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Abstract
The success of deep learning in recent years has lead to a rising demand for neural network architecture engineering. As
a consequence, neural architecture search (NAS), which aims at automatically designing neural network architectures in
a data-driven manner rather than manually, has evolved as a popular field of research. With the advent of weight sharing
strategies across architectures, NAS has become applicable to a much wider range of problems. In particular, there are
now many publications for dense prediction tasks in computer vision that require pixel-level predictions, such as semantic
segmentation or object detection. These tasks come with novel challenges, such as higher memory footprints due to high-
resolution data, learning multi-scale representations, longer training times, and more complex and larger neural architectures.
In this manuscript, we provide an overview of NAS for dense prediction tasks by elaborating on these novel challenges and
surveying ways to address them to ease future research and application of existing methods to novel problems.
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1 Introduction

With the advent of deep learning, features are no longer man-
ually designed but rather learned in an end-to-end fashion
from data, resulting in impressive results for various prob-
lems, such as image recognition (Krizhevsky et al., 2012),
speech recognition (Hinton et al., 2012), machine transla-
tion (Bahdanau et al., 2015), or reasoning in games (Silver
et al., 2016). This, however, leads to a new design problem:
the feature engineering process is replaced by engineering
neural network architectures (Cheng et al., 2020a; Girshick,
2015; Girshick et al., 2014; Goodfellow et al., 2014; He et
al., 2016; Howard et al., 2017; Liu et al., 2016; Long et al.,
2015; Mohan & Valada, 2020; Redmon et al., 2016; Ren
et al., 2015; Ronneberger et al., 2015; Simonyan & Zisser-
man, 2015; Szegedy et al., 2016, 2017; Tan & Le, 2019;
Zhang et al., 2018; Zhong et al., 2020b). This architectural
engineering is especially prevalent for dense prediction tasks
in computer vision, such as semantic segmentation, object
detection, optical flow estimation, or disparity estimation.
These tasks typically require complex neural architectures,
often composed of various components, each having a dif-
ferent purpose, e.g., extracting features at different scales,
feature fusion across levels, or dedicated architectural heads
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for, e.g., generating bounding boxes or making class predic-
tions.

Unfortunately, manually designing neural network archi-
tectures comes with some major drawbacks, reminding of
the drawbacks of manually designing features. Firstly, it is
a time-consuming and error-prone process, requiring human
expertise. This dramatically limits access to deep learning
technologies since architecture engineering expertise is rare.
Secondly, performance will be limited by the human imag-
ination. Inspired by learning features from data rather than
manually designing them, it seems natural to also replace the
manual architecture design by learning architectures from
data. This process of automating architectural engineering is
commonly referred to as neural architecture search (NAS).

Until recently, NAS research hasmostly focused on image
classification problems, such as CIFAR-10 or ImageNet,
due to the demand for computational resources in the order
of hundreds or thousands of GPU days that early meth-
ods required (Real et al., 2019; Zoph et al., 2017, 2018).
Compared to image classification, dense prediction tasks
have barely been addressed even though they are of high
practical relevance for applications, such as autonomous
driving (Huang & Chen, 2020) or medical imaging (Litjens
et al., 2017). These problems are intrinsically harder than
image classification for several reasons: they typically come
with longer training times as well as higher memory foot-
prints due to high-resolution data, and they also require more
complex neural architectures. These differences lead to even
higher computational demands and make the application of
many NAS approaches problematic. Early works on NAS for
dense prediction tasks (e.g., Chen et al., 2018b; Ghiasi et al.,
2019) are thus limited to optimizing only small parts of the
overall architectures, while still requiring enormous compu-
tational resources even though employing various tricks for
speeding up the search process.

Fortunately, recent weight-sharing approaches via one-
shot-models (Bender et al., 2018; Cai et al., 2019; Liu et al.,
2019b; Pham et al., 2018; Saxena & Verbeek, 2016; Xie et
al., 2019) have dramatically reduced the computational costs
to essentially the same order of magnitude as training a sin-
gle network, making NAS applicable to a much wider range
of problems. This led to an increasing interest in develop-
ing NAS approaches tailored toward dense prediction tasks.
However, due to the complex nature of the problem, these
approaches vary vastly, as illustrated in Fig. 1. With this sur-
vey,we aim to provide guidance on themost important design
decisions.

This manuscript is structured as follows: in Sect. 2, we
briefly review NAS and discuss its application for dense pre-
diction tasks in general. In the remaining sections, we focus
on the specific problems of semantic segmentation (Sect. 3)
and object detection (Sect. 4) and conclude by discussing
other less-studied but promising applications (Sect. 5).

2 Towards NAS for Dense Prediction Tasks

In this section, we first describe the general framework of
neural architecture search (NAS) in Sect. 2.1. We then dis-
cuss the challenges of NAS for dense prediction tasks in
Sect. 2.2. Then, a few basic elements of NAS, namely, the
search space, the search strategies, performance estimation
strategies, and hardware-awareness is briefly discussed in
the context of classification and dense prediction tasks in
Sects. 2.3, 2.4, 2.5, and 2.6, respectively.

2.1 General NAS Framework

Neural architecture search (NAS) is typically framed as a
bi-level optimization problem

min
A∈A

Lval
(
Dval , A, w∗

A

)

s.t . w∗
A ∈ argmin

w
Ltrain(Dtrain, A, w),

with the goal of finding an optimal neural network architec-
ture A within a search space A with respect to a validation
loss function Lval , a validation data set Dval and weights
w∗

A of the architecture obtained by minimizing a training
loss functionLtrain on a training data set Dtrain . NAS meth-
ods can be categorized based on three factors (Elsken et al.,
2019b), namely, search space, search strategy, and perfor-
mance estimation. Figure2 presents the different dimensions
of NAS algorithm. Please refer to the surveys by Elsken et
al. (2019b), Wistuba et al. (2019) or White et al. (2023) for
a more thorough general NAS overview.

2.2 Challenges of Dense Prediction Tasks for NAS

Many NAS methods (Chu et al., 2021; Xu et al., 2019b;
Zoph et al., 2018) have shown that improvements in archi-
tectures optimized for classification tend to also improve the
performance of dense prediction tasks such as semantic seg-
mentation and object detection. However, these architectures
are sub-optimal as theymainly bring performance boosts due
to capturing generic image features. A task-specific archi-
tecture will be an optimal solution as shown by, e.g., Tan et
al. (2020). Here, EfficientNet-B3 Tan and Le (2019), a NAS-
based classification network, with an FPN achieves about 4%
lower mean average precision for the task of object detection
than the task-specific NAS-based BiFPN combination. This
is mainly due to the fact that the upstream task of classi-
fication needs only global contextual features whereas, the
downstream task of object detection, requires highly precise
localization features as well resulting in a vast difference
between them. In other terms, the objective that is optimized
during searching for architecture is different from the even-
tual objective of interest, i.e., there is an optimization gap.
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Fig. 1 Visualization of the widely differing architecture search pro-
cesses. Left: illustration of the overall architecture and which compo-
nents of the architecture are searchable. DPC Chen et al. (2018b) fix
the encoder and search for a dense prediction cell to encode multi-
scale information, while Auto-DeepLab Liu et al. (2019a) search for
the encoder and augment it with a fixed module for multi-scale fea-
ture aggregation. Lastly, HR-NAS search for all involved components
of the network. DPC employs a simple blackbox optimization strat-
egy, namely a combination of random search and local search, while

Auto-DeepLab and HR-NAS leverages a one-shot model and gradient-
based NAS (Liu et al., 2019b). Right: summary of (i) the different
training phases (pretraining, architecture search, re-ranking, re-training,
and final evaluation), (ii) non-searchable components in each stage,
and (iii) parameters that are optimized in each stage (weights asso-
ciated with the non-searchable architectural component wns , weights
associated with the searchable architectural component ws , searchable
architectural components αs )

Fig. 2 Different dimensions of NAS algorithms. A search strategy selects an architecture from a predefined search space. The architecture is passed
to a performance estimation strategy, which returns the estimated performance to the search strategy
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Image classification tasks generally involve searching for
encoder-like architectures over smaller spatial resolutions.
The dataset available for these tasks can have training sam-
ples in the millions. CIFAR-10 (Krizhevsky, 2009) and
ImageNet (Russakovsky et al., 2015), two of the popular
classification task datasets have a resolution of 32 × 32 and
224 × 224, respectively. Additionally, ImageNet consists of
over 14 million images. In contrast, dense prediction tasks
that are far more complicated than classification tasks neces-
sitate the incorporation of more complex architectures, such
as multi-scale feature aggregation (Lin et al., 2017)) and
long-range context capturing (Chen et al., 2018a) modules
while operating on datasets of smaller samples with higher
spatial resolution. For example, Cityscapes (Cordts et al.,
2016), one of the prominent datasets for semantic segmenta-
tion consists of about 5K images of resolution 1024× 2048.
The increase in complexity of tasks significantly increases the
need for higher resolution images and accordingly intensive
annotation efforts. For instance, highly accurate localization
of bounding boxes in object detection or of keypoints in
pose estimation as well as segmentation of fine structures in
semantic segmentation, all require relatively high-resolution
images compared to classification tasks. This results in the
existing wide disparity between classification and dense pre-
diction task needs.

Hence, when applying NAS for dense prediction prob-
lems, researchers do not only have to address novel task-
specific challenges, but rather they also have to deal with the
even larger optimization gap, which is already existing for
image classification problems (Xie et al., 2021), due to an
increase in the task complexity.

These challenges can easily lead to high computation costs
and memory footprints or even computational infeasibility
due to resource constraints. Additionally, dense prediction
tasks involve a complicated training pipelines due to the norm
of pre-training on datasets other than the target for increasing
generalization to achieve better performance. To summarize,
NAS approaches for dense prediction tasks should be able
to capture architectural variations that are needed for higher
resolution images while being efficient in search.

2.3 Search Space

The search space defines which architectures can be discov-
ered in principle. For the classification tasks, we search for
the encoder architecture while for dense prediction tasks, in
addition to the encoder we also search for multi-scale, long-
range context encoding modules and task-specific heads.
Searchable components of architecture can be architectural
hyperparameters, such as the number of layers, the number
of filters, or kernel sizes for convolutional layers, but also the
layer types themselves, e.g., whether to use a convolutional
or a pooling layer. Furthermore, NAS methods can optimize

in which form layers are connected to each other, i.e., they
search for the topology of the graph associated with a neural
network.

Building prior knowledge about neural network architec-
tures into a search space can simplify the search. For instance,
for the encoder of classification networks, inspired by pop-
ular manually designed architectures, such as ResNet (He
et al., 2016) or Inception-v4 (Szegedy et al., 2017), Zhong
et al. (2018) and Zoph et al. (2018) proposed to search for
repeatable building blocks (referred to as cells) rather than
the whole architecture. These building blocks are then sim-
ply stacked in a pre-defined manner to build the full model.
Restricting the search space to repeating building blocks lim-
itsmethods to only optimize these building blocks rather than
also discovering novel connectivity patterns andways of con-
structing architectures on amacro level from a set of building
blocks. Yang et al. (2020) show that themost commonly used
search space is indeed very narrow in the sense that almost all
architectures perform well. As a consequence, simple search
methods, such as random search can be competitive (Elsken
et al., 2017; Li & Talwalkar, 2019; Yu et al., 2020b) on clas-
sification tasks. We note that this does not necessarily hold
for richer, more diverse search spaces (Bender et al., 2020;
Real et al., 2020). In contrast, one could also build as lit-
tle prior knowledge as possible into the search space, e.g.,
by searching over elementary mathematical operations (Real
et al., 2020), however, this would significantly increase the
search cost. In general, there is typically a trade-off between
search efficiency and the diversity of the search space.Hence,
for dense prediction tasks, it is common to employ already
pre-optimized blocks from state-of-the-art image classifica-
tion networks (Bender et al., 2020; Chen et al., 2019; Guo
et al., 2020a; Shaw et al., 2019; Wu et al., 2019a), such as
MobileNetV2 (Sandler et al., 2018), MobileNetV3 (Howard
et al., 2019) or ShuffleNetV2 (Ma et al., 2018) and solely
search over their architectural hyperparameters (e.g., the ker-
nel size or the number of filters).

On the other hand, for other parts of the architecture,
search spaces are typically built around well-performing
manually designed architectures. For example, Chen et al.
(2018b) search for a dense prediction cell inspired by
operations from DeepLab (Chen et al., 2017, 2018a) and
PSPNet (Zhao et al., 2017), Xu et al. (2019a) build their
space to contain FPN (Lin et al., 2017) and PANet (Liu et
al., 2018b), and the space of Liu et al. (2019a) contains the
architectures proposed by Noh et al. (2015), Newell et al.
(2016) and Chen et al. (2017).

2.4 Search Strategies

Common search strategies used to find an optimal architec-
ture within a search space for classification tasks are black-
box optimizers, such as evolutionary algorithms (Elsken et
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al., 2019a; Liu et al., 2018a; Real et al., 2017, 2019; Stan-
ley & Miikkulainen, 2002), reinforcement learning (Baker
et al., 2017a; Zhong et al., 2018; Zoph et al., 2017, 2018)
or Bayesian optimization (Kandasamy et al., 2018; Men-
doza et al., 2016; Oh et al., 2019; Ru et al., 2021b;
Swersky et al., 2013; White et al., 2019). For dense pre-
diction tasks, e.g., Ghiasi et al. (2019), Chen et al. (2020a),
Du et al. (2020), Wang et al. (2020b), Bender et al.
(2020) use reinforcement learning while Chen et al. (2019)
employ an evolutionary algorithm. However, these meth-
ods typically require training hundreds or thousands of
architectures and thus result in high computational costs.
Several newer methods tailored towards NAS go beyond this
blackbox view to overcome these immense computational
costs.

For instance, a currently (as of 2022) prominent class
of methods are one-shot approaches (Bender et al., 2018;
Pham et al., 2018; Saxena & Verbeek, 2016), which we
discuss in more detail in the next Sect. 2.5. One-shot
models enable gradient-based optimization of the architec-
ture via a continuous relaxation of the architecture search
space (Liu et al., 2019b). In their work, the authors, com-
pute a convex combination from a set of operations O =
{o0, . . . , om} instead of fixing a single operation oi (eg. con-
volution or pooling). Hence, with the given input and output
layer, x and y, respectively. The output y is computed as
follows

y =
m∑

i=0

αi oi (x), αi ≥ 0,
m∑

i=0

αi = 1 (1)

where the convex coefficients αi effectively parameterize the
network architecture. Following, the networkweights and the
network architecture are optimized by alternating gradient
descent steps on training data for weights and on valida-
tion data for architectural parameters such as α. Eventually,
a discrete architecture is obtained by choosing the opera-
tion i∗ with i∗ = argmaxi αi for every layer. In this line of
research, rather than making a discrete decision for choosing
one out of many candidate operations (such as convolution or
pooling), a weighted sum of candidates is used, whereas the
weights can then be interpreted as a parameterization of the
architecture. Many methods for dense prediction tasks (Guo
et al., 2020a; Liu et al., 2019a; Saikia et al., 2019; Xu et
al., 2019a; Zhang et al., 2019) also use these gradient-based
techniques, often in its first-order approximation for compu-
tational reasons.

2.5 Performance Estimation Strategies

The objective function to be optimized by NAS methods is
typically the performance an architecture would obtain after

running a predefined (or also optimized) training procedure.
However, this true performance is typically too expensive
to evaluate. Therefore, various methods for estimating the
performance have been developed. A common strategy to
speed up training is to employ lower-fidelity estimates [e.g.,
training for fewer epochs, training on subsets of data or down-
sampled images, and using down-scaled architectures in the
search phase (Baker et al., 2017b; Chrabaszcz et al., 2017;
Zela et al., 2018; Zhou et al., 2020; Zoph et al., 2018)]. For
dense prediction tasks, computational costs can be further
saved by employing common approaches that include the
use of pre-trained models (Chen et al., 2018b, 2020a; Guo
et al., 2020a; Nekrasov et al., 2019; Wang et al., 2020b),
caching of features generated by a backbone (Chen et al.
2018b; Nekrasov et al. 2019; Wang et al. 2020b), or using
not just a smaller but potentially also different backbone
architecture (Chen et al., 2018b; Ghiasi et al., 2019) in
the search process. Lower-fidelity estimates are often used
in multiple search phases. In the first stage, architectures
are screened in a setting where they are cheap to evalu-
ate (e.g., by using the aforementioned tricks). Once a pool
of well-performing architectures or candidate operations is
identified, this pool is re-evaluated in a setting closer to the
target setting (e.g., by scaling the model up to the target size
or by training for more iterations). For example, Chen et
al. (2018b) explore 28,000 architectures in the first stage
with a downscaled and pre-trained backbone, which is frozen
during the search. The authors then choose the top 50 archi-
tectures found and train all of them fully to convergence.
Rather than selecting top-performing architectures,Guo et al.
(2020a) propose a sequential screening of the search space
to identify and remove poorly performing operations from
the search space. All components of the architecture can
then be jointly optimized on the reduced search space, which
would have been infeasible on the full space due to memory
limitations.

Another popular approach is to employ weight sharing
between architectures within one-shot models (Bender et
al., 2018; Liu et al., 2019b; Pham et al., 2018; Saxena
& Verbeek, 2016) as this overcomes the need for training
thousands of architectures. Rather than considering different
architectures independently of each other, a single one-
shot model is built to subsume all possible elements of the
search space. As such instead of applying a single opera-
tion (such as 3 × 3 convolution) to a node, the one-shot
model comprises several candidate operations for each node
(namely, 3× 3 convolution, 5× 5 convolution, max pooling,
etc).

Individual architectures are then simply subgraphs of the
one-shot model and the weights of the one-shot model are
shared across subgraphs. This means that, given the one-
shot model, one can jointly train all architectures from
the search space by only a single training run, namely by
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training the one-shot model, rather than training each archi-
tecture independently. The performance of an architecture
can then be obtained by inheriting the corresponding weights
from the one-shot model and evaluating the architecture.
While one-shot methods are very popular due to their effi-
ciency, they also come with two major drawbacks: (i) these
approaches implicitly assume that the performance of archi-
tectures when evaluated with weights inherited from the
one-shot model strongly correlates with the performance
with weights obtained by independently training the archi-
tecture. Whether this assumption holds, or in which settings
it holds, is an ongoing discussion (Bender et al., 2018; Pour-
chot et al., 2020; Xie et al., 2021; Yu et al., 2020a, b; Zela et
al., 2020b; Zhang et al., 2020). (ii) One-shot approaches have
been shown to not work robustly across datasets and bench-
marks for various reasons (Chen & Hsieh, 2020; Elsken et
al., 2021; Wang et al., 2021; Xie et al., 2021; Zela et al.,
2020a).

Other works for the classification task, focus on predicting
the performance of neural network architectures, e.g., via
trainable surrogatemodels (Dudziak et al., 2020; Siems et al.,
2020; Wen et al., 2020), considering learning curves (Baker
et al., 2017b; Domhan et al., 2015; Klein et al., 2017; Ru
et al., 2021a) or zero-cost methods that are typically based
on the statistics of an architecture or a single forward pass
through the architecture (Abdelfattah et al., 2021; Lee et al.,
2019; Mellor et al., 2021). We refer the interested reader to
White et al. (2021) for a recent overview and comparison of
such approaches.

2.6 Hardware-Awareness

Recently, many researchers also consider the resource con-
sumption of neural networks, e.g., in terms of latency, model
size, or energy consumption as objectives inNAS, since these
are severely limited in many applications of deep learning.
The importance of this fact is reflected by a whole line of
research onmanually designing top-performing yet resource-
efficient architectures (Gholami et al. 2018; Howard et al.
2017; Iandola et al. 2016; Ma et al. 2018; Sandler et al. 2018;
Zhang et al. 2018). Many NAS methods also consider such
requirements for dense prediction tasks by now, e.g., Zhang
et al. (2019), Liu et al. (2019a), Shaw et al. (2019), Lin et
al. (2020), Li et al. (2020), Chen et al. (2020a, b), Bender et
al. (2020) and Guo et al. (2020a). Typically this is achieved
by either adding a regularizer penalizing excessive resource
consumption to the objective function (Cai et al., 2019; Tan
et al., 2019) or by multi-objective optimization (Elsken et
al., 2019a; Lu et al., 2019). We refer the interested reader to
Benmeziane et al. (2021) for a more general discussion on
this topic (Fig. 3).

3 Semantic Image Segmentation

3.1 Design Principles

Semantic segmentation refers to the task of assigning a class
label to each pixel of an image. The semantic segmentation
model is trained to learn a mapping f : Rw×h×c �→ P

w×h ,
where w × h refers to the spatial resolution, c to the num-
ber of input channels, and P = {(p0, . . . , pC−1) | pi ∈
[0, 1] ∧ ∑C−1

i=0 pi = 1}, with C being the number of
classes. In contrast to image classification, which focuses
on global semantic information, this task necessitates effec-
tive integration of global and local information. However,
the object location precision needed in this task far super-
sedes what is needed in dense prediction tasks like object
detection, human pose estimation, etc. Further, as discussed
in Sect. 2.2, the datasets for these tasks consists of a rela-
tively small number of high-resolution images due to huge
annotation effort requirement in terms of cost and time.
Thus, NAS approaches for these tasks need to redefine
search spaces to embody the task-specific needs while being
computationally plausible. Popular data sets for semantic
segmentation include PASCAL VOC (Everingham et al.,
2015), Cityscapes (Cordts et al., 2016), ADE20K (Zhou et
al., 2016, 2017), CamVid (Brostow et al., 2008a, b), and MS
COCO (Lin et al., 2014).

Several years of manual neural architecture engineering
for semantic segmentation have identified several concepts
that can be used when designing a search space for NAS:

1. Encoder–decoder macro-architecture (Long et al., 2015;
Ronneberger et al., 2015): “what is in the image?” and
“where?” are the two questions that need to be addressed
for each pixel of the image to solve the task of semantic
segmentation.Apopularway is to address these questions
one at a time in a sequential manner. First by capturing
long-range global or semantic context to address “what
is in an image?”. Such representations can be generated
by increasing the effective receptive field of a network.
A common way to do so is by employing an encoder
that gradually decreases the spatial resolution of its input
while increasing the number of convolution layers to out-
put high-level or semantically rich low-resolution feature
representations. Doing so allows an increase in the recep-
tive field in a computationally efficient way and is akin
to image classification encoders. As such feature extrac-
tors pre-trained for image classification on ImageNet are
often used as the encoder for this task. Following, to
answer the “where?” question, a decoder is employed
that gradually upsamples the high-level low-resolution
features to generate high-resolution representations that
encompass both semantic and fine features to produce
the pixel-level semantic predictions.
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Fig. 3 High-level illustration of architectures employed for different
tasks. Top left: typical encoder-like architecture (blue) for image clas-
sification problems; predictions are made based on low-resolution but
semantically strong features. Top right: typical architecture for tasks
like semantic segmentation; semantically strong features are generated
for all scales through augmenting the encoder with a decoder (red). Bot-

tom: semantically strong features from all scales serve as the input for
the object detection head (green); note that the feature maps within the
encoder and decoder might be densely connected and feature maps in
the decoder might be connected to any other feature map in the encoder
as well as the decoder (Color figure online)

2. Skip connections (Ronneberger et al., 2015): while the
encoder–decodermacro-architecture efficiently addresses
the “what?”’ question, a decrease in spatial resolution
also comes with the loss of localization features. As
such the decoder has limitations on how accurate fine
features it can recover from the semantically rich low-
resolution representations. This problem is commonly
addressed by incorporating skip connections at a higher
resolution between the encoder and decoder. The popular
U-Net architecture (Ronneberger et al., 2015) introduces
these skip connections between identical spatial resolu-
tions of the encoder and the decoder to supplement the
representations on the decoder side with adequate spa-
tial information resulting in improved object boundary
segmentations.

3. Common building blocks: building blocks used in neural
architectures for image classification, such as residual
or dense blocks, can be readily re-used in the encoder
architecture. Moreover, search spaces for neural cells for
image classification can also be utilized when applying
NAS to the encoder part of semantic segmentation.

4. Multi-scale integration: augmenting encoder–decoder-
like macro-architectures with a specific component that
supports multi-scale integration helps capture long-range
dependencies. (Atrous) spatial pyramid pooling (ASPP)

(Chen et al., 2018a; He et al., 2015) is one popular
approach to this.

5. High-resolution macro-architecture (Fourure et al., 2017;
Wang et al., 2020a): high-resolution representations
are necessary for semantic segmentation as it is a
position-sensitive task but at the same time requires low-
resolution representations to capture contextual features.
The encoder–decoder architecture follows the scheme
of sequentially generating high-level low-resolution fea-
tures first from low-level high-resolution representations
to obtain contextual information. And then recovering
the spatially precise high-level high-resolution features
from the computed low-resolution features. In con-
trast, a high-resolution network focuses on maintain-
ing high-resolution representations that are semantically
strong while being spatially precise throughout. These
networks usually achieve this by maintaining high-to-
low resolution convolution streams in parallel. In the
aforementioned parallel streams, often, the low-level
high-resolution features are aggregated with the upsam-
pled high-level low-resolution features to boost high-
resolution representations. Wang et al. (2020a) futher
improves the fusion scheme by opting for aggregation of
features in a bidirectional manner. Thus, boosting both
high- and low-representations. A NAS search space for
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semantic segmentation based on these design principles
can thus learn

(a) building blocks/cells used in the encoder,
(b) the downsampling strategy of the encoder,
(c) the building blocks/cells of the decoder,
(d) the upsampling strategy of the decoder,
(e) where and how to add skip connections between

encoder and decoder
(f) how to perform multi-scale integration, and
(g) building blocks to maintain strong high-resolution

representations.

Learning only (a) and/or (c) would be similar to the so-
called micro search since the backbone/decoder is fixed and
the NAS algorithm only searches for the optimal structure
of the building blocks. On the other hand, we shall refer
to a macro search for approaches that optimize for at least
one of the other components besides (a) and/or (c). While
the components above are the canonical components to be
optimized, we would also like to note that a promising direc-
tion for future work on NAS for semantic segmentation is to
define search spaces that allow exploring architectures that
do not follow the conventional design principles (Du et al.,
2020).

3.2 NAS for Semantic Segmentation

In this section, we present various NAS approaches for
semantic segmentation. For ease of discussion, we group
the methods based on search strategies, namely, gradient-
based, random and local search, reinforcement learning, and
evolutionary algorithms. Subsequently, when applicable, we
divide the methods based on the components of the network
searched. Here, we assume a network consists of the back-
bone and multi-scale feature extractor that encapsulates the
decoder as its twomajor components. Therefore, the possible
sub-categories are backbone, multi-scale feature extractor,
and joint. Table1 presents the overview of the methods dis-
cussed in this section. Additionally, Table2 reports the mIoU
performance of methods benchmarked on Cityscapes and
PASCAL VOC.

3.2.1 Gradient-Based

Multi-scale Feature Extractor Wu et al. (2019b) follows the
encoder–decoder layout and focuses on finding a connec-
tivity structure for the decoder. First, a pre-trained classifier
is transformed into a densely connected network referred to
as Fully Dense Network (FDN). Following the connectiv-
ity between the encoder and the decoder as well as within
the decoder is made learnable. The approach aims to (1)
select the most important decoder stages from the L num-

ber of stages, and (2) the input features for each selected
stage. Each connection in FDN contains a binary weight to
indicate its importance. However, to facilitate optimization,
the weights are relaxed from discrete to continuous numbers
between 0 and 1 via a novel sparse loss function that forces
the weights to be sparse. Finally, the optimization is done
in a differentiable manner with gradient descent. Further, to
speed up the search process and reduce memory footprint,
it uses lightweight MobileNet-V2 (Sandler et al., 2018) as
the pre-trained image classifier and assumes the connectiv-
ity structure discovered is equally optimal for other stronger
backbones. The search time amounts to about 18h on a single
Nvidia P100 GPU with 16GB memory.

Backbone Auto-DeepLab (Liu et al., 2019a) builds upon
DARTS (Liu et al., 2019b) to perform a search for the optimal
backbone. It uses the initially designed DARTS search space
for image classification to learn optimal cell structure at the
micro level while incorporating task-specific principles at the
macro level. To perform amacro level search, it first employs
a fixed two-layer stem structure at the beginning that scales
down the spatial resolution by a factor of 2 at each layer.
Following, a total of L number of layers with the unknown
spatial resolution are optimized where each layer may differ
in spatial resolution by at most 2. More specifically, a cell
Cl,s at layer l that outputs a tensor with spatial resolution
s, can learn to process input tensors from previous layers
with output tensors with resolutions s/2, s or 2s. This is per-
formed by continuously relaxing these discrete choices as it
is done for the operation choices inside the cells. This results
in multiple network outputs, each having a different spatial
resolution. Each of these outputs is connected with an ASPP
module (Chen et al., 2018a). For optimizing the architectural
weights (of both cell and macro architecture), the authors
utilize first-order DARTS where two disjoint sets generated
by partitioning the training set are used for the alternating
optimization strategy. The use of disjoint sets prevents the
architecture from overfitting on the small training set that
is usually available for semantic segmentation. Further, the
search is performed using crops from half the resolution of
the image to avoid high computation requirements caused by
high-resolution images.

A line of follow-up work improves Auto-DeepLab in var-
ious directions. Shaw et al. (2019), Chen et al. (2020b),
and Lin et al. (2020) search for efficient architectures (e.g.,
by means of latency) by adding a regularizer for hardware-
costs and propose several powerful search spaces. Shaw et
al. (2019) employs stronger building blocks such as inverted
residual blocks while constraining the macro-architecture
with manually designed search spaces of different sizes.
Chen et al. (2020b) introduces zoomed convolution and
group convolution in the search space for cell structure to
obtain efficient building blocks while increasing flexibility
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through the choice of different channel expansion ratios. To
do so, they propose a differentiably searchable super ker-
nel that restricts searching of the expansion ratio within a
single conventional kernel and sampling from a pre-defined
large set of ratios. Gumbel-Softmax is used to implement
the aforementioned super kernel. Further, by having each of
the L-layer cell outputs comprising two feature maps of dif-
ferent resolutions, the macro search space allows searching
of multi-resolution branches. However, to limit the compu-
tation cost of the expanded search space, the search begins
from ×8 scaled-down version of the original resolution in
contrast to×4 ofAuto-DeepLab. On the other hand, Lin et al.
(2020) eliminates the usual constraint of cell-sharing across
thewhole architecture by using a graph convolution network-
based guiding module to model inter-cell relationships, thus,
making efficient search possible. Additionally, Zhang et
al. (2021) addresses DARTS’ (and therefore also Auto-
DeepLab’s) problem of keeping the entire one-shot model
in memory; this is done by sampling paths in the one-shot
model rather than training the entire model at once, similar
to the approaches by Xie et al. (2019) and Dong and Yang
(2019). Due to the memory efficiency, the search is directly
conducted on the target space and data set rather than employ-
ing a proxy task.

Semantic segmentation is particularly important for med-
ical image analysis (Ronneberger et al., 2015) and con-
sequently, NAS methods are also applied to optimize on
medical image data sets. NAS-Unet (Weng et al., 2019)
employs ProxylessNAS (Cai et al., 2019) to automatically
search for a set of downsampling and upsampling cells that
are connected using an Unet-like (Ronneberger et al., 2015)
backbone. Zhu et al. (2019) considers 3D medical image
segmentation and extendsDARTS to encoder–decoder archi-
tectures used for volumetric medical image segmentation.

Multi-scale Feature Extractor Rather than searching for
optimized building blocks for the encoder and/or the decoder,
Wu et al. (2019b) propose to search for the connectivity pat-
tern between the two components, which is typically fixed
in other work. The encoder and decoder are first densely
connected, where each connection is weighted by a real-
valued parameter. This real-valued parameterization of the
connections allows for gradient-based optimization as in
DARTS (Liu et al., 2019b). The authors also propose a loss
function for inducing a sparse connectivity pattern.

Joint While previous work considers optimizing either
the encoder or decoder, Customizable Architecture Search
(CAS) (Zhang et al., 2019) searches for both an optimal
backbone and multi-scale feature extractor, however in a
sequential manner. For the backbone, a normal cell (which
preserves the spatial resolution and number of feature maps)
and a reduction cell (which reduces the spatial resolution

and increases the number of feature maps) are optimized.
Once these two cells have been determined, a multi-scale
cell is optimized to learn how to integrate spatial information
from the backbone. Following, HR-NAS (Ding et al., 2021)
focuses on the better encoding of multiscale image contexts
in the search space while maintaining high-resolution rep-
resentations that are easily customizable for different dense
prediction tasks in addition to semantic segmentation. To do
so, they define a multi-branch search space comprising con-
volutions and transformers. It defines the constitution of the
network in terms of twomodules, namely, parallel and fusion.
Starting with a high-resolution branch at a feature resolution
of 1/4 of the input image size, the fusion module gradually
adds high-to-low resolution branches while the parallel mod-
ule connects the multi-resolution branches. The searching
block used for both modules is the same and consists of two
paths. The first path is a MixConv (Tan & Le, 1907) whilst
the second path is a lightweight transformer that aims to cap-
ture better global contexts. To enable searching for various
tasks, HR-NAS introduces a resource-aware channel/query-
wise fine-grained search strategy that adopts the progressive
shrinking NAS paradigm to generate lightweight models by
flexibly removing convolutional channels and transformer
queries while exploring optimal features for each task.

3.2.2 Random and Local Search

Chen et al. (2018b) employ NAS for dense prediction tasks
in order to search for a better multi-scale feature extractor
called dense prediction cell (DPC) given a fixed backbone
network. The proposed search space is a micro search space
that contains, e.g., atrous separable convolutions with dif-
ferent rates or average spatial pyramid pooling inspired by
DeepLabv3 (Chen et al., 2018a). They run a combination of
random search and local search to optimize the dense predic-
tion cell given a fixed, pretrained backbone, which, despite
the use of a series of proxy tasks, still required 2600 GPU
days. In follow-up work, Nekrasov et al. (2020) extend their
work to semantic video segmentation by learning a dynamic
cell that learns to aggregate the information coming from
previous and current frames to output segmentation masks.

3.2.3 Reinforcement Learning

Multi-scale Feature Search Nekrasov et al. (2019) considers
a fixed encoder network and searches for an optimal decoder
architecture together with the respective connections to the
encoder layers. The decoder architecture is modeled as a
sequence of cells sharing the same structure that processes
the inputs from the encoder layers. The authors utilize various
heuristics to speed-up architecture search. For example, they
freeze the weights of the encoder network and train only the
decoder part (as already done inDPC) and early-stop training
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of architectures with poor performance. Moreover, a knowl-
edge distillation loss (Hinton et al., 2015) is employed as
well as an auxiliary cell to reduce the training time. Rather
than using random and local search, a controller trained
with reinforcement learning is employed to sample candi-
date architectures, similar to Zoph et al. (2018).

3.2.4 Evolutionary Algorithm

Backbone for the task of 3D medical image segmenta-
tion, Coarse-to-Fine NAS (C2FNAS) (Yu et al., 2020c)
uses a search space inspired by the one employed in Auto-
DeepLab (Liu et al., 2019a) and an evolutionary strategy
operating on clusters of similar networks to search for the
macrostructure of their model, whilst the operation choices
inside the cells of the macrostructure are randomly sampled
similarly to the protocol by Li and Talwalkar (2019).

4 Object Detection

4.1 Design Principles

Object detection (Liu et al., 2020) refers to the task of iden-
tifying if/how many objects of predetermined categories are
present in input (e.g., an image) and, for each identified
object, determining its category as well as its spatial local-
ization. Spatial localization can be represented in different
ways, with themost common one being a 2Dbounding box in
image space, encoded by a 4D real-valued vector. However,
other representations, such as pixel-wise segmentation, are
possible aswell. In this case, the task is referred to as instance
segmentation. However up to now, there is no work in this
direction to the best of our knowledge, so we focus on 2D
bounding box estimation.Wenote that in contrast to semantic
segmentation, deep learning-based object detection often has
a post-processing step that maps from dense network outputs
to a sparse set of object detections, e.g., using non-maximum
suppression. However, this post-processing is typically fixed
and not used during training; and thus also ignored during
NAS (we note that applying NAS to this post-processing
would be an interesting future direction). Moreover, deep
learning-based object detection can be split into one-stage
and two-stage approaches. Two-stage approaches first iden-
tify the presence and extent of an arbitrary object at a position
and thereupon apply a region classifier to the identified object
region to classify the category of the object and (option-
ally) refine its spatial localization. In contrast, single-stage
approaches directly predict the presence of an object, its
class, as well as its spatial localization in a single forward
pass.

Since objects can have vastly different scales, typically
multi-scale approaches are applied for single-stage object

detection. This can be achieved by either attaching “detection
heads” at layers of different spatial resolutions or by com-
bining features of different layers; effectively, this results
in certain network outputs (those corresponding to lower
resolutions) specializing on larger objects and higher res-
olution outputs on smaller ones. In this case, the dense
prediction task can be framed as f : Rw×h×c �→ [Pw×h ×
R

w×h×b,Pw/2×h/2 ×R
w/2×h/2×b, . . . ], where w × h refers

to the spatial resolution, c to the number of input channels,
b to the parameters encoding the spatial localization, and
P = {(p−1, p0, . . . , pC−1)|pi ∈ [0, 1] ∧ ∑C

i=−1 pi = 1},
with C being the number of classes and − 1 corresponding
to the “no object” class.

Many of the design principles of semantic segmentation
carry over to object detection.However, there are also notable
differences:

– Since the network requires a dense and multi-scale out-
put, a further design choice is how “detection heads”
generating these multi-scale outputs are attached to the
main network. The heads’ architecture itself is another
open design choice.

– Two-stage object detection can impose complex interde-
pendencies between the architectures of the two stages,
making the design of a search space covering both stages
together challenging.

4.2 NAS for Object Detection

In this section, we present several NAS methods for object
detection.Wefirst group the approaches based on the strategy
used for search, namely, evolutionary algorithms, gradient-
based, reinforcement learning, and local search. Following,
we sub-categorize the methods based on the components of
the network searched, if applicable. Here, we assume a net-
work consists of the backbone, multi-scale feature extractor,
and the task-specific head as its three major components.
Table3 presents the overview of the methods discussed in
this section.

4.2.1 Evolutionary Algorithms

Backbone Acknowledging the gap between the tasks of
image classification and object detection that can lead to
sub-optimal network architectures, DetNAS (Bender et al.,
2020; Chen et al., 2019) proposes a framework to facilitate
backbone search for object detection. It consists of three
steps. In the first step, DetNAS pre-trains a supernet in a
path-wise (Guo et al., 2020b) manner where in each itera-
tion a single path is sampled for feedforward and backward
propagation. This ensures that the relative performance of
candidate networks is reflected by the supernet. Following,
the supernet is fine-tuned for the detection task by adding
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a detection head, again in a path-wise manner. Finally, the
architecture search is executed on the trained supernet by
using an evolutionary controller to select and evaluate paths
in the supernet. The search space is designed based on the
light-weight ShuffleNetv2 (Ma et al., 2018) block to be com-
putationally feasible.

Multi-scale Feature Search OPANAS (Liang et al., 2021)
proposes a novel search space of FPNs comprising six hetero-
geneous information paths, namely, top-down, bottom-up,
fusing-splitting, scale-equalizing, skip-connect, and none.
Here, the FPN candidates are represented by a densely-
connected acyclic graph, and an efficient one-shot search
method is employed to obtain the optimal path aggregation
architecture. To do so, OPANAS first trains a super-net and
then uses an evolutionary algorithm to choose the optimal
candidate. It performs the search on an input size of 800×500
and samples 1/5 images from the training set to reduce the
search cost. The optimal architecture found then is trained
on 1333 × 800 input resolution.

Joint SM-NAS (Yao et al., 2020) presents a two-stage
coarse-to-fine search strategy to find an optimal end-to-end
object detection framework. It focuses on first searching for
the best combination of backbone, multi-scale feature extrac-
tor, region-proposal network as well as detection head (either
one- or two-stage), with a set of possible candidates for
each component (e.g. ResNet or MobileNet V2 as a back-
bone or different versions of FPNs for multi-scale feature
fusion). To do so, some initial random combination of mod-
ules is generated and an evolutionary algorithm is used to
mutate the best architecture on the Parento front to provide
suitable candidate models. Following, the best-performing
combinations of these components are then fine-tuned on
a more fine-grained level, e.g., by optimizing the number
of channels in the chosen backbone to achieve the optimal
balance of low-level features for localization and high-level
features for classification. Further, iNAS (Gu et al., 2021)
proposes a device-aware search scheme that trains salient
object detection models once and subsequently finds high-
performing models with low latency on multiple devices.
It employs latency-group sampling where according to a
given latency lookup table their layer-wise search space is
divided into several latency groups. Next, to obtain a model
in a specific latency group, blocks are sampled at each layer
of the latency group. This ensures balanced samples in the
global latency range when the groups are divided adequately
even though the local latency group can remain imbalanced
resulting in an overall balanced exploration of the search
space.

4.2.2 Gradient-Based

Backbone Rather than searching for architecture from
scratch, Peng et al. (2019) proposes to transform a given,
well-performing backbone according to the need of the task.
Consequently, aiming to increase the effective receptive field
size of convolutions with dilation rates to capture long-range
contextual features with minimal loss of fine features, the
authors search over various dilation rates. For each dilation
rate, channels are grouped to allow for different dilation rates
for different groups. The parameters of convolutional kernels
are inherited from a pre-trained model and shared across all
rates to avoid additional parameters. Gradient-based archi-
tecture search on a continuous relaxation of the search space
is used to then search for the optimal dilation rates for each
channel group. In contrast, Fang et al. (2020) adapts the
backbone for object detection tasks by changing the depth,
width, or kernels of the network via parameter remapping
techniques involving batch normalization statistics, weight
importance, and dilation.

Multi-scale Feature and Head Xu et al. (2019a) propose
Auto-FPN, a method for searching for a multi-scale feature
extractor and a detection head, based on a continuous relax-
ation and gradient-based optimization as done by Liu et al.
(2019b). Again, a cell-based search space is used, for both
components. The search is conducted in a sequential man-
ner (i.e., the FPN is searched first and the head afterward) as
DARTS. Since the employed search strategy requires keep-
ing the whole one-shot model in memory, it does not allow
for a joint optimization in the considered setting. Zhong et al.
(2020a) also employs DARTS to search for a detection head.
To mitigate memory problems, they propose a more efficient
scheme for sharing representations across operations with
different receptive field sizes by re-using intermediate repre-
sentations.

Joint Guo et al. (2020a) show that the combination of indi-
vidually searched NAS backbone and multi-scale feature
extractor for object detection performs worse than the com-
bination of manually designed backbone and NAS searched
multi-scale feature extractor. As a consequence, they propose
searching over all the components of an object detection net-
work. The main challenge of searching end-to-end for such
a complex task is the ease with which it can become com-
putationally infeasible. To overcome this problem, Guo et
al. (2020a) proposes a hierarchical search. The first search
phase is conducted on a small proxy task with a rich search
space [build around FBNet (Wu et al., 2019a)] for all three
components while pruning building blocks that are unlikely
to be optimal. Notably, this allows starting with the same
set of candidate operations for all three components. Fur-
ther, by imposing a regularizer enforcing sparsity among
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the architectural parameters in the one-shot model, subop-
timal candidates can naturally be pruned away. a rich search
space [build around FBNet (Wu et al., 2019a)] for all three
components is explored with the goal of shaping the search
space by pruning building blocks that are unlikely to be
optimal. Notably, this allows starting with the same set of
candidate operations for all three components, while in prior
work the set of candidates is typically adapted to the specific
component to be optimized (Xu et al., 2019a). By impos-
ing a regularizer enforcing sparsity among the architectural
parameters in the one-shot model in the first phase, subop-
timal candidates can naturally be pruned away. Following,
in the second search phase, the resulting pruned sub-space
is used to determine an optimal architecture. Both search
phases employ gradient-based optimization for efficiency.
Furthermore, the authors penalize architectures with high
computational costs by adding a proper regularization term.

4.2.3 Reinforcement Learning

Backbone Bender et al. (2020) propose TuNAS, inspired
by ProxylessNAS (Cai et al., 2019) and ENAS (Pham et
al., 2018), for image classification and also evaluate it on
object detection, with only minor hyperparameter adjust-
ments required. In contrast to most other work, Bender et
al. (2020) trains a one-shot model from scratch directly
on the target task rather than employing pretraining. To
improve the scalability with respect to the search space, the
authors propose a more aggressive weight sharing across
candidate choices, e.g., by sharing filter weights across con-
volutions with a different number of filters. Furthermore, the
memory footprint when training the one-shot model is dra-
matically reduced by “rematerialization”, i.e., re-computing
intermediate activations rather than storing them.The authors
also propose a novel hardware regularizer allowing to find
models closer to the desired hardware cost. In a follow-up
work (Xiong et al., 2020), the performance of TuNAS is fur-
ther improved due to more powerful search space.

Multi-scale Feature and Head Search Ghiasi et al. (2019)
employ a reinforcement learning-based NAS framework
(Zoph et al., 2017, 2018) to search for NAS-FPN, an
improved feature pyramid network (FPN) (Lin et al., 2017)
yielding multi-scale features. In follow-up work, Chen et al.
(2020a) extends the search space and employsMnas-Net (Tan
et al., 2019) as a search method for not only optimizing per-
formance but also latency to find efficient networks. This
is in contrast to NAS-FPN, where lightweight architectures
are searched after manually adapting non-searchable com-
ponents to be efficient. As both NAS-FPN and Mnas-FPN
are based on expensive, black-box NAS methods that train
around 10,000 architectures, they require substantial compu-

tational resources to be run, in the order of hundreds of TPU
days.

While the aforementioned work focuses on the FPNmod-
ule, Wang et al. (2020b) additionally optimizes the object
detection head on top of themulti-scale features. This is done
by using RL to the first search for an FPN-like module and
afterward for a detection head. For the FPN module, simi-
lar to Ghiasi et al. (2019), the RL controller chooses feature
maps from a list of candidates, an elementary operation to
process, and in which way to merge it with another candi-
date. Once an optimal FPN is found, it is used to search for
a suitable head. While typically the weights of the head are
shared across all levels of the feature pyramid, Wang et al.
(2020b) also searches over an index indicating from where
on to share weights, while all layers of the head architecture
before the index can have differentweights for different pyra-
mid levels. As the backbone architecture is not optimized,
they pre-compute the output features from the backbone to
make the search more efficient.

Joint Du et al. (2020) propose to search for a single network
covering both backbone and multi-scale feature extractor
components. This approach permutes layers of the network
and searches for a better connectivity pattern between them.
We highlight that for this search space consisting of layer
permutations it is unclear how one-shot models could be
employed and thus the authors rely on the computationally
more expensive black-box optimization via RL.

4.2.4 Local Search

Backbone Jiang et al. (2020) modify an existing, well-
performing, and pretrained backbone by applying network
morphisms (Wei et al., 2016), which are commonly used in
NAS (Cai et al., 2018a, b; Elsken et al., 2017, 2019a), to
improve the backbone. Since network morphisms inherit the
performance of the parent network to the child network, the
child network does not need to be trained from scratch and
thus the authors avoid pre-training all candidate architectures
on ImageNet, which would be infeasible. In the first search
phase, a purely sequentialmodel is optimized,while a second
search phase adds parallel branches to enable more powerful
architectures.

4.2.5 Hill Climbing

Backbone Joint-DetNAS (Yao et al., 2021) integrates Neu-
ral Architecture Search, pruning, and knowledge distillation
(KD) into a unified NAS framework. Given a base object
detector, Joint-DetNAS is capable of deriving a student detec-
torwith high performancewithout the need for any additional
training. The proposed algorithm of the unified framework
comprises two processes, namely, dynamic distillation, and
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student morphism. The former process finds the optimal
teacher by training an elastic teacher pool with an integrated
progressive shrinking strategy. The teacher detectors can be
sampled from this pool without any additional cost. On the
other hand, the latter process uses a weight inheritance strat-
egy while pruning to enable flexible updating of students’
architecture. This allows the full utilization of weights from
predecessor architectures for efficient searching. Contrary
to other mainstream NAS methods, Joint-DetNAS aims to
evolve a given base detector to restrict the search space explo-
ration. It employs a hill climbing approach for searching
as it is highly compatible with the used weight inheritance
strategy while being efficient in evolving student-teacher
pairs. During the search, Joint-DetNAS starts with an ini-
tial student-teacher pair and then optimizes the student and
the teacher alternatively. In each iteration, either the student
is updated by applying an action (layer or channel prun-
ing, adding layers, and rearranging layers) or the teacher is
mutated by changing the depth or width in each backbone
stage. The evaluation of the pair can be done only in a few
epochs of training due to the advantages of the weight inher-
ence scheme.

4.2.6 Simulated Annealing

Multi-scale Feature AutoDet (Li et al., 2021) proposes a
novel search space that focuses on finding the informa-
tive connections between multi-scale features for feature
pyramids. It frames the search process as a combinatorial
optimization problem that utilizes simulated annealing (SA)
to address it. AutoDet generates a feature pyramid in two
steps. First, for each output layer, several input layers are
determined. Following, the best fusion operation for the
determined input layers is selected. Hence, the search space
consists of searching the connection topology and opera-
tion parameters. Subsequently, optimizing SA starts with a
high initial temperature and then gradually cools it down
as the number of iterations progresses. The high tempera-
ture enables AutoDet to accept solutions that are worse than
a given current solution with more frequency. As the tem-
perature cools down, SA narrows down towards the optimal
solution of the search space. The efficiency of SA allows
AutoDet to perform a search with a high input resolution of
1333 × 800 within a reasonable period (2.2 GPU days).

4.3 Quantitative Analysis

In Table 4, we report the quantitative results of the best-
performing architecture for each of the NAS methods dis-
cussed in Sect. 4.2 that are evaluated on the MS COCO
dataset. We also report a few approaches, where the search
is performed for the classification task, and the discovered
architecture is directly transferred to address the object detec-

tion task. It should be noted due to drastically varying model
complexity and changing input image resolution sizes from
onemethod to another,making a direct comparison is not fea-
sible. On comparing, NASNet-A, a direct transfer approach,
among the peer NAS for object detection approaches of sim-
ilar input resolution (such as NAS-FCOS, FAD, NAS-FPN,
AutoDet, etc.), we observe most of them outperform it. This
implies using NAS directly on dense prediction approaches
tends to yield relatively more optimal networks than direct
transfer. It is mainly because the upstream task is consid-
erably different than the downstream task, thus, creating
an optimization gap that is very significant. Further, NAS
methods that operate on higher input resolution tends to
achieve better mAP score, reinforcing the importance of
high-resolution images for accurate object detection. More-
over, methods utilizing low-resolution images or proxy tasks
with object detection-specific search space in their search
phase, are capable of discovering efficient object detectors.
However, they tend to be relatively sub-optimal in terms
of performance compared to the ones that operate on high-
resolution and the task itself.

5 Outlook: Promising Application Domains
and FutureWork

Most of theNAS research on dense prediction tasks primarily
focuses on the tasks of object detection and semantic segmen-
tation tasks. However, many other dense prediction tasks can
benefit from the application of NAS. Following, we briefly
discuss such NAS methods. Table5 presents the overview of
the methods discussed.

For example, disparity estimation can be solved in an end-
to-end fashion with encoder–decoder architectures (Mayer
et al., 2016). The first studies in this direction have already
been conducted. Saikia et al. (2019) propose AutoDispNet,
which extends the typical search space from image classi-
fication consisting of a normal and a reduction cell by an
upsampling cell in order to search for encoder–decoder archi-
tectures. The first order approximation of DARTS is used to
allow an efficient search, followed by a hyperparameter opti-
mization for the discovered architectures using the popular
multi-fidelityBayesian optimizationmethodBOHB(Falkner
et al., 2018). Cheng et al. (2020b) build upon AutoDisp-
Net by also searching for a matching network on top of the
feature extractor, inspired by recentlymanually designed net-
works for disparity estimation. Architectures discovered for
disparity estimation (Saikia et al., 2019) or semantic seg-
mentation (Nekrasov et al., 2019) have also been evaluated
on depth estimation.

AutoPose (Gong et al., 2020) framework focuses on
searching for multi-branch scales and network depth to
achieve accurate and high-resolution 2D human pose esti-
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Table 4 Performance comparison of various NAS methods for object detection

Method Image size Dataset (mIoU) Params (M)
MS COCO
Val (%) Test (%) MACs (B)

DetNAS + FPN (Chen et al., 2019) ≥ 800 42.0 − 3.8 −
DetNAS + RetinaNet ≥ 800 33.3 − − −
NATS + CascadeRCNN (Peng et al., 2019) 800 × 1200 42.0 − − −
NATS + RetinaNet 800 × 1200 37.3 − − −
TuNAS (Bender et al., 2020) 320 × 320 − 22.5 − −
MobileDets (Xiong et al., 2020) 320 × 320 28.9 28.5 2.8 7.2

SP-NAS + CascadeRCNN (Jiang et al., 2020) 1280 × 1280 − 49.1 − −
FNA + RetinaNet (Fang et al., 2020) 1088 × 800 − 33.9 133 11.7

Joint-DetNAS (Yao et al., 2021) 1080 × 720 − 43.9 145.7 −
NAS-FPN + AmoebaNet (Ghiasi et al., 2019) 1280 × 1280 − 48.3 2086 166.5

NAS-FPN + FPN 1280 × 1280 − 46.6 2633 103.9

AutoDet + SSD (Li et al., 2021) 512 × 512 − 37.7 144.2 55.4

AutoDet + CascadeRCNN 1280 × 1280 − 47.3 − −
OPA-FPN + CascadeRCNN (Liang et al., 2021) 900 × 1200 42.8 − 225 50.6

OPA-FPN + CascadeRCNN 900 × 1200 − 52.2 432 80.3

OPA-FPN + RetinaNet 900 × 1200 38.0 − 207 36.5

MNAS-FPN (Chen et al., 2020a) 320 × 320 − 25.5 0.8 3.5

Auto-FPN + RPN (Xu et al., 2019a) 800 × 800 40.5 − − 32.6

Auto-FPN + SSD 512 × 512 31.8 − − 33.3

NAS-FCOS (Wang et al., 2020b) ≥ 800 − 46.1 361 90

FAD (Zhong et al., 2020a) ≥ 800 − 46.4 − −
Hit-Detector + RPN (Guo et al., 2020a) 800 × 1200 41.4 44.5 272 27

Hit-Detector + RetinaNet 800 × 1200 36.9 − − 33

SM-NAS (Yao et al., 2020) 800 × 1333 − 45.9 − −
SpineNet + MaskRCNN (Du et al., 2020) 1280 × 1280 − 49.3 520 79

SpineNet + RetinaNet 1280 × 1280 − 52.1 1885 163

NASNet-A (B) (Zoph et al., 2018) 1200 × 1200 43.2 43.1 − −
PC-DARTS + SSD (B) (Xu et al., 2019b) 320 × 320 − 28.9 − 1.2

FairNAS-A (B) (Chu et al., 2021) − − 32.4 392 −
Cream-S (B) (Peng et al., 2020) − 33.2 − 0.3 −
We report the best performance achieved by each method. − denotes that the metric has not been reported for the corresponding method in its
respective manuscript. The image size is in H × W format and≥ D denotes the shortest size has minimum D size. Additionally, B denotes methods
that search on classification task while reporting results on the object detection task as well

mation. It employs a novel bi-level optimization method
that employs reinforcement learning to search at network-
level architecture and a gradient-based method for cell-level
search. Additionally, HR-NAS (Ding et al., 2021) that pri-
oritizes learning high-resolution representations due to its
efficient fine-grained search strategy as discussed in Sect. 3
is capable of finding optimal architecture for the tasks of
human pose estimation and 3D object detection.

Ulyanov et al. (2018) showed that the structure of an
encoder–decoder architecture employed as a generative
model is already sufficient to capture statistics of natural
images without any training. Thus, such architectures can

be seen as a “deep image prior” (DIP), which can be used
to parameterize images. On a variety of tasks, such as image
denoising, super-resolution or inpainting, a natural image
could successfully be generated from random noise and a
randomly initialized encoder–decoder architecture. As the
authors noted that the best results can be obtained by tuning
the architecture for a particular task, Ho et al. (2020) and
Chen et al. (2020c) employed NAS to search for deep image
prior architectures via evolution and reinforcement learning,
respectively. Differentiable architecture search has also been
adapted for image denoising by Gou et al. (2020).
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Other promising tasks are panoptic segmentation (which
also covers instance segmentation) with some first work by
Wu et al. (2020) and 3D detection and segmentation (Tang
et al., 2020). Finally, optical flow estimation (Dosovitskiy
et al., 2015; Ilg et al., 2017; Sun et al., 2018) is a problem
that has not been considered by NAS researchers so far, and
it is conceivable that NAS methods could further improve
performance on this task.

6 Conclusion

In this manuscript, we discussed the application of NAS
for dense prediction tasks. We presented a detailed discus-
sion of approaches for the two core dense prediction tasks,
namely, semantic segmentation and object detection. These
tasks are closely related while having different degrees of
object localization and inter-object distinction requirements.
Consequently, we described the diverse approaches that have
been proposed to address them. Further, we also discussed
the application of NAS for other promising dense prediction
tasks where its exploration has been limited such as panop-
tic segmentation, depth estimation, image inpainting etc. We
hope that our work will serve as a good starting point for new
researchers delving into these areas.
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