentation,
in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 1925–1934.

Liu, J., He, J., Zhang, J., Ren, J., Li, H. (2020). EfficientFCN:
Holistically-guided decoding for semantic segmentation, in Pro-
ceedings European conference on computer vision

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.
(2021). Swin transformer: Hierarchical vision transformer using
shifted windows, in Proceedings of the IEEE international confer-
ence on computer vision, pp. 10012–10022.

Long, J., Shelhamer, J., Darrell, T. (2015). Fully convolutional networks
for semantic segmentation, in Proceedings of the IEEE conference
on computer vision and pattern Recognition, pp. 3431–3440.

123

http://arxiv.org/abs/2202.03026
http://arxiv.org/abs/1706.05587
http://arxiv.org/abs/2211.06220
http://arxiv.org/abs/2206.02777


1146 International Journal of Computer Vision (2024) 132:1126–1147

Lu, H., Fei, N., Huo, Y., Gao, Y., Lu, Z., Wen, J.-R. (2022). Cots:
Collaborative two-stream vision-language pre-training model for
cross-modal retrieval, in Proceedings of the IEEE conference on
computer vision and pattern Recognition, pp. 15692–15701.

Maracani, A., Michieli, U., Toldo, M., Zanuttigh, P. (2021). Recall:
Replay-based continual learning in semantic segmentation, inPro-
ceedings of the IEEE international conference on computer vision.

Michieli, U., Zanuttigh, P. (2019). Incremental learning techniques for
semantic segmentation, in Proceedings of the IEEE conference on
computer vision workshops, pp. 3205–3212.

Michieli, U., Zanuttigh, P. (2021). Continual semantic segmentation via
repulsion-attraction of sparse and disentangled latent representa-
tions, in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 1114–1124.

Milletari, F., Navab, N., Ahmadi, S.-A. (2016) V-net: Fully convolu-
tional neural networks for volumetricmedical image segmentation,
in 3DV. IEEE, pp. 565–571.

MMSegmentation, (2020). MMSegmentation: OpenMMLab semantic
segmentation toolbox and benchmark, https://github.com/open-
mmlab/mmsegmentation

Mottaghi, R., Chen, X., Liu, X., Cho, N. -G., Lee, S. -W., Fidler, S.,
Urtasun, R., Yuille, A. (2014). The role of context for object detec-
tion and semantic segmentation in the wild, in Proceedings of the
IEEE conference on computer vision and pattern recognition, pp.
891–898.

Ostapenko, O., Lesort, T., Rodríguez, P., Arefin, M.R ., Douillard, A.,
Rish, I., Charlin, L. (2022). Continual learning with foundation
models: An empirical study of latent replay, in Conference on
lifelong learning agents. PMLR, pp. 60–91.

Peng, Z., Dong, L., Bao, H., Ye, Q., Wei, F. (2022). BEiT v2: Masked
image modeling with vector-quantized visual tokenizers.

Peng, Y., Qi, J., Ye, Z., & Zhuo, Y. (2021). Hierarchical visual-textual
knowledge distillation for life-long correlation learning. Interna-
tional Journal of Computer Vision, 129, 921–941.

Phan, M. H., Phung, S. L., Tran-Thanh, L., Bouzerdoum, A. et al.
(2022). Class similarity weighted knowledge distillation for con-
tinual semantic segmentation, in Proceedings of the IEEE con-
ference on computer vision and pattern Recognition, pp. 16866–
16875.

Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S.,
Sastry, G., Askell, A., Mishkin, P., Clark, J. et al. (2021). Learning
transferable visual models from natural language supervision, in
International conference on machine learning. PMLR, pp. 8748–
8763.

Ramasesh, V. V., Lewkowycz, A., Dyer, E. (2022). Effect of scale on
catastrophic forgetting in neural networks, in Proceedings of the
international conference on learning representation.

Ranftl, R., Bochkovskiy, A., Koltun, V. (2021) Vision transformers for
dense prediction, in Proceedings of the IEEE international con-
ference on computer vision, pp. 12179–12188.

Rao, Y., Zhao, W., Liu, B., Lu, J., Zhou, J., Hsieh, C.-J. (2021).
Dynamicvit: Efficient vision transformers with dynamic token
sparsification, in Proceedings of the advances in neural informa-
tion processing systems, vol. 34, pp. 13937–13949.

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional
networks for biomedical image segmentation. Medical image
computing and computer-assisted intervention (pp. 234–241).
Springer.

Ryoo, M., Piergiovanni, A., Arnab, A., Dehghani, M., Angelova,
A. (2021). Tokenlearner: Adaptive space-time tokenization for
videos, Proceedings of the advances in neural information pro-
cessing systems, vol. 34, pp. 12786–12797.

Shao, C., Feng, Y. (2022) Overcoming catastrophic forgetting beyond
continual learning: Balanced training for neural machine transla-
tion, arXiv preprint arXiv:2203.03910

Steiner, A., Kolesnikov, A., Zhai, X., Wightman, R., Uszkoreit, J.,
Beyer, L. (2021). How to train your vit? Data, augmentation, and
regularization in vision transformers.

Strudel, R., Garcia, R., Laptev, I., Schmid, C. (2021) Segmenter: Trans-
former for semantic segmentation, in Proceedings of the IEEE
international conference on computer vision, pp. 7262–7272.

Sun, K., Zhao, Y., Jiang, B., Cheng, T., Xiao, B., Liu, D., Mu, Y., Wang,
X., Liu, W., Wang, J. (2019). High-resolution representations for
labeling pixels and regions.

Touvron, H., Cord, M., Jégou, H. (2022). Deit iii: Revenge of the vit,
in Computer Vision-ECCV. 17th European conference, Tel Aviv,
Israel, October 23–27, 2022, Proceedings, Part XXIV (pp. 516–
533) Springer.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A. N., Kaiser, Ł., Polosukhin, I. (2017). Attention is all you need,”
Proceedings of the advances in neural information processing sys-
tems, vol. 30.

Wang, Z., Liu, L., Duan, Y., Kong, Y., Tao, D. (2022). Continual learn-
ing with lifelong vision transformer, in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 171–
181.

Wang, Z., Liu, L., Kong, Y., Guo, J., Tao, D. (2022). Online contin-
ual learning with contrastive vision transformer, in Proceedings
European conference on computer vision (pp. 631–650), Springer.

Wang,W., Xie, E., Li, X., Fan, D.-P., Song, K., Liang, D., Lu, T., Luo, P.,
Shao, L. (2021). Pyramid vision transformer: A versatile backbone
for dense prediction without convolutions, in Proceedings of the
ieee international conference on computer vision, pp. 568–578.

Wang, Z., Zhang, Z., Ebrahimi, S., Sun, R., Zhang, H., Lee, C.-Y., Ren,
X., Su,G., Perot,V.,Dy, J., et al. (2022).Dualprompt:Complemen-
tary prompting for rehearsal-free continual learning, in Computer
Vision-ECCV, 17thEuropeanConference, TelAviv, Israel,October
23–27, 2022, Proceedings, Part XXVI (pp. 631–648), Springer.

Wang, Z., Zhang, Z., Lee, C.-Y., Zhang, H., Sun, R., Ren, X., Su, G.,
Perot, V., Dy, J., Pfister, T. (2022). Learning to prompt for continual
learning, inProceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 139–149.

Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D.,
Mu, Y., Tan, M., Wang, X., et al. (2020). Deep high-resolution
representation learning for visual recognition. IEEE Transactions
on Pattern Analysis andMachine Intelligence, 43(10), 3349–3364.

Wei, L., Xie, L., Zhou,W., Li, H., Tian, Q. (2022).Mvp:Multimodality-
guided visual pre-training, inProceedingsEuropean conference on
computer vision (pp. 337–353), Springer.

Wu, T., Caccia, M., Li, Z., Li, Y.-F., Qi, G., Haffari, G. (2022). Pre-
trained languagemodel in continual learning:Acomparative study,
in Proceedings of the international conference on learning repre-
sentation.

Wu, Y. -H., Liu, Y., Zhan, X., Cheng, M. -M. (2022). P2t: Pyramid
pooling transformer for scene understanding, IEEE transactions
on pattern analysis and machine intelligence.

Wu, T., Lu, Y., Zhu, Y., Zhang, C., Wu, M., Ma, Z., Guo, G. (2020).
Ginet: Graph interaction network for scene parsing, inProceedings
European conference on computer vision (pp. 34–51), Springer.

Xiao, T., Liu, Y., Zhou, B., Jiang, Y., Sun, J. (2018). Unified perceptual
parsing for scene understanding, in Proceedings European confer-
ence on computer vision, pp. 418–434.

Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.
(2021) “Segformer: Simple and efficient design for semantic seg-
mentationwith transformers,”Proc. Adv.Neural Inf. Process. Syst.,
vol. 34.

Xu, Y., Zhang, J., Zhang, Q., Tao, D. (2022). “Rethinking hierar-
chicies in pre-trained plain vision transformer, arXiv preprint
arXiv:2211.01785

Yan, S., Xie, J., He, X. (2021). Der: Dynamically expandable represen-
tation for class incremental learning, in Proceedings of the IEEE

123

https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmsegmentation
http://arxiv.org/abs/2203.03910
http://arxiv.org/abs/2211.01785


International Journal of Computer Vision (2024) 132:1126–1147 1147

conference on computer vision and pattern recognition, pp. 3014–
3023.

Yuan, Y., Chen, X., Chen, X., Wang, J. (2019). Segmentation trans-
former: Object-contextual representations for semantic segmenta-
tion, arXiv preprint arXiv:1909.11065

Yuan, Y., Chen, X., Wang, J. (2020). Object-contextual representations
for semantic segmentation, in Proceedings of the European Con-
ference on Computer Vision Springer, pp. 173–190.

Zhang, H., Dana, K., Shi, J., Zhang, Z., Wang, X., Tyagi, A., Agrawal,
A. (2018). Context encoding for semantic segmentation, in Pro-
ceedings of the IEEE conference on computer vision and pattern
recognition, pp. 7151–7160.

Zhang, W., Pang, J., Chen, K., Loy, C. C. (2021). K-net: Towards uni-
fied image segmentation, Proceedings of the advances in neural
information processing systems, vol. 34.

Zhang, B., Tian, Z., Shen, C. et al. (2021). Dynamic neural representa-
tional decoders for high-resolution semantic segmentation, vol. 34.

Zhang, B., Tian, Z., Tang, Q., Chu, X.,Wei, X., Shen, C., Liu, Y. (2022).
Segvit: Semantic segmentation with plain vision transformers, in
Proceedings of the advances in neural information processing sys-
tems.

Zhang, C. -B., Xiao, J. -W., Liu, X., Chen, Y. -C., Cheng,M. -M. (2022).
“Representation compensation networks for continual semantic
segmentation, in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2022, pp. 7053–7064.

Zhang, W., Pang, J., Chen, K., & Loy, C. C. (2021). K-net: Towards
unified image segmentation. Advances in Neural Information Pro-
cessing Systems, 34, 10326–10338.

Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J. (2017). Pyramid scene pars-
ing network, in Proceedings of the IEEE conference on computer
vision and pattern recognition.

Zheng, S., Lu, J., Zhao, H., Zhu, X., Luo, Z., Wang, Y., Fu, Y., Feng, J.,
Xiang, T., Torr, P. H. (2021). et al., Rethinking semantic segmenta-
tion from a sequence-to-sequence perspective with transformers,
in Proceedings of the IEEE conference on computer vision and
pattern Recognition, pp. 6881–6890.

Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J. (2018). Unet++:
A nested U-net architecture for medical image segmentation, in
Proceedings of the deep learning in medical image analysis work-
shop, pp. 3–11.

Zhou, J., Wei, C., Wang, H., Shen, W., Xie, C., Yuille, A., Kong,
T. (2022). ibot: Image bert pre-training with online tokenizer,
Proceedings of the international conference on learning repre-
sentation.

Zhou, Z., Zhang, B., Lei, Y., Liu, L., Liu, Y. (2022). Zegclip: Towards
adapting clip for zero-shot semantic segmentation, arXiv preprint
arXiv:2212.03588

Zhou, B., Zhao,H., Puig, X., Fidler, S., Barriuso,A., Torralba, A. (2017)
Scene parsing through ade20k dataset, in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 633–
641.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1909.11065
http://arxiv.org/abs/2212.03588

	SegViT v2: Exploring Efficient and Continual Semantic Segmentation with Plain Vision Transformers
	Abstract
	1 Introduction
	2 Related Work
	2.1 Semantic Segmentation
	2.2 Mask-Oriented Segmentation
	2.3 Transformers for Vision
	2.4 Self-Supervised Vision Transformers
	2.5 Plain-Backbone Decoders
	2.6 Continual Learning

	3 Method
	3.1 Overall SegViT Architecture
	3.1.1 Encoder
	3.1.2 Decoder

	3.2 Shrunk Structure for Efficient Plain ViT Encoder
	3.3 Exploration on Continual Semantic Segmentation
	3.3.1 SegViT for Continual Learning


	4 Experiments
	4.1 Datasets
	4.2 Implementation Details
	4.2.1 Transformer Backbone
	4.2.2 Training Settings
	4.2.3 Evaluation Metric

	4.3 Comparisons with the State-of-the-Art Methods
	4.3.1 Results on ADE20K
	4.3.2 Results on COCO-Stuff-10K
	4.3.3 Results on PASCAL-Context

	4.4 Ablation Study
	4.4.1 Effect of the ATM Module
	4.4.2 Ablation of the Feature Levels
	4.4.3 SegViT on Hierarchical Base Models
	4.4.4 Ablation of Shrunk and Shrunk++ Strategies
	4.4.5 Ablation Studies on Decoder Variances
	4.4.6 Ablation for the QD Module

	4.5 Application 1: A Better Indicator for Feature Representation Learning
	4.5.1 Background
	4.5.2 Experiment Settings

	4.6 Application 2: Continual Semantic Segmentation
	4.6.1 Experiment Settings
	4.6.2 Baselines
	4.6.3 Metrics


	5 Results and Discussion
	6 Conclusion
	Acknowledgements
	References




