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Abstract
Transferring knowledge from pre-trained deep models for downstream tasks, particularly with limited labeled samples, is a
fundamental problem in computer vision research. Recent advances in large-scale, task-agnostic vision-language pre-trained
models, which are learned with billions of samples, have shed new light on this problem. In this study, we investigate how
to efficiently transfer aligned visual and textual knowledge for downstream visual recognition tasks. We first revisit the role
of the linear classifier in the vanilla transfer learning framework, and then propose a new paradigm where the parameters of
the classifier are initialized with semantic targets from the textual encoder and remain fixed during optimization. To provide
a comparison, we also initialize the classifier with knowledge from various resources. In the empirical study, we demonstrate
that our paradigm improves the performance and training speed of transfer learning tasks. With only minor modifications, our
approach proves effective across 17 visual datasets that span three different data domains: image, video, and 3D point cloud.

Keywords Visual recognition · Large vision model · Transfer learning

1 Introduction

In the field of optimizing neural network training effi-
ciency, knowledge transfer aims to provide pre-learned
information to downstream tasks. For visual recognition
tasks, the approach typically involves leveraging feature rep-
resentations derived from a task-agnostic model optimized
with large-scale universal datasets, followed by building a
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classifier on the top of the model. Former studies put more
emphasis on learning the base model. Over the last decade,
for example, the dominant approach involved trainingmodels
on the ImageNet (Deng et al., 2009) dataset and subse-
quently transferring them to downstream tasks. Owing to
the dramatically increasing computational capacity, general-
proposed pre-trained models with several magnitudes more
parameters and FLOPs have been successfully trained in both
full-/semi-supervised (Sun et al., 2017) and self-supervised
(He et al., 2020, 2022) style. Recently, contrastive vision-
languagemodels (Radford et al., 2021; Jia et al., 2021a; Yuan
et al., 2021) have garnered increasing interest as pre-training
models in transfer learning due to their superior capabilities
and effectiveness for visual recognition tasks. These models,
which benefit from the knowledge of the language modality,
have shown improved performance on various visual tasks,
such as zero-shot classification (Radford et al., 2021), cap-
tioning (Mokady et al., 2021), and image generation (Ramesh
et al., 2021), to name a few.

In this study, we aim to enhance the transferability of
vision-language pre-training models for downstream visual
recognition tasks by revisiting the knowledge-transferring
progress from the perspective of the classifier. Specifi-
cally, we examine the properties of the pre-training models,
and propose a simple yet effective paradigm to enhance
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Fig. 1 Inter-class correlation maps of “embeddings of class labels” for 20 categories on Kinetics-400. Left: The extracted textual vectors of class
labels, Right: The “embeddings” from learned classifier. The color thresholds are adjusted for a better view. Please zoom in for the best view

their transferability. Our findings demonstrate that these
pre-training models hold three essential properties for our
paradigm: (i) Semantic-rich representations, which are
obtained by training the models with extensive weakly-
related image-text sample pairs using large neural network
architectures. In contrast to supervised-style models learned
on standard image-label datasets, the semantic-rich rep-
resentations are expected to contain more semantics and
diverse representations of concepts, which is crucial in the
unknown target domain settings. (ii) Modality alignment,
which aligns the representation vectors from a paired sam-
ple’s visual and textual modality in semantic embedding
space. This property provides an advantage in the initializa-
tion when the samples for downstream tasks are limited, i.e.,
in the zero-/few-shot scenarios, compared to the visual-only
classifier fine-tuning approach. (iii) Intra-modality corre-
lations. The contrastive training algorithm also provides
weak intra-modality correlations. That is, the representation
vectors of similar images or texts are close to each other
(Radford et al., 2021; Sun, 2022). In contrast to the aforemen-
tioned properties, intra-modality correlations from samples’
influence are often overlooked. Concisely, a classifier with
appropriately correlated targets rather than one-hot labels
learns faster and performs better.

To demonstrate the importance of appropriately corre-
lated classifier targets, we conduct a toy experiment to depict
the intra-modality correlations in two scenarios. We employ
the Kinetics video recognition dataset (Kay et al., 2017)
for the analysis (The detailed configurations are provided in
Sect. 4.3). In the first scenario, we extract the textual embed-
ding vectors of the name of class labels using the textual
encoder of CLIP (Radford et al., 2021) and then calculate
the correlation among the textual embedding vectors. In the

second scenario, we examine the final projection head of a
vanilla fine-tuning framework. Precisely, we learn a classi-
fier based on the visual encoder from the same CLIP model.
The projection head of the classifier is a matrix of d × c used
to compute the pre-softmax logits, from the d-dimensional
feature vectors for the c classes. Therefore, we treat the d-
dimensional row vectors as the “embeddings” of the class
labels. This non-rigorous setting allows us to explore the
intra-modality correlation between these learned “embed-
dings”. The results are plotted in Fig. 1. While we could
observe clear correlations among the embeddings of category
names since some of them contain the same keywords (e.g.,
playing <something>.) Interestingly, in the second scenario,
these learned “embeddings” also reveal a similar correlation
map after the training, despite being initialized randomly and
optimized without knowing any textual information (That is,
optimized with the cross-entropy loss with one-hot labels).

In summary, we take full advantage of the large-scale con-
trastive image-language pre-trainedmodels and build a novel
general paradigm for the transfer learning settings. Our main
contributions are as follows:

– We revisit the transfer learning pipeline from the per-
spective of classifiers and spot that properly correlated
targets, and pre-aligned semantic knowledge are crucial
for downstream visual recognition tasks.

– We build a new paradigm to transfer textual knowledge
for visual recognition using contrastively pre-trained
vision-language models. Our paradigm accelerates the
transfer learning progress while taking full advantage of
the pre-trained models.

– Comprehensive experiments are conducted on 17 visual
datasets that span three distinct data domains: image,
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video, and 3D point cloud. For video recognition, we
evaluate our model on 6 well-known video benchmarks,
including single-label and multi-label recognition. while
also verifying its effectiveness in zero-shot and few-shot
scenarios. For image classification, we perform exper-
iments on 10 different image datasets, and the results
demonstrate that our method is an effective few-shot
learner. For 3D point cloud recognition, we validate
our method on the ModelNet40 dataset, and find that
it outperforms the vision-only paradigm by a significant
margin.

– We open-source our code and models at https://github.
com/whwu95/Text4Vis.

2 RelatedWorks

2.1 Visual Recognition Tasks and Transfer Learning

Visual recognition is one of the most important tasks in the
design of machine learning systems. From the perspective
of the visual backbone, we could roughly divide the evolu-
tion of the system into two eras: i) The Convolutional Neural
Network (CNN) based architectures for image (Krizhevsky
et al., 2012; He et al., 2016; Simonyan & Zisserman, 2014;
Ioffe & Szegedy, 2015) or video recognition (Carreira & Zis-
serman, 2017; Qiu et al., 2017; Xie et al., 2018; Tran et al.,
2018; Wu et al., 2021a, b). ii) The Vision Transformer (ViT)
based architectures for image (Dosovitskiy et al., 2020; Han
et al., 2021; Liu et al., 2021) or video recognition (Berta-
sius et al., 2021; Arnab et al., 2021; Liu et al., 2022; Fan
et al., 2021). As ViT models are challenging to train from
scratch without large-scale datasets, transfer learning tech-
niques have regained popularity.

Transfer learning aims to enhance target learners’ perfor-
mance on target domains by transferring knowledge from
related but different source domains (Tan et al., 2018; Ribani
& Marengoni, 2019; Zhuang et al., 2020), thereby reduc-
ing the requirements of target domain data for learning the
target model. A typical transfer learning system is built
with a pre-trained model trained with source domain data
and a classifier for the target domain data. This study dis-
cusses a sub-family of transfer learning systems that utilize
large-scale task-agnosticmodels. Related studies on this sub-
family are discussed in Sect. 2.3.

2.2 Image-Language Pre-training

The recent success of Contrastive Language-Image Pre-
Training (CLIP) (Radford et al., 2021) has paved the way for
coordinated vision-language pre-training models utilizing
the image-text InfoNCE contrastive loss (Van denOord et al.,
2018).After that, severalworks have sincebeenproposed that

combine various learning tasks, including image-text match-
ing and masked image/language modeling, such as ALIGN
(Jia et al., 2021b), BLIP (Li et al., 2022b), Florence (Yuan
et al., 2021), and CoCa (Yu et al., 2022). These contrastively
learned models exhibit two essential properties for down-
stream tasks: rich visual feature representations and aligned
textual feature representations.Another recent study (Yang et
al., 2022) has incorporated the downstreamclassification task
into the pretraining process, resulting in improved accuracy
over the standard cross-entropy loss. These developments
demonstrate the potential for coordinated pre-training of
vision and language models and open up exciting opportuni-
ties for further advances in vision-language understanding.

2.3 Transferring CLIP for DownstreamTasks

The transfer of pre-trained CLIP to downstream tasks is a
recent and emerging research direction. Several recent stud-
ies (Gao et al., 2021; Zhang et al., 2021b; Zhou et al., 2021,
2022) have investigated the efficient transfer of pre-trained
CLIP to downstream image recognition tasks. In addition,
CLIP has been leveraged to enhance dense prediction tasks
such as object detection (Rao et al., 2022) and segmentation
(Lüddecke & Ecker, 2022; Li et al., 2022a). In the video
domain, CLIP has also benefited many text-video retrieval
methods (Zhao et al., 2022;Luo et al., 2021). For video recog-
nition, ActionClip (Wang et al., 2021b) and VideoPrompt
(Ju et al., 2022) extend CLIP (Radford et al., 2021) to train
a downstream video-text matching model with contrastive
loss and utilize the similarity between learned video and text
embeddings during inference. Other methods, such as ST-
Adapter (Pan et al., 2022) and EVL (Lin et al., 2022b), use
only the visual encoder for unimodality transferring with-
out involving textual knowledge. This study investigates the
correlation between the linear classifier and efficient feature
transfer in the standard visual recognition paradigm.We pro-
pose a direct transfer of visual and textual knowledge for
visual recognition, without using contrastive-basedmethods.

3 Methodology

3.1 Denotations

In this paper, we use bold letters to denote Vector, while
capital italic letters are used to denote Tensor or Matrix.
For example, we use z ∈ R

d to denote the feature vec-
tor extracted from a pre-trained model of dimension d, and
W ∈ R

d×c to denote the projection matrix for the c-class
linear classifier. Without ambiguity, we also use capital italic
letters to denote the modality in subscripts. Specifically, we
use V and T to denote the Visual modality and the Textual
modality, respectively. We also use lowercase italic letters to
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Fig. 2 Illustration of transferring vision-language pre-trained models
for visual recognition. a The widely-used standard vision-only tuning
paradigm with cross-entropy loss. b The vision-language contrastive
learning paradigm with contrastive loss, e.g., CLIP (Radford et al.,

2021),ActionCLIP (Wanget al., 2021b). cRevisiting the role of the clas-
sifier to transfer knowledge from vision-language pre-trained models.
c denotes the number of categories, b is the batch size and d represents
the dimension of embeddings

denote functions or neural networks, such as gV (·,ΘV ) and
gT (·,ΘT ), which represent the visual and textual encoders,
respectively. Furthermore, we employ calligraphic letters,
such as D, to denote sets of elements.

3.2 Revisiting of Existing Learning Paradigms

Standard Transfer Learning Paradigm In Fig. 2a, we
depict the conventional scenario, where a visual encoder
model gV is trained on a large-scale dataset D containing
visual samples, with or without ground-truth labels. On our
labeled downstream dataset D̃ = {(x1, y1), (x2, y2), . . .},
our empirical learning target can be expressed as

g∗
V ,W ∗ = argmin

ΘV ,W
Ex, y∼D̃

[
H( y|σ(W · gV (x)))

]
, (1)

where H( p̂|p) represents the CrossEntropy between the
predicted distribution p and the ground-truth distribution p̂.
The symbol σ denotes the softmax operation, W ∈ R

c×d

denotes the linear projection matrix for classification. The
formulation in Eq. 1 is a standard visual feature transferring
paradigm, where the visual encoder gV and the projection
matrix W are learned jointly.
Vision-Language Contrastive Learning Paradigm As
shown in Fig. 2b, we then review the contrastive learn-
ing paradigm of vision-language models, which has gained
widespread use in vision-language pre-training, such asCLIP
(Radford et al., 2021), and extended to video-text fine-tuning,
e.g., ActionCLIP (Wang et al., 2021b), CLIP4Clip (Luo et
al., 2021).

Given a dataset D = {(xV ,1, xT ,1), (xV ,2, xT ,2), · · · },
consisting of weakly related vision-language pairs (e.g.,
image-text, video-text). With slight abuse of the notations,
we employ the xV , xT to denote a mini-batch of size b, then
we minimize the following target:

g∗
V , g∗

T = argmin
ΘV ,ΘT

ExV ,xT ∼D̃
[
H(Q|σ(gV (xV )T · gT (xT )))

]
,

(2)

whereQ is the set that contains b one-hot labels of size c, with
their 1, 2, . . . , b-th element being 1 (b < c), representing the
positive vision-language pairs. We note that the definition in
Eq. 2 is not the rigorous form of the Noise-Contrastive Esti-
mation (NCE) loss proposed in Van den Oord et al. (2018).
Instead, we employ the cross-entropy version implementa-
tion used in Radford et al. (2021); Chen et al. (2021). The
contrastive learning paradigm first projects the visual feature
gV (xV ) with a projection matrix gT (xT ), then follows the
standard transfer learning paradigm to match the similarity
matrix with the diagonal label set Q.

3.3 Our Proposed Paradigm

As depicted in Fig. 2, we propose a more generalized
paradigm by replacing the learnable, randomly initialized
linear projection matrix W with a pre-defined matrix W̃ ,
building upon the classifier perspective. Following Sect. 3.2,
the training target can be formulated as:

g∗
V = argmin

ΘV

Ex, y∼D̃
[
H( y|σ(W̃ · gV (x)))

]
. (3)
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Fig. 3 Illustration of 6 types of
projection matrix initialization
which develop different levels of
correlation between the target
embedding vectors. On the Left:
a trivial or no correlation
between the target vector; b
correlation calculated from the
visual statistic; c correlation
calculated from the textual
semantic knowledge. On the
Right: Inter-class correlation
map obtained from the six types
of initialization. Impressively,
correlation maps yield a similar
appearance from transferring
visual statistics and textual
semantic knowledge. See Fig. 1
for more details

In the following subsections, we investigate different initial-
ization methods for W̃ .

3.4 Discussion on Initialization

To investigate the extent to which the correlation between
semantic information contained in the samples is helpful,
we examine several types of initialization, which represent
different degrees of intra-modality (or inter-class from the
perspective of classifier) correlation, as illustrated in Fig. 3.

3.4.1 Trivial Inter-class Correlation

RandomizedMatrixWestartwith the simplest initialization
method, which involves setting each row of W̃ to a random
Gaussian vector with zero mean and standard deviation. This
can be denoted as follows:

W̃ ∼ N (0, Id), (4)

where Id denotes the identity matrix of dimension d × d.
While this method generates trivial correlations between the
rows of W̃ due to its stochasticity, these correlations cannot
reflect the actual correspondence between the visual classes.
Therefore, we expect the model to have inferior performance
since it needs to avoid these incorrect correlations when
learning the visual feature representation.
Randomized Orthogonal Matrix Next, we consider the
case where correlations are removed from the projection
matrix. We follow the approach of the randomized matrix
and then remove the correlation by ensuring that the row vec-
tors are orthogonal. This is achieved by QR decomposition.
Concretely, since d > c, we first generate a random matrix
of size d × d and select the first c rows as our projection

matrix. Formally, we have,

W̃ j ∼ QR(U ) j , j = 1, 2, . . . , c,

Ui ∼ N (0, Id), i = 1, 2, . . . , d,
(5)

whereU is the intermediate randomized matrix, and QR(U )

is the roworthogonalmatrix obtained through theQRdecom-
position. Similar to the randomized matrix, we expect this
initialization to have inferior performance. Since the one-hot
label vectors are also orthogonal to each other, it will not be
helpful to project the visual feature vectors with an orthog-
onal matrix, which may increase the difficulty of learning
meaningful visual features.

3.4.2 Correlation from Visual Statistic Knowledge

Class Center Projection To utilize the visual encoder’s sta-
tistical knowledge, we randomly select a small subset of
labeled samples from the training dataset. For our exper-
iments on the Kinetics-400 dataset, we sample 60 videos
from each class, which is approximately 10% of the train-
ing data. Next, we compute the mean value of each class’s
visual embeddings extracted from the visual encoder. These
mean vectors are treated as the centers for each class and are
used to initialize the classifier’s parameters. The class cen-
ter initialization provides a basic approximation of the visual
knowledge obtained from the pre-trained model. However,
its effectiveness largely depends on the data used to compute
the projection matrix, and when the data is limited, the esti-
mated correlation among visual embeddings may be biased.
LinearDiscriminantProjectionWepropose another approach
to initializing the projectionmatrix using visual statistics.We
use multi-class Fisher’s linear discriminant analysis (LDA)
to learn a linear classifier and employ the weight matrix of
the classifier as our initialization for the projection matrix.
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Specifically, we first use the same visual embeddings as
the previous approach to computing the LDA coefficient,
following previous work (Li et al., 2006). Then, we use
the LDA coefficient to initialize W̃ and freeze it for fine-
tuning the visual encoder on the dataset. Intuitively, the
LDA simultaneously maximizes the inter-class covariance
andminimizes intra-class covariance. Therefore,we term this
as the maximal correlation initialization using visual statistic
knowledge. However, the linear discriminant projection also
suffers from biased data sampling progress.

3.4.3 Correlation from Textual Semantic Knowledge

Textual Embedding Vectors We now describe how we
transfer textual semantic knowledge from a pre-trained tex-
tual encoder to initialize the projection weight W̃ . Given a
set of tokenized class labels L = l1, l2, . . . , lc, we initialize
the i-th row vector in W̃ as follows:

W̃i ∼ gT (l i ), i = 1, 2, . . . , c, (6)

where gT is a function that maps a textual input to an embed-
ded feature vector using a pre-trained textual encoder. In
our experiments, we investigate two types of textual fea-
ture encoders: i) The encoder that is trained solely using
textual samples on tasks such as masked language modeling,
i.e., DistilBERT (Sanh et al., 2019); ii) The encoder that is
trained with a visual encoder in the contrastive style, i.e.,
CLIP (Radford et al., 2021). Using the textual embeddings
to initialize W̃ allows us to roughly pre-align the visual and
textual embeddings in the same embedding space.

3.5 Discussion on Parameter Frozen

It is worth mentioning that, in our paradigms, W̃ is not in the
optimization targets. This means we freeze it from updating
during the fine-tuning of the downstream tasks. We have the
following reasons for this: firstly, since the textual knowledge
is extracted by the textual encoder, freezing this part could
significantly decrease the computational resources required
for fine-tuning.Aswe showed in Sect. 4, freezing the parame-
ters of W̃ leads to a decrease in the training period. Secondly,
freezing the parameter helps to reduce biases brought by
the limited semantic knowledge of class names. By keeping
the feature embeddings distributed as they were learned on
large-scale datasets, we improve the diversity of the represen-
tations and the learning stability. Finally, this configuration
also compares former studies that employ textual information
for vision transfer learning.

4 Experiments: Video Recognition

In this section, we transfer the image-language pre-trained
model to the video modality, i.e., the video recognition
task. To evaluate the effectiveness of the transferred model,
we conduct experiments on six well-known video datasets,
which include both trimmed and untrimmed video data.
Specifically, the datasets are Kinetics-400 & 600 (Kay et
al., 2017; Carreira et al., 2018), UCF-101 (Soomro et al.,
2012), HMDB-51 (Kuehne et al., 2011), ActivityNet-v1.3
(Caba Heilbron et al., 2015), and Charades (Sigurdsson et
al., 2016). These datasets are selected to represent a wide
range of video recognition tasks, and are commonly used as
benchmarks in this field.

We evaluate the transferred model in three distinct sce-
narios: zero-shot, few-shot, and regular video recognition.
In the zero-shot scenario, the model has not trained on the
target dataset but is evaluated on it, allowing us to assess its
ability to generalize to new data. In the few-shot scenario,
the model is trained on a small subset of the target dataset
and evaluated on the validation set, enabling us to explore
its capacity to learn from limited labeled data. In the typical
recognition scenario, the model is trained on the entire target
dataset and evaluated on the validation set, allowing us to
measure its performance in a standard supervised learning
configuration. By evaluating the model in these three sce-
narios, we aim to provide a comprehensive assessment of its
performance under different conditions.

4.1 Training

The video recognition task takes a video as input, then feeds
it into a learned encoder to estimate the action category of the
video. Given a video, we first uniformly sample T (e.g., 8,
16, 32) frames over the entire video. Then we utilize ResNet
(He et al., 2016) or ViT (Dosovitskiy et al., 2020) as the video
encoders. The classifier in our paradigm is initialized from
the textual embedding of the class names and then frozen
(fixed), leaving only the parameters in the video encoder to
be learned.
Default Training Recipe Table 1 presents our training
details for regular video recognition. We share the same
recipe on all the video datasets, i.e., Kinetics-400, Activi-
tyNet, HMDB-51, UCF-101, and Charades.
Few-ShotVideoRecognitionAll training strategies employed
in the training process are consistent with those presented in
Table 1, with only one modification: the number of epochs
was increased to 100.
Zero-Shot Video Recognition We use the Kinetics-400
pre-trained models to directly perform cross-dataset zero-
shot video recognition without any additional training on
other datasets, i.e., ActivityNet, HMDB-51, UCF-101 and
Kinetics-600.
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Table 1 Default training details for video recognition

Setting Value

Training hyper-parameter

Batch size 256

Vocabulary size 49408

Training epochs 30

Optimizer AdamW

Learning rate (base, minimal) (5e-5, 5e-6), cosine

Weight decay 0.2

Linear warm-up epochs 5

Adam β1,β2 0.9, 0.999

Augmentation

Resize RandomSizedCrop

Crop size 224 (Default)

Random flip 0.5

Random grayscale 0.2

RandAugment N = 2, M = 9

4.2 Inference

To trade off accuracy and speed, we consider two inference
strategies: (1) Single View: This strategy involves using only
a single clip per video and the center crop for efficient evalua-
tion, as shown in Table 4.3. (2)Multiple Views: This strategy,
which is widely used in previous works, involves sampling
multiple clips per video with several spatial crops to improve
accuracy. For comparison with state-of-the-art approaches,
we use four clips with three crops (“4×3 Views”).

4.3 Ablation Studies

In this section, we conduct extensive ablation experiments
on the Kinetics-400 dataset. Unless specified otherwise, we
use ViT-B/16 with 8 frames as the video backbone and a
single view for testing. The default settings are marked in
bold italics.

Different Initializations to the Offline Classifier We first
examine how the initializations affect the learning of classi-
fiers. Then, we prepare our controlled environment using a
classifier with parameters W ∈ R

d×c, which is built on the
average of pooled temporal feature representations of all the
frames. According to Sect. 3.3, we evaluate the performance
of six types of initializations on both the few-shot and full-
shot settings. For reference, we also provide the results using
the standard vision-only fine-tuning (i.e., online) classifier
with trainable weights.

Table 2 lists the results. Feeding the offline classifier a
random d-by-cmatrix with a normal distribution leads to sig-
nificantly reduced performance. Furthermore, removing the
classifier’s intra-modality correlation also results in inferior
performance. From this family of initialization, we under-
stand the necessity of a proper correlation in the classifier
targets. Next, we observe that providing correlation informa-
tion using a small labeled sub-set from the visual side leads to
improved performance, with the classifier no longer guessing
the results in the few-shot scenario and learning reasonably
well in the full-shot scenario, compared to the vision-only
online classifier. Compared to learnable correlation, pre-
extracted proper correlation provides a more explicit target,
making it a more efficient approach, especially in the pro-
cess of transfer learning, particularly in few-shot learning.
Notably, the class center initialization performs better than
the LDA initialization in the few-shot scenario, demonstrat-
ing the CLIP encoder has a naturally well-distributed feature
embedding.

Finally, we investigate the effect of the textual seman-
tic family of initialization on the classifier’s performance.
We observe that the embeddings from the textual encoder of
CLIP significantly improve the few-shot and full-shot accu-
racy. Interestingly, the DistilBERT-based initialization also
performs remarkably well despite the semantics not being
directly aligned with the visual modality. This result can
be explained by the fact that both DistillBERT and CLIP
are pre-trained with large-scale data and have strong lan-
guagemodeling capabilities, allowing them to generate good
semantic targets. Therefore, we conclude that the visual

Table 2 The effects of different initializations for the frozen (offline) classifiers

Offline classifier Alignment Correlation Few-shot Acc. Full-shot Acc.

Random normal vectors ✗ Random 0.6 58.7

Random orthogonal vectors ✗ Non-correlation 0.6 57.7

Linear discriminant projection ✗ Visual statistics 25.5 79.6

Class center ✗ Visual statistics 32.3 79.0

DistilBERT ✗ Textual semantic 32.2 77.8

Textual encoder of CLIP ✓ Textual semantic 65.3 80.1

Vision-only (online) ✗ Learnt weight 21.6 75.3

Alignment denotes if the cross-modality knowledge is pre-aligned. Correlation shows the source of the correlation among the class embeddings
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Table 3 Temporal modeling for video encoders

Backbone Modeling Top-1 Top-5

ResNet-50 TAP 71.2 90.4

T1D 67.2 88.5

T-Trans 74.3 91.7

VIT-B/16 TAP 80.1 95.0

TokenT1D 80.4 95.0

T-Trans 81.5 95.5

embeddings benefit from the correlation of semantic tar-
gets, and the extract alignment further boosts the learning
progress, reducing the need for a large number of samples.1

We also provide the visualizations of these classifiers in
Fig. 3. Apparently, the latter two families of initializations
share the same patterns among the correlation maps, which
could be easily distinguished from the random and orthogo-
nal ones.
TemporalModeling In this study, we explore several tempo-
ral modeling strategies for both ViT and ResNet, including:

1. TAP: Temporal average pooling is a straightforward tem-
poral modeling strategy that provides a simple baseline
for comparison.

2. T1D: Channel-wise temporal 1D convolutions, which are
commonly used in previous works (Wu et al., 2021a;
Wang et al., 2021a; Liu et al., 2020), are employed to
facilitate efficient temporal interaction in the later stages
(res4−5) of ResNet.

3. T-Trans: This strategy involves feeding the embeddings
of frames to a multi-layer (e.g., 6-layer) temporal trans-
former encoder.

4. TokenT1D: This approach involves using T1D to model
temporal relations for the [class] token features that are
aggregated from local features via attention in the vision
transformer. We apply TokenT1D to multiple positions
of a vision transformer to model temporal dependencies
among the tokens.

Our experimental results are presented in Table 3. We
observed that on both ViT and ResNet backbones, TAP pro-
vides a simple baseline for temporal modeling, and T-Trans
achieves the best top-1 accuracy. Interestingly, we found that
T1D does not appear to be effective in this scenario. This
could be due to the potential for T1D to disrupt the strong
representations learned by CLIP. In contrast, TokenT1D is
another internal-backbone temporal modeling strategy that
modifies only the global [class] token features instead of
patch features. We observed that TokenT1D does not lead

1 We also observe that the loss of DistillBERT is initially higher than
that of CLIP but quickly decreases to the same level.

to a performance drop and even slightly improves the TAP
baseline. We believe that this is because TokenT1D results
in minimal modifications to the pre-trained features, which
allows the model to retain the learned representations while
incorporating temporal dependencies among the tokens.
Ours v.s. Contrastive-Based Paradigm we compare our
proposed approachwith the contrastive-based tuningmethod
ActionClip (Wang et al., 2021b), which is introduced in
Sect. 2.2. This paradigm treats the video recognition task as
a video-text matching problemwith a contrastive loss, which
requires batch gathering to collect embeddings of all batches
across all GPUs and calculate cosine similarity for a given
batch across all other batches.

To ensure a fair comparison, we follow the official code
and configurations from ActionClip (Wang et al., 2021b)
in our experiments. In contrast to the contrastive-based
paradigm, our recognition paradigm uses the Cross-Entropy
loss to train the model, and we employ pre-extracted text
embeddings as our classifier. Thus, the only learned part
in our paradigm is the visual encoder, whereas the pre-
trained textual encoder still needs to be updated in the
Contrastive-based paradigm, requiring larger GPU memory.
In Table 4, we compare our approach with the contrastive-
based paradigm and observe that the latter performs poorly
without batch gathering. This is because contrastive learning
favors a large batch size, e.g., CLIP (Radford et al., 2021)
used 256 GPUs with a batch size of 128 per GPU to maintain
a large 32768×32768 similarity matrix. Moreover, involving
batch gathering will multiply the training time.

Our results demonstrate that our proposed approach
achieves the best accuracy-cost trade-off. Specifically, our
method achieves a performance of 81.5% with ViT-B/16,
which takes only 10h to run the training using 8 GPUs and
is 2× faster than the matching counterpart. Our approach is
more efficient and effective for video recognition tasks, espe-
cially in applications with limited computational resources.
Please refer to Appendix §A.2 for further details on batch
gathering.

Additionally, in order to mitigate the impact of dif-
ferent implementation details, we have incorporated the
contrastive-style training loss function based on our code. As
observed in Table 5, training with contrastive loss introduces
a reduction in training efficiency without significant perfor-
mance improvement. Moreover, we have further enhanced
the performance by incorporating a fixed offline classifier
in the contrastive-style approach. This improvement can be
attributed to the accelerated convergence achieved by the
fixed textual target during training.
Text Input FormsWe investigate several text input forms in
Table 6, including class names, single hard template,multiple
hard templates, and learnable templates. The details are as
follows:
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Table 4 Ours vs. Contrastive-based paradigm with ViT-B/16 on Kinetics-400

Paradigm Contrastive Batch
Gather

Textual
Encoder

Top-1 V100-days

ActionCLIP (Wang et al., 2021b) ✓ ✓ � 81.2 6.7 (10∗)
✓ � 80.7 6.6

✗ � 77.8 3.5

✗ � 76.1 3.3

Ours ✗ ✗ � 81.5 3.3

Table 5 More ablations on contrastive-style paradigm

Contrastive Offline classifier Top-1(%) Training time

✗ ✗ 81.5 1×
✓ ✗ 81.4 2×
✓ ✓ 81.7 2×

Table 6 Study on various text input forms

Text input form Top-1

Class name 81.4

“A video of a person” + class name 81.5

Multiple fixed templates + class name 80.9

Learnable template + class name 81.2

1. Class name. To generate textual embeddings, we utilize
the category names of the dataset as the text input, such as
“eating hotdog” or “driving car”. The results show that
using only the label text can yield good performance.

2. Singlehard template.Weuse ahand-crafted template,“a
video of a person {class name}.” as input. This template
only slightly improves performance over the label text’s
baseline.

3. Multiple hard templates. CLIP 2 provides 28 templates
for Kinetics, including the single template described
above. During training, we use these templates as text
augmentation by randomly selecting one at each iteration.
Then, we evaluate the model using the single template as
input. The performance decreases by 0.6% on Kinetics-
400, which may be because various prompt templates
introduce extra noise during training.

4. Learnable templates. We use the automated prompt
CoOp (Zhou et al., 2021) to describe a prompt’s context
using a set of learnable vectors. Specifically, the prompt
given to the text encoder is designed with the following
form:

t = [V]1[V]2 . . . [V]M [class name], (7)

2 https://github.com/openai/CLIP/blob/main/data/prompts.md.

Table 7 Analysis on throughput

Method Top-1 FLOPs Params Throughput

ViViT-L/16-320 81.3 3992G 310.8M 4.2 vid/s∗

Ours ViT-B/32 78.5 23.7G 71.6M 322.5 vid/s

Ours ViT-B/16 81.5 90.3G 69.9M 126.5 vid/s

Ours ViT-L/14 85.4 415.4G 230.4M 35.5 vid/s

"vid/s” denotes the average number of videos processed per second. A
higher value of “vid/s” corresponds to greater efficiency. ∗ represents
the official result with TPU-v3

where each [V]m (m∈{1, . . . , M}) is a vector of the same
size as word embeddings, and M is the number of context
tokens. We set M to 4 in our experiments.

Our results suggest that different templates have little impact
on our model’s performance.
Computational Cost and Efficiency Table 7 presents our
models’ computational cost and efficiency,measured in terms
of throughput using a singleNVIDIAA100GPUwith a batch
size of 16, which aligns with standard inference settings. Our
models exhibit a 29× faster throughput, and 44× fewer
FLOPs than the previous transformer-based method ViViT
(Arnab et al., 2021), while maintaining the same accuracy.
These results confirm the high efficiency of our approach.

4.4 Main Results

Regular Video Recognition We evaluate the performance
of our model on the Kinetics-400 dataset, a challenging
benchmark for regular video recognition. Table 8 provides a
comparison of our model with state-of-the-art methods that
were pre-trained on large-scale datasets such as ImageNet-
21K (Deng et al., 2009), IG-65M (Ghadiyaram et al.,
2019), JFT-300M (Sun et al., 2017), FLD-900M (Yuan et
al., 2021), and JFT-3B (Zhai et al., 2021). To date, none
of the three largest datasets (JFT-300M, FLD-900M, and
JFT-3B) are open-sourced, and pre-trained models are not
provided. Hence, we utilized the publicly available CLIP
(Radford et al., 2021) checkpoints, which have been trained
on 400 million web image-text pairs (WIT-400M). Signif-

123

https://github.com/openai/CLIP/blob/main/data/prompts.md


International Journal of Computer Vision (2024) 132:392–409 401

Table 8 Comparison with previous works on Kinetics-400

Method Input Pre-train Top-1 Top-5 FLOPs×Views Param

NL I3D-101 (Wang et al., 2018b) 128×2242 IN-1K 77.7 93.3 359×10×3 61.8

MVFNetEn (Wu et al., 2021a) 24×2242 IN-1K 79.1 93.8 188×10×3 –

SlowFast NL101 (Feichtenhofer et al., 2019) 16×2242 Scratch 79.8 93.9 234×10×3 59.9

X3D-XXL (Feichtenhofer, 2020) 16×4402 Scratch 80.4 94.6 144×10×3 20.3

MViT-B, 64×3 (Fan et al., 2021) 64×2242 Scratch 81.2 95.1 455×3×3 36.6

Methods with large-scale pre-training

TimeSformer-L (Bertasius et al., 2021) 96×2242 IN-21K 80.7 94.7 2380×1×3 121.4

ViViT-L/16×2 (Arnab et al., 2021) 32×3202 IN-21K 81.3 94.7 3992×4×3 310.8

VideoSwin-L (Liu et al., 2022) 32×3842 IN-21K 84.9 96.7 2107×10×5 200.0

ip-CSN-152 (Tran et al., 2019) 32×2242 IG-65M 82.5 95.3 109×10×3 32.8

ViViT-L/16×2 (Arnab et al., 2021) 32×3202 JFT-300M 83.5 95.5 3992×4×3 310.8

ViViT-H/16×2 (Arnab et al., 2021) 32×2242 JFT-300M 84.8 95.8 8316×4×3 647.5

TokLearner-L/10 (Ryoo et al., 2021) 32×2242 JFT-300M 85.4 96.3 4076×4×3 450

MTV-H (Yan et al., 2022) 32×2242 JFT-300M 85.8 96.6 3706×4×3 –

CoVeR (Zhang et al., 2021a) 16×4482 JFT-300M 86.3 – –×1×3 –

Florence (Yuan et al., 2021) 32×3842 FLD-900M 86.5 97.3 -×4×3 647

CoVeR (Zhang et al., 2021a) 16×4482 JFT-3B 87.2 - –×1×3 –

VideoPrompt ViT-B/16 (Ju et al., 2022) 16×2242 WIT-400M 76.9 93.5 – –

ActionCLIP ViT-B/16 (Wang et al., 2021b) 32×2242 WIT-400M 83.8 96.2 563×10×3 141.7

ST-Adapter ViT-L/14 (Pan et al., 2022) 32×2242 WIT-400M 87.2 97.6 8248 –

EVL ViT-L/14 (Lin et al., 2022b) 32×2242 WIT-400M 87.3 – 8088 –

EVL ViT-L/14 (Lin et al., 2022b) 32×3362 WIT-400M 87.7 – 18196 –

Ours ViT-L/14 32×2242 WIT-400M 87.6 97.8 1662×4×3 230.7

Ours ViT-L/14 32×3362 WIT-400M 88.4 98.0 3829×4×3 230.7

Ours ViT-L/14 32×3362 Merged-2B 89.4 98.1 3829×4×3 230.7

"Views” indicates # temporal clip × # spatial crop. The magnitudes are Giga (109) and Mega (106) for FLOPs and Param. “IN” denotes ImageNet

icantly, by utilizing the same CLIP pre-trained backbones,
our model demonstrates substantial performance improve-
ments over EVL (Lin et al., 2022b) and ST-Adapter (Pan
et al., 2022). Furthermore, our method achieves superior
performance compared to methods that were pre-trained
with JFT-300M (Sun et al., 2017) or FLD-900M (Yuan
et al., 2021), while requiring less computational cost or a
smaller resolution. Furthermore, with the significant scale-up
of the pre-training data to 2 billion samples (namelyMerged-
2B (Sun et al., 2023), which merges 1.6 billion samples from
the LAION-2B (Schuhmann et al., 2022) dataset with 0.4
billion samples from the COYO-700M (Byeon et al., 2022)
dataset), our method achieves an outstanding top accuracy of
89.4%, solidifying its position as a state-of-the-art approach.

To verify the generalization ability of our method, we fur-
ther evaluate its performance on the widely-used untrimmed
video benchmark, ActivityNet-v1.3. Specifically, we fine-
tune the Kinetics-400 pre-trained models, with ViT-L back-
bone and 16 frames, on the ActivityNet-v1.3 dataset. The
top-1 accuracy and mean average precision (mAP) are

Table 9 Comparisons with previous works on ActivityNet

Method Top-1 mAP

ListenToLook (Gao et al., 2020) – 89.9

MARL (Wu et al., 2019b) 85.7 90.1

DSANet (Wu et al., 2021b) – 90.5

TSQNet (Xia et al., 2022a) 88.7 93.7

NSNet (Xia et al., 2022b) 90.2 94.3

Ours ViT-L 92.9 96.5

Ours ViT-L (336↑) 93.3 96.9

reported using the official evaluation metrics. As shown in
Table 9, our method outperforms recent state-of-the-art mod-
els with a clear margin, with an mAP accuracy of 96.9%.

We also evaluate our method on the UCF-101 and
HMDB-51 datasets to demonstrate its capacity to general-
ize to smaller datasets. We finetune our models on these two
datasets using the pre-trained ViT-L model on Kinetics-400
and present the mean class accuracy on split one. We utilize
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Table 10 Mean class accuracy on UCF-101 and HMDB-51 achieved
by different methods which are transferred from their Kinetics models
with RGB modality

Method UCF-101 HMDB-51

ARTNet (Wang et al., 2018a) 94.3% 70.9%

I3D (Carreira & Zisserman, 2017) 95.6% 74.8%

R(2+1)D (Tran et al., 2018) 96.8% 74.5%

S3D-G (Xie et al., 2018) 96.8% 75.9%

TSM (Lin et al., 2019) 95.9% 73.5%

STM (Jiang et al., 2019) 96.2% 72.2%

TEINet (Liu et al., 2020) 96.7% 72.1%

MVFNet (Wu et al., 2021a) 96.6% 75.7%

TDN (Wang et al., 2021a) 97.4% 76.4%

Ours ViT-L 98.1% 81.3%

Ours ViT-L (336↑) 98.2% 81.3%

16 frames as inputs. As shown in Table 10, our model exhib-
ited strong transferability, achieving a mean class accuracy
of 98.2% on UCF-101 and 81.3% on HMDB-51.
Few-ShotVideoRecognition In few-shot video recognition,
where only a few training samples are available, we inves-
tigate a more challenging K -shot C-way situation, instead
of the conventional 5-shot 5-way configuration. We aim to
categorize all categories in the dataset with just K samples
per category for training, where the lower and upper bounds
are denoted by the terms “Zero-shot” and “All-shot”, respec-
tively. Using the CLIP-pretrained ViT-L/14 with 8 frames
and TAP for few-shot video recognition, we report the Top-1
accuracy for the four datasets in Table 11. Despite the limited
amount of data, our method demonstrates remarkable trans-
ferability to diverse domain data. Furthermore, our approach
outperforms previous methods significantly, showing robust-
ness in these extremely data-poor situations. For instance,
when comparing the accuracy on HMDB-51 with 2-shot, our
method outperforms Swin (Liu et al., 2022) and X-Florence
(Ni et al., 2022) by +52.6% and +21.9%, respectively.
Multi-Label Video Recognition We mainly focused on the
single-label video recognition scenario in the previous exper-

Table 12 Comparison with previous works on Multi-Label video
dataset Charades

Method Frames mAP

MultiScale TRN (Zhou et al., 2018) – 25.2%

STM (Jiang et al., 2019) 16 35.3%

Nonlocal (Wang et al., 2018b) – 37.5%

SlowFast R50 (Feichtenhofer et al., 2019) 8+32 38.0%

SlowFast R101 (Feichtenhofer et al., 2019) 16+64 42.5%

LFB+NL (Wu et al., 2019a) 32 42.5%

X3D-XL (312↑) (Feichtenhofer, 2020) 16 43.4%

ActionCLIP (Wang et al., 2021b) 32 44.3%

Ours 16 46.0%

iments. To further validate the performance of our method,
we conducted experiments on multi-label video recogni-
tion tasks. The Charades dataset is a multi-label untrimmed
video dataset containing long-term activities with multiple
actions. For this task, we utilized the Kinetics-400 pre-
trained ViT-L backbone for training and evaluated our results
using the Mean Average Precision (mAP) metric. As shown
in Table 12, our method achieved the highest performance
of 46.0 mAP, demonstrating its effectiveness in multi-label
video classification.
Zero-Shot Video Recognition In addition, we conducted
experiments in the open-set setting. We use our Kinetics-400
pre-trained models (i.e., ViT-L with 8 frames) to perform
zero-shot evaluations on four other video datasets. For UCF-
101, HMDB-51, and ActivityNet, we follow two evaluation
protocols from E2E (Brattoli et al., 2020):

1. To make a fair comparison with previous works, we ran-
domly selected half of the test dataset’s classes: 50 for
UCF-101, 25 forHMDB-51, and100 forActivityNet, and
evaluated our method on them. We repeated this process
ten times and averaged the results for each test dataset.
We refer to this setting as UCF∗, HMDB∗, and ANet∗.

2. In the second evaluation protocol, we directly evaluated
the full datasets to obtain more realistic accuracy scores.

Table 11 Comparisons with previous works on few-shot action recognition

Method shot HMDB UCF ANet K400

VideoSwin (Liu et al., 2022) 2 20.9 53.3 – –

VideoPrompt (Ju et al., 2022) 5 56.6 79.5 – 58.5

X-Florence (Ni et al., 2022) 2 51.6 84.0 – –

Ours ViT-L 0 53.8 71.9 75.6 61.0

1 72.7 96.4 89.0 75.8

2 73.5 96.6 90.3 78.2

All 80.1 96.9 91.1 84.7
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Table 13 Comparison with previous works on zero-shot video recognition

Method UCF∗ / UCF HMDB∗ / HMDB ANet∗/ ANet Kinetics-600

GA (Mishra et al., 2018) 17.3±1.1 / – 19.3±2.1 / – - - –

TS-GCN (Gao et al., 2019) 34.2±3.1 / – 23.2±3.0 / – – –

E2E (Brattoli et al., 2020) 44.1 / 35.3 29.8 / 24.8 26.6 / 20.0 -

DASZL (Kim et al., 2021) 48.9±5.8 / – – / – - –

ER (Chen & Huang, 2021) 51.8±2.9 / – 35.3±4.6 / – – 42.1±1.4

ResT (Lin et al., 2022a) 58.7±3.3 / 46.7 41.1±3.7 / 34.4 32.5 / 26.3 –

Ours 85.8 ± 3.3 / 79.6 58.1 ± 5.7 / 49.8 84.6 ± 1.4 / 77.4 68.9 ± 1.0

We directly evaluate our method without any additional training on cross-dataset video recognition. ANet is short for ActivityNet. ∗ means half
classes evaluation

For Kinetics-600, we chose 220 new categories outside
Kinetics-400 for evaluation. We used the three splits pro-
vided byChen andHuang (2021) and sampled 160 categories
for evaluation from the 220 categories in Kinetics-600 for
each split. We reported the mean accuracy for the three
splits. As shown in Table 13, our method demonstrates a
strong cross-dataset generalization ability, achieving signifi-
cant improvements over previous zero-shot video recognition
methods (+27.1% on UCF-101, +17.0% on HMDB-51,
+52.1% on ActivityNet, +26.8% on Kinetics-600).

5 Experiments: Image Recognition

In this work, we also apply our method to image recognition.
We conduct a comprehensive evaluation on 10 datasets that
represent a diverse set of visual recognition tasks, i.e., Ima-
geNet (Deng et al., 2009), StanfordCars (Krause et al., 2013),
Caltech101 (Fei-Fei et al., 2004), OxfordPets (Parkhi et al.,
2012), Flowers102 (Nilsback & Zisserman, 2008), Food101
(Bossard et al., 2014), FGVCAircraft (Maji et al., 2013),
SUN397 (Xiao et al., 2010), DTD (Cimpoi et al., 2014),
EuroSAT (Helber et al., 2019). These tasks include clas-
sifying generic objects, scenes, and fine-grained categories
and specialized tasks such as texture recognition and satellite
imagery analysis.

5.1 Training

For the pre-trained CLIPmodel, we use the ResNet-50 (He et
al., 2016) as the default backbone for the image encoder, and
the image backbone is updated during training. We train the
model using the AdamW optimizer with an initial learning
rate of 5e-6 and a cosine annealing schedule to reduce the
learning rate gradually. We also employ a warmup strategy
of 5 epochs. The maximum number of training epochs is set
to 150.

5.2 Main Results

Results on 10 Image Datasets As illustrated in Fig. 4, the
performance of our method, vision-only method, and zero-
shot method are evaluated on 10 image datasets, all trained
with 16 shots. The results of 10 datasets are arranged from
left to right, and the average results of the 10 datasets are
presented on the far right. Our findings reveal that CLIP
showcases strong zero-shot performance on all 10 datasets.
However, the vision-only method exhibits poor performance
on all datasets. We posit that this may be attributed to the
absence of a suitable classifier target. Consequently, it may
be susceptible to biases in small samples, which can disrupt
the well-pretrained image encoder. Our approach demon-
strates a substantial improvement in recognition accuracy
compared to both the vision-only and zero-shot methods on
all 10 datasets. Specifically, the average improvement over
the 10 datasets is 41% and 18% compared to the vision-only
method and the zero-shot method, respectively. This indi-
cates the effectiveness of our method in enhancing few-shot
learning performance.

Table 14 presents a further comparison of our method
with two other transfer methods, specifically linear probe
and CoOp (Zhou et al., 2021), on the widely used Ima-
geNet dataset. We implemented the linear probe method as
instructed in the original CLIP paper (Radford et al., 2021).
Our findings indicate that the CoOp method contributes to
a significant enhancement of the zero-shot model by 4.77%.
Notably, our proposed approach surpasses this performance
by achieving a further improvement of 8.33% on the zero-
shot model, underscoring the effectiveness of our method in
incorporating an appropriate classifier target.

6 Experiments: 3D Point Cloud Recognition

We further extend our approach to 3D point cloud recogni-
tion and evaluated it on the ModelNet40 dataset (Wu et al.,
2015). This dataset comprises 12,311 3DCADmodels across
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Fig. 4 Comparison of few-shot learning performance on 10 image datasets. Assessment of zero-shot CLIP, vision-only, and the proposed method
underlines the significance of incorporating a suitable classifier target to mitigate biases in small samples and achieve high accuracy on a diverse
set of image datasets

Table 14 Comparison of our method with other tuning methods on
ImageNet (using 16 shots)

ImageNet Δ

Zero-shot CLIP 58.18 –

Linear probe 55.87 -2.31

CoOp (Zhou et al., 2021) 62.95 +4.77

Ours 66.51 +8.33

Δ denotes the difference with the zero-shot model

40 categories: airplanes, cars, plants, and lamps. The point
clouds are normalized to a unit sphere and divided into 9,843
training models and 2,468 testing models. ModelNet40 is a
widely used benchmark for point cloud recognition.

6.1 Training

For the visual encoder, we use the ResNet-101 architecture
(He et al., 2016) as the default backbone and applymulti-view
perspective projection on the input point cloud following
SimpleView (Goyal et al., 2021). SimpleView projects the
point cloud from six orthogonal views: front, right, back, left,
top, and bottom. In addition, we also include the views of the
upper/bottom-front/back-left corners based on the observa-
tion from Zhang et al. (2022) that the left view is the most
informative for few-shot recognition. For each view, a point
with a 3Dcoordinate is projected onto a pixel on the 2D image
plane, and its depth value is used as the pixel intensity, which
is repeated three times for the RGB channels. Finally, all the
resulting images are upsampled to (224, 224) to align with
CLIP’s settings.

We train the model using the Stochastic Gradient Descent
(SGD) optimizer with an initial learning rate of 2e-4 and a
cosine annealing schedule to reduce the learning rate grad-
ually. We also employ a warmup strategy of 10 epochs; the
maximum number of training epochs is set to 250.

Fig. 5 Results of 3D point cloud recognition on the ModelNet40
dataset. Comparison of different tuning methods in the few-shot sce-
nario

6.2 Main Results

Comparison with the Vision-Only Paradigm in the Few-
Shot Scenario We evaluate our method using the few-shot
evaluation protocol adopted in CLIP (Radford et al., 2021),
which involves training with 1, 2, 4, 8, and 16 shots and
deploying models on the full test set. As shown in Fig. 5, we
first present our method’s zero-shot result (14.9%), which
was obtained by directly utilizing the CLIP model to clas-
sify each view and averaging the results of the 10 views. We
then compare the performance of different tuning models on
3D point cloud recognition. Our results show that all mod-
els gradually improve in accuracy as the number of training
samples increases. Notably, our method (green curve) out-
performs the vision-only method (orange curve) by a large
absolute improvement of 30%-40%, which is consistent with
findings in image recognition andvideo recognition, and vali-
dates the effectiveness of our approach. Additionally, we find
that our method significantly outperforms the linear probe
method (blue curve) at all training sample levels, known as
a strong few-shot learning baseline. These results confirm
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the effectiveness and superiority of our proposed approach,
which involves textual knowledge to improve transferability.

7 Conclusion and Limitation

This study presents a new paradigm for enhancing the trans-
ferability of visual recognition tasks based on the knowledge
from the textual encoder of a well-trained vision-language
model. Specifically, we initialize the classifier with semantic
targets from the textual encoder and freeze it during optimiza-
tion. We conduct extensive experiments to examine how the
paradigm functions: Firstly, we demonstrate that proper cor-
relation among target initialization is beneficial. Secondly,
we show that alignment of visual and textual semantics is
key to improving few-shot performance and shortening the
learning progress. Finally, we verify the effectiveness of our
proposed paradigm on three types of visual recognition tasks
(i.e., image, video, and 3D point cloud recognition) across
17 visual datasets.

The study still has some limitations worth diving into in
future research. i) The performance of the proposed paradigm
is restricted to how the category labels are represented. For
instance, in tasks such as human re-identification, where
the labels are often numerical values such as 0, 1, 2, etc.
In this case, we cannot transfer any semantic information
from the textual encoders, while transferring visual statistic
knowledge (i.e., LDA classifier) could be helpful. ii) The per-
formance of the proposed paradigm relies on the capacity of
the vision-language pre-training models. Although we use
CLIP as our source model in this study, obtaining models
with better performance remains an open problem. iii) The
way category names are described also impacts performance.
For example, in the action recognition dataset Something-
Something, category names such as “Putting something into
something” and “Covering something with something” lack
a clear target subject. Consequently, leveraging the prior
knowledge of pre-aligned vision-language models becomes
challenging, resulting in subpar performance.
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Appendix

A Additional Details

In this appendix, §A contains additional details for: the statis-
tics of video datasets (§A.1), visual encoder architectures
(§A.4), Batch Gather (§A.2) and LDA (§A.3).

A.1 Statistics of Video Datasets

Kinetics-400 (Kay et al., 2017) is a large-scale video dataset,
which consists of 240k training videos and 20k validation
videos in 400 different human action categories. Each video
in the dataset is a 10-second clip of an action moment anno-
tated from raw YouTube videos.
Kinetics-600 (Carreira et al., 2018) is an extensions of
Kinetics-400. Kinetics-600 consists of around 480k videos
from 600 action categories. The 480K videos are divided
into 390k, 30k, and 60k for training, validation, and test sets,
respectively. In this paper, we use its test set for zero-shot
evaluation.
UCF-101 (Soomro et al., 2012) contains 13kvideos spanning
over 101 human actions.
HMDB-51 (Kuehne et al., 2011) contains approximately 7k
videos belonging to 51 action class categories.
ActivityNet-v1.3 (CabaHeilbron et al., 2015) is a large-scale
untrimmed video benchmark, contains 19,994 untrimmed
videos of 5 to 10min from 200 activity categories.
Charades (Sigurdsson et al., 2016) is a video dataset
designed for action recognition and localization tasks. It con-
tains over 10,000 short video clips of people performing daily
activities, and consists of 157 action categories.

A.2 Batch Gather for Distributed InfoNCE

Instead of Data-Parallel Training (DP), which is single-
process, multi-thread, and only works on a single machine,
DistributedData-Parallel Training (DDP) is awidely adopted
single-program multiple-data training paradigm for single-
and multi-machine training. Due to GIL contention across
threads, per-iteration replicated model, and additional over-
head introduced by scattering inputs and gathering outputs,
DP is usually slower than DDP even on a single machine.
Hence, we develop the Distributed InfoNCE based on DDP
for large batch size and fast training. The core of the Dis-
tributed InfoNCE implementation is batch gathering. Say
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Algorithm 1Numpy-like Pseudocode that illustrates the role
of Batch Gather in Distributed InfoNCE.

1 # text_encoder: encoder network for text
input

2 # vision_encoder: encoder network for
vision input , e.g., images or videos.

3 # V: minibatch of vision inputs
4 # T: minibatch of text inputs
5 # N: the local batch size of each GPU , e.g

.,16
6 # M: the number of GPUs , e.g.,8
7 # N * M: the global batch size for multi -

gpu training , e.g.,128
8

9 # extract feature representations of each
modality

10 local_vision_features = vision_encoder(V) #
shape: [N, embed_dim]

11 local_text_features = text_encoder(T) #
shape: [N, embed_dim]

12

13 # normalization
14 local_vision_features = l2_normalize(

local_vision_features , axis =1)
15 local_text_features = l2_normalize(

local_text_features , axis =1)
16

17 # batch_gather is a function gathering and
concatenating the tensors across GPUs.

18 all_vision_features = batch_gather(
local_vision_features) # shape: [N * M,
embed_dim]

19 all_text_features = batch_gather(
local_text_features) # shape: [N * M,
embed_dim]

20

21 # scaled pairwise cosine similarities
22 # shape = [N, N * M]
23 logits_vision = logit_scale *

local_vision_features @ all_text_features.t
()

24 # shape = [N, N * M]
25 logits_text = logit_scale *

local_text_features @ all_vision_features.t
()

26

27 # The logits are then used as inputs for N*
M-way (e.g., 128-way) classification ,

28 # resulting in a loss value corresponding
to N inputs in each GPU.

29 # Then Distributed Data Parallel mechanism
takes care of averaging these across GPUs ,

30 # which becomes equivalent to calculating
the loss over NMxNM (e.g.,128 x128)
similarities.

31

Algorithm 2 The code generates the LDA coefficient for
Kinetics-400 dataset.

1 import numpy as np
2 from sklearn.discriminant_analysis import

LinearDiscriminantAnalysis as LDA
3 input = np.load(’feats_labels_400class.npz’

) # pre -extracted visual features
4 feats = input[’feats ’] # size: [24000 ,

512]
5 labels = input[’labels’] # size: [24000 ,]
6 lda = LDA()
7 lda.fit(feats , labels)
8 classifier = lda.coef_ # size: [400, 512]
9

there are M GPUs and each GPU gets N input pairs, we need
to calculate the NM×NM similarity matrix across the GPUs
for InfoNCE loss. Without batch gathering, each GPU only
computes a local N×Nmatrix, s.t. N�NM, Then the cosine
similarity and the InfoNCE loss would be calculated only for
the pairs within a single GPU and later their gradients would
be averaged and synced. That’s obviously not what we want.

The batch gathering for Distributed InfoNCE is presented
as follows. When calculating the similarity matrix (and thus
the logit scores across text inputs for each image/video),
a GPU only needs to hold M vision features, and perform
matrix product with NM text features, yielding an M×NM
matrix. This computation is distributed (i.e., sharded) across
N GPUs, and we have calculated NM×NM similarities
across the GPUs in total. The loss we employ is symmetric
and the same happens w.r.t. text inputs. As shown in Algo-
rithm 1, we also give an example pseudocode to help you
understand the statement.

A.3 LDA Classifier

Here we provide the details of LDA classifier. We directly
use the official CLIP-pretrained visual encoder to extract
video embeddings, and the visual encoder is not finetuned
on Kinetics-400. Then we perform LDA on the pre-extracted
video embeddings of the training set in Kinetics-400 to ini-
tialize W and freeze it for finetuning the visual encoder on
the Kinetics-400 dataset.

LDA is commonly used for feature classification or feature
dimensionality reduction. However, in this work, we only use
LDA for feature classification (in order to get “discriminant
coefficients” as the classifier) instead of feature dimensional-
ity reduction. For better understanding, we show the code in
Algorithm 2 which generates the LDA coefficient and there
is no dimension reduction.

A.4 Visual Encoder Architectures

We provide the full architecture details of the visual encoder
and textual encoders in this paper. Table 15 shows the
CLIP-ResNet architectures. Table 16 shows the CLIP-ViT
architectures.
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Table 15 CLIP-ResNet hyperparameters

Model Embedding Input ResNet Text Transformer
dimension resolution blocks width layers width heads

RN50 1024 224 (3, 4, 6, 3) 2048 12 512 8

Table 16 CLIP-ViT hyperparameters

Model Embedding Input Vision Transformer Text Transformer
dimension resolution layers width heads layers width heads

ViT-B/32 512 224 12 768 12 12 512 8

ViT-B/16 512 224 12 768 12 12 512 8

ViT-L/14 768 224 24 1024 16 12 768 12

ViT-L/14-336px 768 336 24 1024 16 12 768 12
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