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Abstract
In thiswork,we focus on outdoor lighting estimation by aggregating individual noisy estimates from images, exploiting the rich
image information from wide-angle cameras and/or temporal image sequences. Photographs inherently encode information
about the lighting of the scene in the form of shading and shadows. Recovering the lighting is an inverse rendering problem
and as that ill-posed. Recent research based on deep neural networks has shown promising results for estimating light from
a single image, but with shortcomings in robustness. We tackle this problem by combining lighting estimates from several
image views sampled in the angular and temporal domains of an image sequence. For this task, we introduce a transformer
architecture that is trained in an end-2-end fashion without any statistical post-processing as required by previous work.
Thereby, we propose a positional encoding that takes into account camera alignment and ego-motion estimation to globally
register the individual estimates when computing attention between visual words. We show that our method leads to improved
lighting estimation while requiring fewer hyperparameters compared to the state of the art.

Keywords Lighting estimation · Spatio-temporal filtering · Positional encoding · Transformer

1 Introduction

Deep learning models are able to learn strong priors from
data for solving highly ill-posed problems like single image
reconstruction (Fan et al., 2017). In this manner, they have
also been used for the task of lighting estimation. The shading
in a photograph captures the incident lighting (irradiance) on
a surface point. It depends not only on the local surface geom-
etry and material but also on the global (possibly occluded)
lighting in a mostly unknown 3D scene. Different configura-
tions ofmaterial, geometry, and lighting parametersmay lead
to the same pixel color, which creates an ill-posed optimiza-
tion problem without additional constraints. Hence, blindly
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estimating the lighting conditions is notoriously difficult, and
we restrict ourselves to outdoor scenes considering only envi-
ronment lighting where the incident lighting is defined to be
spatially invariant.

Estimating environment lighting can be regarded as the
first step towards holistic scene understanding and enables
several applications (Balcı & Güdükbay, 2017; Kán &Kauf-
mann, 2019; Madsen & Lal, 2011; Wei et al., 2019; Zhu
et al., 2021). It is essential for augmented reality (seam-
lessly rendering virtual objects into real background images)
because photo-realistically inserting virtual objects in real
images requires knowing not just the 3D geometry and cam-
era calibration, but also the lighting. The human eye quickly
perceives wrong lighting and shadows as unrealistic, and it
has also been shown (Van Dijk & de Croon, 2019) that shad-
ows are essential for single-image depth prediction using
convolutional neural networks.

Previous methods have focused on estimating explicit sky
map textures (Hold-Geoffroy et al., 2019), locating the sun
position from single RGB images (Hold-Geoffroy et al.,
2017; Jin et al., 2020; Zhang et al., 2019), calculating sun
trajectories from longer time-lapse videos (Balcı & Güdük-
bay, 2017; Liu & Granier, 2012) or in estimating a set of
light sources in the context of RGBD-SLAM (Whelan et
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al., 2016). In our work, we go in a similar direction as we
robustly estimate the global sun direction and other lighting
parameters (Lalonde &Matthews, 2014) by fusing estimates
both from the spatial and temporal domain. The key is that
we take advantage of known intrinsic calibration and ego-
motion of multiple camera images, which all share the same
direct sun light that is independent of relative translation.
Therefore our method is applicable to both: pure rotational
panorama images and images recorded with ego-motion as
demonstrated in the results section.

Image cues for resolving the lighting in a scene appear
sparsely (e.g., shadows, highlights, etc.) or very subtle and
noisy (e.g., color gradients, temperature, etc.). At the same
time, not all images in a sequence provide the same quality of
information for revealing the lighting parameters. For exam-
ple, consider an image view completely covered in shadow.
Hence, the predictions for the lighting on individual images
of a sequence are affected by a large amount of noise and
many outliers. To alleviate this issue we propose to sample
many sub-views of an image sequence essentially sampling
in the angular and temporal domain. This approach has
two advantages: First, we effectively filter noise and detect
outliers, and second, our neural network-based lighting esti-
mator becomes invariant to the imaging parameters like size,
aspect ratio, and camera focal length and can explore details
in the high-resolution image content.

A preliminary version of this work has been published
in Lee et al. (2021). In this paper, we extend that work by
using an end-2-end filtering approach that supersedes the
statistical post-processing in Lee et al. (2021) by using a
Transformer architecture (Dosovitskiy et al., 2020; Ranftl
et al., 2021; Girdhar et al., 2019) which accounts for indi-
vidual orientations and field-of-views of the input frames.
With this novel pipeline, we eliminate the necessity of intri-
cate hyperparameter tuning required for post-processing. In
our experiments in Sect. 4, we replace parts of our estima-
tion pipeline and adapt the architecture of Dosovitskiy et
al. (2020) for lighting source regression. To the best of our
knowledge, we are the first to use an attention based model
for the task of lighting estimation. Finally, we extend our
lighting model. Unlike previous work which predicted only
the sun direction, the proposed work estimates parameters of
the Lalonde-Matthews outdoor illumination model (Lalonde
& Matthews, 2014).

We summarize our contributions as follows:

1. Building on top of our preliminary work, we propose a
spatio-temporal aggregation for sunlight estimation that
is trained end-to-end using a Transformer architecture.

2. A novel handcrafted positional encoding tailored to
encode the local and global camera angles for spatio-
temporal aggregation.

3. More realistic lighting estimation using the Lalonde-
Matthews illumination model (Lalonde & Matthews,
2014).

4. Superior performance compared to the state-of-the-art.

2 RelatedWork

Estimation of outdoor lighting conditions has been exten-
sively studied due to its importance in computer graphics
and computer vision applications (Karsch et al., 2011; Lu et
al., 2010). Related techniques can be categorized into two
parts, one that analyzes a single image (Hold-Geoffroy et al.,
2019, 2017; Jin et al., 2020, 2019; Lalonde et al., 2012; Ma
et al., 2017; Zhang et al., 2021) and the other that utilizes a
sequence of images (Balcı & Güdükbay, 2017; Lalonde &
Matthews, 2014; Liu&Granier, 2012;Madsen&Lal, 2011).

2.1 Single Image

Hold-Geoffroy et al. (2017) proposed a method that esti-
mates outdoor illumination from a single low dynamic range
image using a convolutional neural network (Krizhevsky et
al., 2012) (CNN). The network was able to classify the sun
location on 160 evenly distributed positions on the hemi-
sphere and estimated other parameters such as sky turbidity,
exposure, and camera parameters.

Analyzing outdoor lighting conditions is further devel-
oped in Zhang et al. (2019) where they incorporated a more
delicate illumination model (Lalonde & Matthews, 2014).
The predicted parameters were evaluated numerically with
the ground truth values and rather qualitatively assessed by
using the render loss.

Jin et al. (2020) and Zhang et al. (2021) also proposed
single image based lighting estimation methods. While their
predecessors (Hold-Geoffroy et al., 2017; Zhang et al., 2019)
generated a probability distribution of the sun position on
the discretized hemisphere, the sun position parameters were
directly regressed from their networks. Recently, Zhu et al.
(2021) combined lighting estimation with intrinsic image
decomposition. Although they achieved a noticeable result
in sun position estimation on synthetic datasets, we could not
compare them to ours because their method utilizes intrinsic
images which are unavailable for real scene videos.

2.2 Multiple Images

The above lighting estimation methods based on a single
image often suffer from insufficient cues to determine a
lighting condition, such as when a given image is com-
pletely shadowed. Therefore, several attempts were made to
increase the accuracy and robustness by taking the temporal
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domain into account (Balcı & Güdükbay, 2017; Lalonde &
Matthews, 2014; Madsen & Lal, 2011).

For example, in the outdoor illumination estimation
method presented by Madsen et al. (2005), the authors esti-
mated the trajectory of the sun and its variable intensity from
a sequence of images. Under the assumption that a static
3D model of the scene is available, they designed a render-
ing equation-based (Kajiya, 1986) optimization problem to
determine the continuous change of the lighting parameters.
The method introduced in Liu and Granier (2012) extracts a
set of features from each image frame and uses it to estimate
the relative changes of the lighting parameters in an image
sequence. Theirmethod can handlemoving cameras and gen-
erate time-coherent augmentations. However, the estimation
process utilized only two consecutive frames and assumed
that the sun position is given in the form of GPS coordinates
and timestamps (Reda & Andreas, 2004).

The lighting condition estimation is also crucial in aug-
mented reality where virtual objects are realistic when they
are rendered in the background image using the correct
lighting conditions. Lu et al. (2010), for instance, esti-
mated a directional light vector from shadow regions and
the corresponding objects in the scene to achieve realistic
occlusion with augmented objects.The estimation perfor-
mance depends solely on the segmentation of the shadow
region and the finding of related items. Therefore, themethod
may be challenging if a shadow-casting object is not visible
in the image. Madsen and Lal (2011) utilize a stereo cam-
era to extend (Madsen et al., 2005) further. They estimated
sky and sun variations over an image sequence using the
sun direction calculated from the GPS coordinates and time
stamps. The estimates are then combined with shadow detec-

tion algorithms to generate plausible augmented scenes with
appropriate shading and shadows.

Recently, several attempts have been made to use aux-
iliary information to estimate lighting conditions (Kán &
Kaufmann, 2019; Xiong et al., 2021). Such information may
result in better performance but only with a trade-off in gen-
erality. Kán and Kaufmann (2019) proposed a single RGB-D
image-based lighting estimation method for augmented real-
ity applications. They used synthetically generated scenes to
train a deep neural network that maps the angular coordi-
nates of the main light source in the scene. Outlier removal
and temporal smoothing processes were applied to achieve
temporal consistency of the method. However, this method
was demonstrated only on static-view images. Our method,
on the other hand, improves its estimates by aggregating
observations from different points of view. We illustrate the
consistency gained from our novel design by augmenting
virtual objects in consecutive frames.

3 ProposedMethod

We take advantage of different aspects of previous work
and refine them into our integrated model. As illustrated
in Fig. 1, our model is composed of two networks: a pre-
trained ResNet18 (He et al., 2016) and a transformer network
(Vaswani et al., 2017). We first randomly crop several small
subimages froma sequence of images. Sincemodern cameras
are capable of capturing fine details of a scene, we found that
lighting condition estimation can be done on a small part
of an image. In this way, the samples obtained from each
sequence provide different observations for the same global
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Fig. 1 Spatio-temporal outdoor lighting aggregation on an image
sequence: feature vectors are extracted from subimages using a pre-
trained ResNet18 network. Using an absolute positional encoding,
our transformer network performs spatio-temporal attention. Individ-

ual estimates made in each camera coordinate system are calibrated
using camera yaw angle data and fused to yield the lighting estimation
for the sequence
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lighting condition. This design is motivated by our empiri-
cal results, which showed that lighting can be estimated well
from many small parts.

All image crops are passed through the backbone network
and projected to a sequence of patch embeddings. We then
add an orientation-invariant positional encoding and pass the
sequence to our transformer network. Through the atten-
tion layers, the noisy spatio-temporal observations can be
effectively aggregated to a final estimate. Weighted features
are delivered to a dense layer that produces the estimated
Lalonde-Matthews illumination model parameters. The sun
direction estimates are formulated in their own camera coor-
dinate systems.We compensate the camera yaw angle of each
subimage in order to obtain aligned estimates in a unified
global coordinate system. Our final prediction is given as the
average of all estimates. Note that the sky parameters of the
Lalonde-Matthews model do not require the alignment step,
as they do not vary with respect to the camera yaw angle. The
assumption behind our spatio-temporal aggregation is that
distant sun-environment lighting can be considered invari-
ant for small-scale translations (e.g., driving) and that the
variation in lighting direction is negligible for short videos.
Through the following sections, we introduce the details of
our method.

3.1 Lighting Estimation

There have been several sun and sky models to parameter-
ize outdoor lighting conditions such as the Hosek-Wilkie sky
model (Hosek & Wilkie, 2012) or the Lalonde-Matthews
(Lalonde & Matthews, 2014) outdoor illumination model.
In this work, we extend our previous method by predicting
the parameters of the Lalonde-Matthews model. This hemi-
spherical illumination model ( fLM ) describes the luminance
of outdoor illumination for a light direction l as the sumof sun
( fsun) and sky ( fsky) components based on 11 parameters:

fLM (l; qLM ) = wsun fsun(l;β, κ, lsun) + wsky fsky(l; t, lsun),
fsun(l;β, κ, lsun) = exp(−β exp(−κ/cos γl)),

fsky(l; t, lsun) = fP (θsun, γl , t),

qLM = {wsun,wsky, β, κ, t, lsun},

where wsun ∈ R
3 and wsky ∈ R

3 are the mean sun and
sky colors, (β, κ) are the sun shape descriptors, t is the sky
turbidity, lsun = [θsun, φsun] is the sun position, γl is the
angle between the light direction l and the sun position lsun ,
and fP is the Preetham skymodel (Preethamet al., 1999). For
more details, please refer to (Lalonde & Matthews, 2014).

Among the parameters, the sun direction may be the most
critical component. Unlike our predecessors (Hold-Geoffroy
et al., 2017; Zhang et al., 2019), we design our network as a
direct regression model to overcome the need for a sensitive

discretization of the hemisphere. The recent work of Jin et
al. (2020) and Zhang et al. (2021) presented regression net-
works estimating the sun direction in spherical coordinates
(altitude and azimuth). Our method, however, estimates the
lighting direction using Cartesian coordinates and does not
suffer from singularities in the spherical parametrization and
the ambiguity that comes from the cyclic nature of the spher-
ical coordinates.

Since we train our network in a supervised manner, we
compare the estimated sun direction with the ground truth
and apply two more conditions to foster the training. The
first loss function is defined to minimize the angle between
the estimate and the ground truth sun direction �vgt :
Lcosine = 1 − �vgt · �vpred/‖�vpred‖, (1)

with the two adjacent unit vectors having their inner product
close to 1. To avoid the uncertainty that comes from the vec-
tors pointing the same direction with different lengths, we
apply another constraint to the loss function:

Lnorm = (1 − ‖�vpred‖)2. (2)

The last term of the loss function ensures that the estimated
sun direction resides in the upper hemisphere because we
assume the sun is the primary light source in the given scene:

Lhemi = max(0,−z pred), (3)

where z pred is the third component of �vpred , indicating the
altitude of the sun. The final loss function is simply the sum
of all terms as they share a similar range of values:

Llight = Lcosine + Lnorm + Lhemi . (4)

For the remaining parameters, we apply the mean squared
error (MSE) to the predicted values and the normalized
ground truth values as in Jin et al. (2020):
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(5)

Since the two loss functions Lsun and L param have similar
magnitudes, we define the final loss function as the sum of
them:
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Llight = Lsun + L param . (6)

3.2 Attention Based Aggregation

In order to extract robust estimates from noisy observa-
tions, the aggregation process described in Lee et al. (2021)
relies heavily on statistical filtering utilizing an outlier
removal combined with the meanshift algorithm. However,
this approach requires manual hyper-parameter tuning with
handcrafted selection criteria.We extend this work by replac-
ing the aggregation step with a purely end-to-end attention
driven pipeline. The overview of our approach is illustrated
in Fig. 1.

We take inspiration from Dosovitskiy et al. (2020) for our
network design and adopt their hybrid architecture for our
task. This includes self attention using multi-head attention
layers (Vaswani et al., 2017) and preprocessing images with
a pretrained convolutional neural network. Given a tempo-
ral sequence of k images, we first select n spatially random
crops for each frame as done in our previous work (Lee et al.,
2021). On each crop, we apply a ResNet18 (He et al., 2016)
encoder to extract feature embeddings. Each embedded patch
is fed as input to our transformer module for aggregation.
The virtue of the transformer network is that it can associate
observations from different space and time given a proper
positional encoding. Since all images patches share the same
sun light and we assume we know their relative orientation
due to the ego-motion estimation the Transformers attention
mechanism inherently learns to filter the noisy patch-wise
predictions. However, we need to provide the relative orien-
tation of the patches in order to make the light estimation
invariant to camera orientation, which we achieve via the
positional encoding.

3.3 Orientation-Invariant Positional Encoding

Solely relying on image features enables only to estimate
the lighting in the local camera frame. However, we need
to fuse the estimates in a global reference frame in order
relate different subimages. Since we assume sun-lighting,
only the directional component of a recorded camera image
is relevant to calibrate different frames.We inject this camera
orientation in the image features via a positional encoding.
However, we only encode the yaw angle of the camera rota-
tions (the rotation around the ground-plane surface-normal)
since pitch and roll angles are naturally captured in the image
features of outdoor images (e.g, horizon). Further, we also
encode the 2D position of the subimages cropped from the
source frame independent of the intrinsic camera projection,
i.e., in terms of viewing angles φ in the corresponding hor-
izontal and vertical field of views. For example, the top left
pixel gets a coordinate of

(−�h
2 , �v

2

)

for a pinhole camera
model with a field of view of �h and �v horizontally and

vertically respectively. To this end we concatenate the 2D
angular image coordinate and the (temporal) camera rota-
tion angle and apply a 3D cyclic positional encoding. We use
an absolute positional encoding, i.e.

xenci ←− xi + pi , (7)

where the positional encoding pi and the subimage feature
vector xi ∈ R

d
x are superimposed. Similar to Vaswani et al.

(2017) we use a fixed encoding of sine and cosine functions
with different frequencies.

Since our positional encoding scheme encodes angles, it
has to fulfill the following two conditions: (1) periodicity—
the transition from the encoding of 359◦ to the encoding of
0◦ should be as smooth as the transition from 0◦ to 1◦ and
(2) uniqueness—each angle should have a unique encoding.
We present our cyclic positional encoding, satisfying those
conditions, by using nested trigonometic functions as below:

PE (φ, 2i) = sin
(

sin (φ) · α/100002i/d
)

PE (φ, 2i + 1) = sin
(

cos (φ) · α/100002i/d
)

,
(8)

where i ∈ [0, d
2 ) and d denotes the depth of the positional

encoding. Note that α is an empirically determined param-
eter, which controls the width of the nonzero area of the
encoding. The periodicity comes from the nested trigonomet-
ric function while uniqueness is established by interlacing
the two functions. Figure 2 shows the positional encoding
generated by the above function.

The resulting positional encoding of a subimage is the
stacked vector of the three cyclic positional encodings. Note
that the depth parameter d is carefully determined so that the
depth of the stacked vector matches the channel size of the
transformer network.

3.4 Alignment

Our neural network outputs the lighting parameters as a 11-
dimensional vector for a given sequence of image patches.
Although this prediction was made by considering patches
fromdifferent temporal and spatial location, the sun direction
estimates are in their own local camera coordinate systems.
Therefore, we perform an alignment step using the camera
ego-motion data to transform the estimated sun direction
vectors into the world coordinate system. We assume the
noise and drift in the ego-motion estimation is small rela-
tive to the lighting estimation. Hence, we employ a widely
used structure-from-motion (SfM) technique such as (Schon-
berger & Frahm, 2016) to estimate the ego-motion from an
image sequence. Each frames f has a camera rotation matrix
R f and the resulting aligned vector �̂v pred is computed as
R−1

f · �vpred . Finally, we take the mean of the aligned lighting
estimates as our final prediction.
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Fig. 2 Cyclic positional
encoding for angle φ ∈ [0, 2π ].
The periodicity of our encoding
scheme is clearly visible on the
left side images while their
interlaced result on the right side
shows its uniqueness for each
angle

de
pt

h 

angle 

sin∘sin part 

sin∘cos part

interlaced

-1

1

0

Table 1 Number of data in our
datasets

Dataset Training Validation Test
Sequences Images Sequences Images Sequences Images

SUN360 10000 160000 1000 16000 1000 16000

KITTI 4208 33889 427 3508 432 3457

4 Experiments

4.1 Datasets

We choose two datasets for evaluation: KITTI (Geiger et al.,
2012) and SUN360 (Xiao et al., 2012). KITTI is a popu-
lar dataset for autonomous driving. It consists of multiple
driving sequences with rectified images and has additional
annotations for determining the ground-truth sun directions
(Reda & Andreas, 2004). This makes it an ideal candidate to
test our method on everyday driving scenes. For our exper-
iments we create a random train-val-test split composed
of 47-5-5 driving scenes. This results in 33 889, 3508, and
3457 images, respectively. Note that this scene is different
from the sequence we give to the network. Since we gen-
erate a sequence by randomly selecting eight frames from
the same scene during the training and inference, there are
4208, 427, and 432 sequences for the train-val-test split,
respectively. (see Table 1). For the sampling in the spatial
domain, four subimages are randomly cropped from each
frame image while allowing overlapping. Our pipeline esti-
mates the global sun direction from this spatio-temporal
sequence of 32 images. SinceKITTI does not provide ground
truth Lalonde-Matthews lighting model parameters, we omit
the loss for other lighting parameters (L param). Therefore,
the loss function becomes Llight = Lsun .

The SUN360 dataset is another common dataset consid-
ered for outdoor lighting estimation methods because 1) it
provides diverse environments and 2) there is a labeling of the
parameters of the Lalonde-Matthews lighting model (Zhang
et al., 2019). Several previous methods used it in its original
panorama form or as subimages by generating synthetic per-
spective images (Hold-Geoffroy et al., 2017). We followed
the latter approach, which has also been used in our pre-
liminary work (Lee et al., 2021) where we examined the
performance improvement arising from spatial aggregation.

In this paper, we propose to build an artificial image
sequence from a panorama so that we can examine and
compare our method’s performance with previous works.
Specifically, we simulate a camera motion without transla-
tion by generating a set of synthetic perspective images with
a fixed field of view and randomized camera yaw and pitch
angles. By doing so, we can perform the spatio-temporal
aggregation on the SUN360 dataset in the same manner as
on KITTI. We start with dividing 12 000 panorama images
into the training, validation, and test sets with a 10:1:1 ratio.
From each panorama, a sequence of 16 perspective images
with randomyaw angles is generatedwhile allowing overlap-
ping. We want to have the data from both datasets as similar
as possible. Therefore, we match the horizontal and vertical
field of views and set the numbers of random frames and
subframes to 8 and 4 respectively. Since there are 16 frames
for each panorama, a sequence of 8 frames has C16

8 differ-
ent combinations, resulting in great diversity. Note that we
also introduce small random offsets on the camera elevation
with respect to the horizon in [−10◦, 10◦]. The generated
images are resized to 1220 × 370 to match the size of the
KITTI images. In this way, we produced 160 000, 16 000,
and 16 000 images from 10 000, 1000, and 1000 panoramas
for training, validation, and test sets, respectively. The exact
numbers of panoramas and images are presented in Table 1,
and Fig. 3 illustrates examples from the two datasets.

4.2 Implementation Details

As illustrated in Fig. 4, our lighting estimationmodel consists
of a ResNet18 network and a transformer network, followed
by dense layers converting a feature vector of dimension 512
to the estimates for the 3D sun direction and other lighting
parameters (only applicable to SUN360). It accepts 32 RGB
images of size 224×224 cropped from 8 frames and outputs
the lighting estimate through the alignment and averaging
process.Weborrow the core structure of the transformer from
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Fig. 3 Examples of the two datasets (Geiger et al., 2012; Xiao et al., 2012). From the original image (top), we generate random subimages (bottom)

Dosovitskiy et al. (2020) and carefully determine the number
of layers, number of heads, hidden size, and MLP size as 4,
4, 512, and 1024, respectively, under extensive experiments.
The dropout rate was 0.2.

We train our model and test its performance on the
SUN360 and KITTI datasets separately (see Table 1). In
detail, we empirically trained our lighting estimation net-
work for 118 and 131 epochs for the SUN360 and KITTI
datasets using early stopping. The training was initiated with
the AdamW optimizer (Loshchilov & Hutter, 2017) using a
learning rate of 1 × 10−5 and the batch size was 8. It took
61.1 and34.3h on a singleNvidiaRTX3090GPU.Prediction
on a single sequence of 32 images takes 90ms. Our spatio-
temporal aggregationmodel is examinedon1000unobserved
SUN360 sequences and 432 KITTI sequences.

4.3 Results

4.3.1 Sun Direction

We evaluate the angular errors of the spatio-temporally
aggregated sun direction estimates on the SUN360 test
sequences. Since other single image-based lighting estima-
tion methods (Hold-Geoffroy et al., 2017; Jin et al., 2020;
Zhang et al., 2021) are not capable of conducting spatio-
temporal aggregation, the median of the estimates over each
sequence is utilized. On top of that, we compare our method
with the spatio-temporal aggregation pipeline proposed in
Lee et al. (2021). The hyperparameters required for our pre-
vious method are determined in the same way as described
in Lee et al. (2021).

Figure 5 illustrates the cumulative angular errors of the
five methods trained and tested on the SUN360 dataset. We
present the outcomes of three single image based approaches
along with the results of two spatio-temporal aggregation
methods. Our spatio-temporal attention method shows a
noticeable margin compared to the state-of-the-art.

We also performed a similar comparison on the KITTI
dataset (see Fig. 6). On this dataset, however, we compare our
method only with (Lee et al., 2021) due to the lack of ground
truth information such as exposure and turbidity which are
required for other previous works. Although the dataset pro-
vides the ground truth ego-motion required for the alignment
step, we calculated it using (Schonberger & Frahm, 2016) to
generalize our approach. The mean angular error of the esti-
mated camera rotation using the default parameterswas 1.01◦
over the five test scenes. Using the proposed spatio-temporal
attention method, the mean angular error over the 432 test
sequences recorded 7.96◦, which is marginally better than
9.62◦ of Lee et al. (2021).

We plotted the individual sun direction estimates and their
aggregation results using our methods and (Lee et al., 2021)
in Fig. 7. Note that in the plots all predictions are registered
to a common coordinate frame using the estimated cam-
era ego-motion. Individual estimates of the subimages are
shownwith lighter color dots. The single image estimation of
Lee et al. (2021) was performed individually and resulted in
independent noisy estimateswhichwere aggregatedby statis-
tical post-processing. Unlike them, our estimates are jointly
predicted and therefore tend to cluster tightly around their
mean rendering any statistical post-processing redundant.
Themean standard deviation of sundirection estimations also
demonstrates our model’s capability for coherent estimation
(see Figs. 5 and 6). Compared to other methods, we recorded
2 to 6 times lower mean standard deviation. This behavior
comes from the spatio-temporal attention from our trans-
former network. We contend that the network tries to output
a set of predictions that can explain the lighting condition of
the given sequence, rather than predicting each subimage’s
lighting condition individually. Furthermore, this character-
istic supports our decision to average all estimates to obtain
the final estimate of the sequence.
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Fig. 4 The proposed lighting
estimation model. The features
of the input image patches are
extracted through the ResNet18
(He et al., 2016) network. We
generate orientation-invariant
positional encodings from the
given 3D camera angles and add
them (denoted as ⊕) to the patch
embeddings. Our transformer
network then aggregates the
observations and outputs the
estimated sun direction and
lighting parameters of the
sequence. Note that the
right-side dense layer is omitted
for the KITTI dataset
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Fig. 5 The cumulative angular
error and the statistics of the sun
direction estimates on the
SUN360 test set. (Lee et al.,
2021) and Ours are showing the
spatiotemporal aggregation
results. For a fair comparison,
angular errors of other methods
are measured upon the median
of the estimates made on single
images. The proposed method
outperforms other methods with
a noticeable margin. Values of
the best method/setting for each
column are given in bold

Median Mean Min Max SD

[9] 27.00 35.39 1.27 161.03 0.3325

[10] 35.01 37.36 0.84 118.10 0.1895

[24] 37.75 39.12 0.21 126.65 0.1915

[15] 31.66 35.20 0.33 137.57 0.1297

Ours 24.12 29.41 0.78 143.47 0.0569
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 20 40 60 80 100 120 140 160 180
Ra

�o
 o

f d
at

a
Angular error (degree)

[9]
[10]
[24]
[15]
Ours
chance

Fig. 6 The cumulative angular
error and the statistics on the
KITTI test set. Our method
performs slightly better than
(Lee et al., 2021) while
recording a noticeable small
maximum angular error of
20.42◦. Values of the best
method/setting for each column
are given in bold

Median Mean Min Max SD

[15] 7.42 9.62 0.23 45.93 0.0838

Ours 7.04 7.96 0.55 20.42 0.0142
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Fig. 7 Scatter plots representing sun direction estimates of individual
subimages and the spatiotemporal aggregation result. Each plot cor-
responds to an image sequence of 8 frames in (left) the SUN360 and
(right) theKITTI test sets. The spatio-temporal aggregation proposed in

Lee et al. (2021) finds the highest point density among the inliers treat-
ing the estimates as independent sample. On the contrary, individual
estimates of our method form a tight group due to the spatio-temporal
attention
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Table 2 RMSE of the estimated
parameters on the SUN360 test
set

wsun wsky κ β t

Hold-Geoffroy et al. (2017) – – – – 1.0869

Jin et al. (2020) 0.3680 0.1083 0.1817 9.7960 1.1994

Ours 0.2810 0.0833 0.1201 6.9778 0.9510

Values of the best method/setting for each column are given in bold

Panorama GTOurs[10]Subimages

Fig. 8 Qualitative comparison on the estimated parameters of the Lalonde-Matthews model. Our methods aggregates information obtained from
the subimages of a synthetic sequence and provides plausible outcomes on various lighting conditions

4.3.2 Other Lighting Parameters

Asdescribed earlier, the remainingLalonde-Matthewsmodel’s
parameters are only estimated for the SUN360 dataset. We
present the root mean squared errors of Hold-Geoffroy et
al. (2017), Jin et al. (2020), and ours in Table. 2. Note that
(Hold-Geoffroy et al., 2017) only delivers the RMSE for
turbidity, because it is based on a different lighting model.
Our method demonstrated outstanding performance for all
five items. We also provide a qualitative evaluation on the
full Lalonde-Matthews model in Fig. 8. Each hemispherical
texture is generated using the estimated/ground truth param-
eters.

The stability of our model is better understood with a vir-
tual object augmentation application, as shown inFig. 9.Note
that other lighting parameters, such as the sun’s intensity,
are manually determined and equally applied for the single
image estimation method and (Lee et al., 2021). When the
lighting conditions are estimated from only a single image
on each frame, the virtual objects’ shadows are fluctuating

compared to the ground truth results. The artifact is almost
entirely removed and the augmented object’s appearance
is almost identical to the ground truth after applying the
spatio-temporally aggregated lighting condition based on the
Lalonde-Matthews model.

4.4 Ablation Study

We perform a series of ablations for our chosen losses, posi-
tional encoding and the number of patches for our model.
Ablations are done on the SUN360 test set and we compare
angular error statistics.

4.4.1 Loss Function

Table 3 shows the angular error statistics for different loss
term combinations. The Lcosine metric was set as the default
loss function as it dominantly drives the training. Best per-
formance can be achieved by using all loss terms together.
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Single Ours Ground truth[15]

Fig. 9 Virtual Augmentations: Fluctuations in the shadow of the aug-
mented object are strongly visible when the sun direction is estimated
individually. Our spatio-temporal method (Lee et al., 2021) achieves

more stable results. The proposed learned aggregation results in even
better quality, almost indistinguishable from the ground truth

Table 3 Ablation study with loss functions on the SUN360 test set

Lcosine Lnorm Lhemi Median Mean Min Max

� 26.20 31.47 1.24 157.98

� � 25.00 30.59 0.29 157.96

� � 25.04 30.94 0.51 157.65

� � � 24.12 29.41 0.78 143.47

Values of the best method/setting for each column are given in bold

Table 4 Ablation study with positional encoding schemes on the
SUN360 test set

Median Mean Min Max

None 35.56 37.99 1.30 157.11

Standard 27.42 32.06 0.55 165.64

Ours 24.12 29.41 0.78 143.47

Values of the best method/setting for each column are given in bold

4.4.2 Positional Encoding

We investigate the benefit of our newly proposed orientation-
invariant positional encoding by comparing it to the standard
sinusodial encoding introduced in Vaswani et al. (2017). The
results in Table. 4 show, that our task-specific encoding gives
greater performance over the standard one or using none at
all.

4.4.3 Patch Sequence

In these experiments, we ablate the number and choice of
patches given to the aggregation transformer. By changing

Table 5 Ablation study with hyperparameters on the SUN360 test set

Frames Subimages Median Mean Min Max

4 4 25.83 31.31 0.66 155.42

8 4 24.12 29.41 0.78 143.47

12 4 24.62 30.33 0.97 151.44

16 4 25.91 31.02 1.11 160.40

8 2 24.87 30.82 0.58 160.38

8 4 24.12 29.41 0.78 143.47

8 6 24.53 30.60 0.80 173.33

8 8 25.55 31.29 0.91 152.70

Values of the best method/setting for each column are given in bold

the number of frames and number of spatial patches per
image, we compare different temporal-spatial patch varia-
tions. The results in Table 5 show that there is a sweet spot
for the length of the temporal sequence and the number
of patches per image. We achieve the best performance by
choosing a sequence of 8 images and 4 patches per image,
resulting in a sequence length of 32. Increasing the sequence
length seems to hurt themodel performance at a certain point.
We believe that this could be due to the limited model capac-
ity and plan to experiment with larger networks in the future.

5 Conclusion

In this paper, we proposed a holistic sequence-wise lighting
estimation method based on spatio-temporal attention using
transformers. Our method achieved state-of-the-art perfor-
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mance on outdoor lighting estimation for a given image
sequence.Without loss of generalitywe utilized 360◦ panora-
mas and wide view images in our work, but the method
can also be applied to any image providing enough details.
Moreover, our spatio-temporal aggregation could also be
generalized to other globally shared image information under
given computational budgets.

Although we demonstrated noticeable outcomes in aug-
mented reality applications, intriguing future research topics
are remaining open. Intuitively, the performance of themodel
should scale with the sequence length, asmore information is
present. We plan to scale both our model and data to examine
the limit of attention-based spatio-temporal aggregation for
lighting estimation. Another interesting direction would be
the integration of our method into reconstruction pipelines,
such as SLAM. Knowing the lighting direction and shadow-
casting can help initializing camera estimation. Lastly, we
want to investigate further into the samplingmethods. Instead
of picking 8 random frames from an image sequence, we
could think of selecting consecutive frames and experiment
with the number of frames and the distance from the starting
point.
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