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Abstract
Many problems in imaging and low-level vision can be formulated as nonconvex variational problems. A promising class
of approaches to tackle such problems are convex relaxation methods, which consider a lifting of the energy functional to a
higher-dimensional space. However, they comewith increasedmemory requirements due to the lifting. The present paper is an
extended version of the earlier conference paper by Ye et al. (in: DAGM German conference on pattern recognition (GCPR),
2021) which combined two recent approaches to make lifting more scalable: product-space relaxation and sublabel-accurate
discretization. Furthermore, it is shown that a simple cutting-plane method can be used to solve the resulting semi-infinite
optimization problem. This journal version extends the previous conference workwith additional experiments, a more detailed
outline of the complete algorithm and a user-friendly introduction to functional lifting methods.

Keywords Variational methods · Manifold-valued problems · Convex relaxation · Global optimization

1 Introduction

In this paper,wepresent a convexoptimization framework for
total-variation regularized problems of the following form:
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inf
u:�→�

∫
�

c(x, u1(x), . . . , uk(x)) dx

+
k∑

i=1

λiTV(ui ).
(1)

The set � = {(γ1, . . . , γk) ∈ RN : γi ∈ �i , i = 1 . . . k} is
defined by k individual submanifolds �i ⊂ RNi with N =
N1 +· · ·+ Nk . The individual �i are required to be bounded
subsets of RNi .

Since the focus of this paper are imaging applications
we assume � ⊂ R2 to be a rectangular domain but the
approach is easily generalized to higher dimensional or non-
rectangular domains.

We make no special assumptions on the cost c : �×� →
R≥0 in (1) and allow it to be a general nonnegative non-
convex function. This turns (1) into an overall nonconvex
optimization problem, which can be challenging to solve
using standard gradient-basedmethods.Moreover, we do not
assume that we are able to compute gradients, projections
or proximal operators of the cost function c(x, u(x)). Our
approach only requires function evaluations. This allows us
to consider degenerate costs that are out of reach for gradient-
based approaches.

The regularizer in (1) is a separable total variation regular-
ization TV(ui ) on the individual components ui : � → RNi
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weighted by a parameter λi > 0. The total variation (TV)
(Rudin et al. 1992; Chambolle et al. 2010) encourages a spa-
tially smooth but edge-preserving solution. It can be defined
as the following equation:

TV(ui ) := sup
p:�→RNi×2

‖p(x)‖∗≤1

∫
�

〈Divx p(x), ui (x)〉 dx

=
∫

�

‖∇ui (x)‖ dx, (2)

where by ∇ui (x) ∈ RNi×2 we denote the Jacobian matrix
and by ‖ · ‖∗ the dual norm of ‖ · ‖. The last equality in (2)
holds for sufficiently smooth ui .

The convex relaxation approachweuse in this paperworks
for general convex and nonconvex regularizers which depend
on the Jacobian∇ui , see Pock et al. (2009, 2010),Möllenhoff
and Cremers (2019), Vogt et al. (2020). However, the main
focus of this paper is an efficient implementation of the data
cost c, and therefore we consider only the separable total
variation (2).
Motivation and applications

To motivate Problem (1), let us consider some practical
applications in low-level vision and imaging. One example is
the variational estimation of optical flow between two RGB
images I1, I2 : � → R3, see Horn and Schunck (1981). In
that case, �1 = �2 = [a, b] ⊂ R models the displacement
between the two images and the cost function is given by a
photometric error.

Often, �i is a curved manifold, see, e.g., the applications
presented by Lellmann et al. (2013),Weinmann et al. (2014).
Examples include �i = S

2 for normal field processing (Lell-
mann et al. 2013), SO(3) for motion estimation (Görlitz et al.
2019) or the circle S1 for processing of cyclic data (Cremers
and Strekalovskiy 2013; Steinke et al. 2010).

Many real-wolrd applications requires to estimate mul-
tiple quantities in a joint fashion. This naturally leads to
the formulation of product space which is considered in (1),
where � = �1 × · · · × �k . In this case, each �i models one
quantity of interest that one aims to estimate.

A prominent approach to address joint optimization prob-
lems of this form are alternating procedures such as expecta-
tion maximization (Dempster et al. 1977), block-coordinate
descent and alternating direction-type methods (Boyd et al.
2011). There, the idea is to estimates a single quantity while
holding the other ones fixed. However, these approaches usu-
ally depend on a good initialization and are easy to get stuck
in a very poor local optima. Therefore, the goal of this paper
is to instead consider a convex relaxation of Problem (1). The
relaxed problem can then be solved to global optimality with
standard proximal methods such as the primal dual algorithm

(Pock and Chambolle 2011). These methods are usually well
parallelizable. Thus, they can be efficiently implemented on
GPUs, allowing to solve large-scale problems in a reasonable
time.
Contributions The main difficulty with convex approaches
to (1) is the large memory requirements which are inherent
to a lifted problem formulation which renders the problem
convex. In order to improve the memory-efficiency of relax-
ations, two disparate ideas have been considered in previous
work: sublabel-accurate liftings (Möllenhoff et al. 2016) and
product-space relaxations (Goldluecke et al. 2013). In this
paper, we combine both approaches and present a sublabel-
accurate implementation of Goldluecke et al. (2013). Unlike
previous liftings (Möllenhoff et al. 2016; Möllenhoff and
Cremers 2017; Vogt et al. 2020), our approach does not
require epigraphical projections and can therefore be applied
in a black-box fashion, requiring only evaluations of the
cost c.

Our main contribution is a simple way to implement the
resulting semi-infinite optimization problem with a cutting-
plane method. Moreover, we show that using this method,
we can achieve a lower energy than the product-space lift-
ing (Goldluecke et al. 2013) on optical flow estimation and
manifold-valued denoising problems.

This journal paper is an extended version of the conference
paper (Ye et al. 2021). In particular, we offer the following
contributions over the conference version:

• We have added additional background and explanations
on the basics of functional lifting to Sects. 2 and 3.

• In Sect. 4 we added the detailed update equations for the
primal-dual algorithm.

• We added additional figures and explanations to Sect. 5
to illustrate and provide an intuition of our algorithm on
a simple example.

• We added additional experiments on optical flow and
manifold-valued image denoising to Sect. 5 and eval-
uated our method on a larger set of images.

Overview of the paper
After this introduction, we provide in Sect. 2 an introduc-

tion to functional lifting methods for Problem (1), review
existing works and explain our contributions relatively to
them. We summarize the convex relaxation for (1) and its
discretization in Sect. 3. The proposed cutting-plane method
and sampling strategy which we use to implement the dis-
cretized relaxation are presented in Sect. 4. In Sect. 5 we
evaluate our method on a toy problem and several real-world
imaging applications. Our conclusions are eventually drawn
in Sect. 6.
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Fig. 1 Traditional optimization versus optimization over a space of
probability distributions. In the top row, going from left to right, we
illustrate a traditional gradient-based local optimization method on a
nonconvex problem of the form (3). Given a bad initialization, the
algorithm might get stuck in a poor local optimum. The bottom row

illustrates an optimization procedure on the relaxed problem (4). Due
to convexity of the objective and search space of probability measures,
the solution concentrates at aDirac distribution centered around a global
optimum

2 An Introduction to Functional Lifting

Let us first consider a simplified version of Problem (1)where
� consists only of a single point, i.e., the nonconvex mini-
mization of one data term:

min
γ∈�

c(γ1, . . . , γk). (3)

A well-known approach to the global optimization of (3) is
a lifting or stochastic relaxation procedure, which has been
considered in diverse fields such as polynomial optimiza-
tion (Lasserre, J- B. 2000), continuousMarkov randomfields
(Fix and Agarwal 2014; Peng et al. 2011; Bauermeister et al.
2021), variational methods (Pock et al. 2008), and black-box
optimization (de Boer et al. 2005; Ollivier et al. 2017; Schaul
2011). The idea is to relax the search space in (3) from γ ∈ �

to probability distributionsu ∈ P(�) and solve1

min
u∈P(�)

∫
�

c(γ1, . . . , γk) du(γ1, . . . , γk). (4)

Due to linearity of the integral wrt. u and convexity of the
relaxed search space, this is a convex problem for arbitrary
cost c. Moreover, the minimizers of (4) concentrate at the
optima of c and can hence be identified with solutions to
(3). However, if � is a continuum, this problem is infinite-
dimensional and therefore challenging.

We illustrate the conceptual difference between the formu-
lation (3) and (4) on a one-dimensional example in Fig. 1.
Discrete/traditional multilabeling

In the context of Markov random fields (Ishikawa 2003;
Kappes et al. 2013) and multilabel optimization (Chambolle
et al. 2012;Lellmannet al. 2009;LellmannandSchnörr 2011;
Zach et al. 2008) one typically discretizes � into a finite set
of points (called the labels) � = {v1, . . . , v�}. This turns

1 P(�) is the set of nonnegative Radon measures on � with total mass
u(�) = 1.

(4) into a finite-dimensional linear program minu∈�� 〈c′,u〉
where c′ ∈ R�≥0 denotes the label cost and �� ⊂ R� is
the (� − 1)-dimensional unit simplex. If we evaluate the
cost at the labels, this program upper bounds the continu-
ous problem (3), since instead of all possible solutions, one
considers a restricted subset determined by the labels. Since
the solution will be attained at one of the labels, typically a
fine meshing is needed. Similar to black-box and zero-order
optimization methods, this strategy suffers from the curse of
dimensionality. When each �i is discretized into � labels, the
overall number is �k which quickly becomes intractable since
many labels are required for a smooth solution. This limits the
method to be applied on more practical problems. Addition-
ally, for pairwise or regularizing terms, often a large number
of dual constraints has to be implemented. In that context,
the work from Lellmann et al. (2013) considers a constraint
pruning strategy as an offline-preprocessing.
Sublabel-accurate multilabeling

The discrete-continuous MRF (Fix and Agarwal 2014;
Zach 2013; Zach andKohli 2012) and liftingmethods (Laude
et al. 2016; Möllenhoff et al. 2016; Möllenhoff and Cremers
2017) attempt to find a more label-efficient convex formula-
tion. These approaches can be understood through duality
(Fix and Agarwal 2014; Möllenhoff and Cremers 2017).
Applied to (3), the idea is to replace the cost c : � → R
with a dual variable q : � → R:

min
u∈P(�)

sup
q:�→R

∫
�

q(γ1, . . . , γk) du(γ1, . . . , γk),

s.t. q(γ ) ≤ c(γ ) for all γ ∈ �. (5)

The inner supremum in the formulation (5) maximizes the
lower-bound q. Additionally, if the dual variable is suffi-
ciently expressive, this problem is actually equivalent to (4).

Approximating q, for example with piecewise linear func-
tions on �, one arrives at a lower-bound to the nonconvex
problem (3). It has been observed in a recent series of works
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(Laude et al. 2016; Möllenhoff et al. 2016; Möllenhoff and
Cremers 2017; Vogt et al. 2020; Zach and Kohli 2012) that
piecewise linear dual variables can lead to smooth solutions
even when q (and therefore also u) is defined on a rather
coarsemesh. As remarked by Fix andAgarwal (2014), Laude
et al. (2016), Möllenhoff et al. (2016), for an affine dual
variable this strategy corresponds to minimizing the convex
envelope of the cost, minγ∈� c∗∗(γ ), where c∗∗ denotes the
Fenchel biconjugate of c.

The implementation of the constraints in (5) can be chal-
lenging even in the case of piecewise-linear q. This is partly
due to the fact that Problem (5) is a semi-infinite opti-
mization problem (Blankenship and Falk 1976), i.e., an
optimization problem with infinitely many constraints. The
works (Möllenhoff et al. 2016; Zach and Kohli 2012) imple-
ment the constraints via projections onto the epigraph of the
(restricted) conjugate function of the cost within a proximal
optimization framework. Such projections are only available
in closed form for some choices of c and expensive to com-
pute if the dimension is larger than one (Laude et al. 2016).
This limits the applicability in a “plug-and-play” fashion.
Product-space liftings

The product-space lifting approach (Goldluecke et al.
2013) attempts to overcome the aforementioned exponential
memory requirements of labeling methods in an orthogo-
nal way to the sublabel-based methods. The main idea is to
exploit the product-space structure in (1) and optimize over k
marginal distributions of the probability measure u ∈ P(�),
whichwe denote by ui ∈ P(�i ). Applying (Goldluecke et al.
2013) to the single data term (3) one arrives at the following
relaxation:

min
{ui∈P(�i )}

sup
{qi :�i→R}

k∑
i=1

∫
�i

qi (γi ) dui (γi )

s.t.
k∑

i=1

qi (γi ) ≤ c(γ ) for all γ ∈ �. (6)

Since one only has to discretize the individual �i this sub-
stantially reduces the memory requirements from O(�N ) to
O(

∑k
i=1 �Ni ). While at first glance it seems that the curse

of dimensionality is lifted, the difficulty is moved to the
dual, where we still have a large (or even infinite) number
of constraints. A global implementation of the constraints
with Lagrange multipliers as proposed in Goldluecke et al.
(2013) again leads to the same exponential dependency on
the dimension.

As a side note, readers familiar with optimal transport
may notice that the supremum in (6) is a multi-marginal
transportation problem (Carlier 2003; Villani 2008) with
transportation cost c. This view is mentioned by Bach (2019)
where relaxations of form (6) are analyzed under submodu-
larity assumptions.

In summary, the sublabel-accurate lifting methods,
discrete-continuous MRFs (Zach and Kohli 2012; Möllen-
hoff et al. 2016) and product-space liftings (Goldluecke et
al. 2013) all share a common difficulty: implementation of
an exponential or even infinite number of constraints on the
dual variables.
Summary of our contribution

Our main contribution is a simple way to implement the
dual constraints in an online fashion with a random sam-
pling strategy which we present in Sect. 4. This allows a
black-box implementation, which only requires an evalua-
tion of the cost c and no epigraphical projection operations
as in Möllenhoff et al. (2016), Zach and Kohli (2012).
Moreover, the sampling approach allows us to propose and
implement a sublabel-accurate variant of the product-space
relaxation (Goldluecke et al. 2013) which we describe in the
following section.

3 Product-Space Relaxation

Our starting point is the convex relaxation of (1) presented in
Goldluecke et al. (2013), Strekalovskiy et al. (2014). In these
works, �i ⊂ R is chosen to be an interval. We first denote
the Lagrangian as:

L({ui }, {qi }, {pi }) =
k∑

i=1

∫
�

∫
�i

qi (x, γi ) (7)

− Divx pi (x, γi ) duxi (γi ) dx . (8)

Following Vogt et al. (2020) we consider a generalization to
manifolds �i ⊂ RNi which leads us to the following relax-
ation:

min
{ui :�→P(�i )}

sup
{qi :�×�i→R}
{pi :�×�i→R2}

L({ui }, {qi }, {pi }),

s.t. ‖PTγi
∇γipi (x, γi )‖∗ ≤ λi , ∀i, x, γi , (9)

k∑
i=1

qi (x, γi ) ≤ c(x, γ ), ∀x, γ (10)

This cost function appears similar to (6) explained in the
previous section, but there are two differences. First, we now
have marginal distributions ui (x) for every x ∈ � since we
do not consider only a single data term anymore. The notation
duxi in (8) denotes the integration against the probability
measure ui (x) ∈ P(�i ). The variables qi play the same role
as in (6) and lower-bound the cost under constraint (10).
The second difference is the introduction of additional dual
variables pi and the term −Divx pi in (8). Together with
the constraint (9), this can be shown to implement the total
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variation regularization as in Lellmann et al. (2013), Vogt
et al. (2020). Following Vogt et al. (2020), the derivative
∇γipi (x, γi ) in (9) denotes the (Ni×2)-dimensional Jacobian
considered in the Euclidean sense and PTγi

the projection
onto the tangent space of �i at the point γi .

To get an intuition on the total variation regularization,
we use a concrete example to illustrate how (8) and (9)
implement it. Consider the case when the labeling variable
uxi = δu(x) is given as a Dirac measure at every point x . As
a concrete example, we consider k = 1 for simplicity. The
term in (8) then simplifies to

∫
�

−Divx p(x, u(x)) dx (11)

=
∫

�

〈∇γ p(x, u(x)),∇u(x)〉 dx, (12)

which follows by applying the chain-rule and the fact that p
has compact support. Finally, taking a point-wise supremum
over p inside the integral in (12) under the dual-norm con-
straint (9) gives us the total variation of u:

∫
�

‖∇u(x)‖ dx ,
which is the same as defined in (2).

3.1 Finite-Element Discretization

We approximate the infinite-dimensional problem (8) by
restricting ui , pi and qi to be piecewise functions on a dis-
crete meshing of � × �i . The considered discretization is
a standard finite-element approach and largely follows the
work fromVogt et al. (2020). Unlike the forward-differences
considered in Vogt et al. (2020) we use lowest-order Raviart–
Thomas elements (see, e.g., Caillaud and Chambolle 2020,
Section 5) in �, which are specifically tailored towards the
considered total variation regularization.

Discrete mesh
We approximate each di -dimensional manifold �i ⊂ RNi

with a simplicial manifold�h
i , given by the union of a collec-

tion of di -dimensional simplices Ti . We denote the number
of vertices (“labels”) in the triangulation of �i as �i . The set
of labels is denoted by Li = {vi,1, . . . , vi,�i }. As assumed,
� ⊂ R2 is a rectangle which we split into a set of faces F
of edge-length hx with edge set E . The number of faces and
edges are denoted by F = |F |, E = |E |.
Data term and the

ui , qi variables We assume the cost c : � × � → R≥0

is constant in x ∈ � on each face and denote its value
as c(x( f ), γ ) for f ∈ F , where x( f ) ∈ � denotes the mid-
point of the face f . Similarly, we also assume the variables
ui and qi to be constant in x ∈ � on each face but contin-
uous piecewise linear functions in γi . They are represented
by coefficient functions uhi ,q

h
i ∈ RF ·�i , i.e., we specify the

values on the labels and linearly interpolate inbetween. This

is done by the interpolation operator Wi, f ,γi : RF ·�i → R
which given an index 1 ≤ i ≤ k, face f , and (continuous)
label position γi ∈ �i computes the function value based
on barycentric coordinates:Wi, f ,γiu

h
i = ui (x( f ), γi ). Note

that after discretization, ui is only defined on �h
i but we can

uniquely associate to each γi ∈ �h
i a point on �i .

Divergence and
pi variables Our variable pi is represented by coeffi-

cients phi ∈ RE ·�i which live on the edges in � and
the labels in �i . The vector pi (x, γi ) ∈ R2 is obtained
by linearly interpolating the coefficients on the vertical
and horizontal edges of the face and using the interpo-
lated coefficients to evaluate the piecewise-linear function
on �h

i . Under this approximation, the discrete divergence
Divhx : RE ·�i → RF ·�i is given by (Divhx p

h
i )( f ) =(

phi (er ) + phi (et ) − phi (el) − phi (eb)
)
/hx where er , et , el , eb

are the right, top, left and bottom edges of f , respectively.

Total variation constraint
Computing theoperator PTγi

∇γi is largely inspiredbyVogt
et al. (2020), Section 2.2. It is implemented by a linear map
Di, f ,α,t : RE ·�i → Rdi×2. Here, f ∈ F and α ∈ [0, 1]2
correspond to a point x ∈ � while t ∈ Ti is the simplex con-
taining the point corresponding to γi ∈ �i . First, the operator
computes coefficients in R�i of two piecewise-linear func-
tions on the manifold by linearly interpolating the values on
the edges based on the face index f ∈ F and α ∈ [0, 1]2. For
each function, the derivative in simplex t ∈ Ti on the triangu-
lated manifold is given by the gradient of an affine extension.
Projecting the resulting vector onto the di -dimensional tan-
gent space for both functions leads to a di × 2-matrix which
approximates PTγi

∇γipi (x, γi ).

Final discretized problem
Plugging our discretized ui , qi , pi into (8), we arrive at

the following finite-dimensional optimization problem:

min
{uhi ∈RF ·�i }

max
{phi ∈RE ·�i },
{qhi ∈RF ·�i }

h2x ·
k∑

i=1

〈uhi ,qhi − Divhx p
h
i 〉

+
∑
f ∈F

i{uhi ( f ) ∈ ��i }, (13)

s.t. ‖Di, f ,α,tphi ‖∗ ≤ λi ,

∀i ∈ [k], f ∈ F , α ∈ {0, 1}2, t ∈ Ti , (14)
k∑

i=1

Wi, f ,γiq
h
i ≤ c (x( f ), γ ) ,∀ f ∈ F , γ ∈ �, (15)

where i{·} is the indicator function. In our applications, we
found that it is sufficient to enforce the constraint (14) at
the corners of each face which corresponds to choosing α ∈
{0, 1}2. Apart from the infinitely many constraints in (15),
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this is a finite-dimensional convex-concave saddle-point
problem and can be tackled by many numerical optimiza-
tion algorithms.

3.2 Solution Recovery

Before presenting in the next section how we propose to
implement the constraints (15), we briefly discuss how a pri-
mal solution {uhi } of the above problem is turned into an
approximate solution to (1). To that end, we follow Lellmann
et al. (2013), Vogt et al. (2020) and compute the Riemannian
center of mass via an iteration τ = 1, . . . , T :

V τ
j = loguτ

i
(vi, j ), (16)

vτ =
�i∑
j=1

uhi ( f , j)V
τ
j , (17)

uτ+1
i = expuτ

i
(vτ ). (18)

Here, u0i ∈ �i is initialized by the label with the highest
probability according to uhi ( f , ·). loguτ

i
and expuτ

i
denote

the logarithmic and exponential mapping between �h
i and its

tangent space at uτ
i ∈ �i , which are both available in closed-

form for the manifolds we consider here. In our case T = 20
was enough to reach convergence. For flat manifolds, T = 1
is enough, as both mappings boil down to the identity and
(18) computes a weighted Euclidean mean.

In general, there is no theory which shows that uT (x) =
(uT1 (x), . . . , uTk (x)) from (18) is a global minimizer of (1).
Tightness of the relaxation in the special case k = 1 and
� ⊂ R is shown in Pock et al. (2010). For higher dimensional
�, the tightness of related relaxations is ongoing research;
see Ghoussoub and Kim, Y- H., Lavenant, H. Palmer, A.Z.
(2021) for results on the Dirichlet energy. By computing a-
posteriori optimality gaps, solutions of (8) were shown to be
typically near the global optimum of Problem (1); see, e.g.,
Goldluecke et al. (2013).

4 Implementation of the Constraints

Though the optimization variables in (13) are finite-
dimensional, the energy is still difficult to optimize because
of the infinitely many constraints in (15).

Before we present our approach, let us first describe what
we refer to as the baseline method for the remainder of this
paper. As the baseline approach, we consider the direct solu-
tion of (13) where we implemented the constraints only at
the label/discretization points L1 × · · · × Lk via Lagrange
multipliers [this strategy is also employed by the global vari-
ant of the product-space approach (Goldluecke et al. 2013)].
This baseline actually corresponds to a single outer iteration

Nit of the proposed Algorithm 1, with a large number Mit of
inner iterations.

We aim for a framework that allows for solving a better
approximation of (15) than the baseline while being of sim-
ilar memory complexity. To this end, Algorithm 1 alternates
the following two steps:

(1) Sampling Based on the current solution we prune pre-
viously considered but feasible constraints and sample a new
subset of the infinitely many constraints in (15). From all
the current sampled constraints, we consider the most vio-
lated constraints for each face, add one sample at the current
solution and discard the rest.

(2) Solving the subsampled problem Considering the
current finite subset of constraints, we solve Problem (13)
using a primal-dualmethod (Chambolle and Pock 2011)with
diagonal preconditioning (Pock and Chambolle 2011). Both
constraints (14) and (15) are implemented using Lagrange
multipliers.

These two phases are performed alternatingly, with the
aim to eventually approach the solution of the continuous
problem (13). In practice, a fixed number of outer iterations
Nit is set. While we do not prove convergence of the overall
algorithm, convergence results for related procedures exist;
see, e.g., Blankenship and Falk (1976), Theorem 2.4.

The detailed algorithm is explained in Algorithm 1. The
cost matrix C is constructed by evaluating c(x( f ), γ ) at
proposed samples S f . We denote ξ and ν as the Lagrange
multipliers. The Lagrange multiplier ξ is initialized by a
warm-start strategy, i.e. ξ i t keeps same if we have the same
proposed sample from previous outer iteraion. The prox of a
function g with step size τ is defined as:

proxτg(x) = argminy
1

2τ
‖x − y‖ + g(y) (19)

Our constraint sampling strategy is detailed in Algo-
rithm 2. For each face in F , it generates a finite set of
“sublabels” S f ⊂ � at which we implement the constraints
(15). Next, we provide the motivation behind each line in the
algorithm.
Random uniform sampling (Line 1) To have a global view
of the cost function, we consider a uniform sampling on the
label space �. The parameter n > 0 determines the number
of the samples for each face.
Local perturbation around the mean (Line 2) Besides the
global information, we apply local perturbation around the
current solution u. In case the current solution is close to the
optimal one, this strategy allows us to refine it with these
samples. The parameter δ > 0 determines the size of the
local neighbourhood. In our experiments, we always used a
Gaussian perturbation with δ = 0.1.
Pruning strategy (Lines 3–4) Most samples from previous
iterations are discarded because the corresponding con-
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Algorithm 1 Proposed algorithm for problem (1).
Input: c : � × � → R, λi > 0, Nit > 0, Mit > 0, n > 0, δ > 0, r > 0.

1: uh,0
i = 1/�i , q

h,0
i = 0, ph,0

i = 0.
2: S0

f = L1 × . . . × Lk .
3: for i t = 0 to Nit do
4: Construct interpolation matrixWi t

i and cost matrix Ci t based on S i t
f from Algorithm 2.

5: Initialize ξ i ti with the warm-start strategy.
6: Construct the diagonal preconditioners Ti t

u , T
i t
ν , T

i t
ξ , 6

i t
p and 6i tq by Pock and Chambolle (2011).

7: for j = 0 to Mit do
8: ph, j+1

i = ph, j
i + 6i tp (−h2x · (Divhx )

T uh, j
i + DT

i,α,tν
j
i )

9: qh, j+1
i = qh, j

i + 6i tq (h2x · uh, j
i − (Wi t

i )T ξ
j
i )

10: p̄h, j
i = 2ph, j+1

i − ph, j
i

11: q̄h, j
i = 2qh, j+1

i − qh, j
i

12: uh, j+1
i = prox·∈��i (u

h, j
i − Ti t

u (q̄h, j
i − Divhx p̄

h, j
i ))

13: ν
j+1
i = proxλTi t

ν ‖·‖2 (ν
j
i − Ti t

ν Di,v,t p̄
h, j
i )

14: ξ
j+1
i = prox·≥0(ξ

j
i − Ti t

ξ (Ci t − ∑k
i W

i t
i q̄

h, j
i ))

15: end for
16: Get sampled S i t+1

f for each face by Algorithm 2.
17: end for

Algorithm 2 Sampling strategy at face f ∈ F .
Input: Solution u = (u1, . . . , uk) at face f , sublabel-set S f , n, δ,

r .
/* global exploration */

1: S ′
f ← uniformSample(�, n)

/* local exploration around solution */
2: S ′

f ← S ′
f ∪ localPerturb(u, δ, n)

/* remove feasible constraints */
3: S f ← {

γ ∈ S f : ∑k
i=1 qi ( f , γ ) > c( f , γ )

}
/* add the most violated r samples */

4: S f ← top-k(S ′
f , r ) ∪ S f

/* have one sample at current solution */
5: S f ← S f ∪ {u}.
6: Return S f

straints are already satisfied. We prune all current feasible
constraints as in Blankenship and Falk (1976). Similarly, the
two random sampling strategies (Lines 1 and 2) might return
some samples for which the constraints are already fulfilled.
Therefore, we only consider the samples with violated con-
straints and pick the r most violated from them. This pruning
strategy is essential for a memory efficient implementation
as shown later.
Sampling at u (Line 5) Finally, we add one sample which
is exactly at the current solution u ∈ � to have at least one
guaranteed sample per face. In the next section, we illustrate
the behavior of Algorithm 1 on a toy problem, and evaluate
its performance on real-world imaging problems.

5 Numerical Validation

Our approach and the baseline are implemented in PyTorch.
Code for reproducing the following experiments can be found

here: https://github.com/zhenzhangye/sublabel_meets_prod
uct_space. Note that that one of the runtime bottlenecks of
our sampling strategy is creating the samples and picking the
most violated r as shown in Algorithm 2. Additionally, the
sparse matrix operations and the PDHG updates can be more
efficiently implemented in CUDA, as all PDHG updates can
be executed in a single CUDAkernel, compared to PyTorch’s
multiple kernel calls. Therefore, a specialized implementa-
tion as in Goldluecke et al. (2013) will allow the method to
scale by factor 10 − 100× in favor of runtime.

5.1 Illustration of the Algorithm

First of all, we consider a simplistic minimization problem
on a single nonconvex data term:

c(u) = min

⎧⎪⎨
⎪⎩

−4u + 2.4, u ∈ [0.1, 0.35),
4u − 0.4, u ∈ [0.35, 0.6],
2, otherwise,

(20)

with 5 labels to illustrate the behavior of both, the baseline
algorithm and our sampling strategies.

Figure 2 depicts the baseline’s behavior. While it only
evaluates the energy on the labels, five samples are consid-
ered as illustrated by the red dots in Fig. 2a. Figure 2b shows
the dual variable qhi after i t iterations. Since the algorithm is
maximizing qhi , the green and red dots should overlay (e.g.
the second label)when it converges.Despite the convergence,
the resulting qh violates the constraints significantly close to
the optimal solution (“green > blue”). Therefore, to attain the
global optimal solution, the baseline approach needs more
labels which requires more memory.
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(a) (b)

Fig. 2 Illustration of the baseline algorithm. a Five samples (red dots)
from the labels are considered. b The dual variable q satisfies the con-
straints on the samples. However, q is not globally optimal as it violates
the constraint on the optimal solution (“green > blue”) (Color figure
online)

The motivation of random uniform sampling (Line 1,
Algorithm 2) and local perturbation around themean (Line 2,
Algorithm 2) in our sampling strategy is intuitively clear.
However, as demonstrated later in the experiment of a trun-
cated quadratic energy, sampling at u (Line 5, Algorithm 2)
is critical for the stability of our method. A comparison in
Fig. 3 helps to show the necessity of this strategy. We ran
two experiments with the identical settings except for the
sampling at u. After a given number of iterations, the dual
variable qh is approximately optimal, as indicated in Fig. 3a.
Our pruning strategy (Line 3, Algorithm 2) removes all of the
proposed samples since all of them satisfy the constraints.
As a result, the subproblem becomes unconstrainted on that
dual variable qh and its update has no significance, Fig. 3b.

To solve this problem, we propose to always at least have
one sample at u even when qh is nearly optimal, cf. Fig. 3c.
As illustrated in Fig. 3d, this can avoid the degeneration of
qh as it is still constrained.

Finally, the complete sampling strategy is illustrated in
Fig. 4. As shown in Fig. 4a, the primal-dual method can
obtain the optimal qh for the sampled subproblem. Our sam-
pling strategy can provide necessary samples and prune the
feasible ones, cf. Fig. 4 (b). These few but meaningful sam-
ples lead the qh to achieve global optimality, cf. Fig. 4c.

5.2 Truncated Quadratic Energy

In this section, we study the numerical effect of each line
in Algorithm 2. We evaluate our method on the truncated
quadratic energy c(x, u(x)) = min{(u(x) − f (x))2, ν}.
where f : � → R is the input data as show in Fig. 5.
For this specific experiment, we generate a 64 × 64 gray
image degraded with Gaussian noise of standard deviation
σ = 0.05 and 5% salt-and-pepper noise. The parameters are
chosen as ν = 0.025, λ = 0.25, Nit = 10, Mit = 200,
n = 10 and r = 1. To reduce the effect of randomness, we
run each algorithm 20 times and report mean and standard
deviation of the final energy for different number of labels
in Table 1. We want to emphasize that more labels have ben-
efits for both baseline and our algorithm. Nevertheless, the
proposed approach can reach lower energies with the same
number of labels and similar memory requirements.

As can be seen in this table, adding uniform sampling
and picking the most violated constraint per face (Lines 1
and 4 of Algorithm 2) already decreases the final energy
significantly. We also consider local exploration around the

(a) (b) (c) (d)

Fig. 3 Benefit of sampling at u (Line 5, Algorithm 2). a Because all
of the proposed samples (gray dots) fullfil the constraint, they are all
pruned (Line 3, Algorithm 2). b The updated q deteriorates because

the subproblem is unconstrainted on it. c At least one sample is taken
(namely uit , red dot). d This sample constraints q and thus prevents a
degenerate solution (Color figure online)
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(a) (b) (c)

Fig. 4 Illustration of our proposed sampling strategies. a Two samples
(red dots) are considered leading to the shown optimal dual variable
q after running primal-dual iterations. b The two samples are pruned

because the constraints are feasible. Several random samples are pro-
posed (gray dots) and only one of them is picked (red dot). c One more
sample on uit is added and the q is refined (Color figure online)

Fig. 5 a The original 64×64 grayscale image. bDegraded with Gaus-
sian noise of standard deviation σ = 0.05 and 5% salt-and-pepper noise

current solution (Line 2), which helps to find better ener-
gies at the expense of higher memory requirements. The
pruning strategy (Line 3) circumvents this memory issue,

however the energy deteriorates dramatically because some
faces could end up having no samples after pruning. There-
fore, keeping the current solution as a sample (Line 5) per
face prevents the energy from degrading. Including all these
sampling strategies, the proposed method can achieve the
best energy and runtime, at comparable memory usage to the
baseline method.

We further illustrate the comparison on the number of
iterations and time between the baseline and our proposed
method in Fig. 6. Due to the replacement on the samples, we
have a peak right after each sampling phase. The energy how-
ever converges immediately, leading to an overall decreasing
trend.

Additionally, we compare our method to the baseline on
a more practical dataset CBSD from Martin et al. (2001).
This dataset contains 68 images and noisy ones with additive
whiteGaussian noise (5% in this experiment). The number of

Table 1 Ablation study indicating the effect of individual lines in Algorithm 2

Labels Baseline +Lines 1 & 4 +Line 2 +Line 3 +Line 5

Energy 4589 (±0.00) 2305 (±3.73) 2291 (±3.6) 8585 (±130.4) 2051 (±10.7)

Time (s) 3 8.98 22.77 23.22 23.22 23.33

Mem. (Mb) 11.21 13.94 15.53 11.65 12.05

Energy 2582 (±0.00) 2020 (±2.68) 2012 (±1.3) 7209 (±116.7) 1969 (±3.6)

Time (s) 7 74.13 16.02 16.61 15.56 18.38

Mem. (Mb) 28.35 32.96 33.49 28.356 28.68

Energy 2029 (±0.00) 1935 (±1.14) 1926 (±0.7) 5976 (±75.7) 1901 (±3.7)

Time (s) 13 183.80 37.65 38.84 38.29 38.22

Mem. (Mb) 52.85 60.55 60.94 54.35 54.73

Numbers in parentheses indicate the standard deviation across 20 runs
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Fig. 6 Comparison between the
baseline and our approach on a
64 × 64 grayscale image shown
in Fig. 5, degraded with
Gaussian and salt-and-pepper
noise. Our approach finds lower
energies in fewer iterations and
less time than the baseline,
which implements the
constraints only at the label
points

labels is 7 for both methods. 5K iterations are performed on
the baseline method, while we set Nit = 10 and Mit = 500
to get a fair comparison. The other parameters are chosen
as λ = 0.25, n = 50 and r = 1. The results are shown in
Fig. 7. Our method outpeforms the baseline among all the
images regarding both energy and peak signal-to-noise ratio
(PSNR).

5.3 Manifold-Value Denoising

To show the flexibility of our algorithm, we next evaluate it
on amanifold-valued denoising problem inHSV color space.
The hue component of this space is a circle, i.e., �1 = S

1,
�2, �3 = [0, 1].

The data term of this experiment is still a truncated
quadratic energy,where for the hue component the distance is
taken on the circle S1. The input images (Baker et al. 2011;
Martin et al. 2001) are degraded with the same setting as
above.

Both the baseline and our method are implemented with 7
labels. First of all, we evaluate the impact of themost violated
r samples. As shown in Fig. 8, The maximum difference of
energy and memory is only 0.8% and 0.06%, respectively,
which can be considered almost constant wrt. r . Therefore,
we pick r = 5. To get an equal number of total iterations,
30K iterations are performed on the baseline, while we set
Nit = 100 outer iterations with Mit = 300 inner primal-
dual steps for our method. Other parameters are chosen as
λ = 0.015 and n = 30. As shown in Fig. 9, our method can
achieve a lower energy than the baseline. Qualitatively, since
our method implements the constraints not only at the labels
but also inbetween, there is less bias.

Fig. 7 Quantitative results on the CBSD dataset (Martin et al. 2001).
We ordered both results from the best to the worst. The difference is
calculated using the formula ours - baseline

baseline . It is clear that our method
consistently outperforms the baseline across all images

(a) (b)

Fig. 8 Comparison between different number of most violated con-
straints on the energy and memory: a the change of the energy with
r = 1 as the basis; b the change of memory with r = 1 as the basis. It
can be observed that both the energy and memory vary very little (0.8%
and 0.06%, respectively) regarding different r

5.4 Optical Flow

Given two input images I1, I2, we compute the optical flow
u : � → R2 for the label space� = [a, b]2.We use a simple
�1-norm for the data term, i.e. c(x, u(x)) = ‖I2(x)− I1(x +
u(x))‖1 and set the regularization weight as λ = 0.04. The
baseline approach runs for 50K iterations, whilewe set Nit =
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50 and Mit = 1000 for a fair comparison. Additionally, the
parameters are chosen as n = 20 and r = 1 in Algorithm 2.

We consider three methods for this experiment: the base-
line, the method from Laude et al. (2016) and ours. The

method from Laude et al. (2016) approximates the dataterm
in a piecewise convex manner and requires a specific epi-
graph projection for the dataterm. Though it can attain lower
energy, our approach requires less memory and tackle any

Fig. 9 Denoising of images (Baker et al. 2011; Martin et al. 2001) in
HSV color space (�1 = S

1, �2 = �3 = [0, 1]) using our method and
the baseline with 7 labels. The hue component plot demonstrates that
our approach is able to handle the manifold setting where the jump

from 2π to 0 is permitted. Since our approach implements the con-
straints adaptively inbetween the labels (gray lines) it reaches a lower
energy with less label bias

Table 2 We compute the optical flow on the Middlebury dataset (Baker et al. 2011) using our method and the baseline for a varying amount of
labels

#Labels 3 7 11 15 19

Rel. energy 50.91%(±6.54%) 64.15%(±9.83%) 73.68%(±11.17%) 79.40%(±9.70%) 80.69%(±11.23%)

Rel. memory 99.84%(±0.75%) 100.02%(±0.07%) 99.99%(±0.04%) 99.99%(±0.03%) 99.98%(±0.04%)

Rel. aep 91.94%(±7.79%) 99.92%(±3.17%) 98.67%(±1.63%) 99.43%(±1.78%) 100.71%(±1.16%)

Rel. aae 82.34%(±8.68%) 95.19%(±5.74%) 94.93%(±6.15%) 96.55%(±5.85%) 100.86%(±3.97%)

Given an equal number of labels/memory, our sampling strategy performs favorably to an implementation of the constraints at the labels. The
relative numbers of energy, memory, average endpoint error (aep) and average angular error (aae) are calculated as “mean( Ours

Baseline )” across all 8
datasets. The number in the parentheses resemble the standard deviation. The detailed table with all results can be found in the “Appendix”
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Fig. 10 Visualization of the
optical flow on Grove3 and
RubberWhale from the
Middleburry dataset (Baker et
al. 2011), using the baseline, the
method from Laude et al. (2016)
and our method for a varying
amount of labels. OOM stands
for out of memory. More
qualitative results can be found
in the appendix

cost function in a simple black-box fashion. Table 2 summa-
rizes the quantitative results obtained on the Middleburry
dataset (Baker et al. 2011), while the detailed absolute
numbers can be found in the appendix. This table shows
how our approach performs relatively to the baseline, i.e.
“mean( Ours

Baseline )”, e.g. for three labels our energy is 50.91%of
the baseline energy for all 8 datasets, while using 99.84% of
the baseline’s memory and having an average end point error
(aep) and average angular error (aae) of 91.94% and 82.34%
of the baseline error metrics, respectively. To enable qualita-
tive comparison, we visualize in Fig. 10 the results on two of
the datasets. The remaining qualitative results on theMiddle-
bury data set (Baker et al. 2011) are shown in the appendix.
Our method outperforms the baseline approach regarding
energy under the same number of labels and requires the
same amount of memory. Because Laude et al. (2016) uses
a tighter relxation on the label space, they can achieve lower
energy with a smaller number of labels. However, it runs out
of memory easily while the proposed method scales better
wrt. memory consumption.

6 Conclusion and Limitations

In this paper we made functional lifting methods more scal-
able by combining two advances, namely product-space
relaxations (Goldluecke et al. 2013) and sublabel-accurate
discretizations (Möllenhoff and Cremers 2017; Vogt et al.

2020). This combination is enabled by adapting a cutting-
plane method from semi-infinite programming (Blankenship
and Falk 1976). This allows an implementation of sublabel-
accurate methods without difficult epigraphical projections.

Moreover, our approach makes sublabel-accurate
functional-lifting methods applicable to any cost function in
a simple black-box fashion. In experiments, we demonstrate
the effectiveness of the approach over a baseline based on the
product-space relaxation (Goldluecke et al. 2013) and pro-
vided a proof-of-concept experiment showcasing the method
in the manifold-valued setting.

Futureworkwill concentrate on applying and adapting the
presented framework to solve large inverse problems in com-
puter vision with multiple data terms, different regularizers
and several manifold-valued optimization variables in a joint
fashion. However, it is not obvious if our presented cutting
plane approach is easily applicable for such large problems
or if novel ideas have to be pursued.
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A Additional Optical Flow Results

Table 3 shows the energy and memory requirement as well
as the average endpoint error (aep) and average angular error
(aae) for the baseline, the method from Laude et al. (2016)

and our approach across different number of labels for all
8 used Middlebury datasets (Baker et al. 2011). Figures 11
and 12 visualize the remaining optical flow results on the
Middlebury dataset (Baker et al. 2011) using the baseline,
the method from Laude et al. (2016) and ours for a vary-
ing amount of labels. Note that the approach from Laude
et al. (2016) leverages a tighter discretization on the label
space and is implemented on CUDA. Though their approach
achieves better energy under fewer labels, ours has a better
scability.

Table 3 We compute the optical flow on the Middlebury dataset (Baker et al. 2011) using the baseline, the method from Laude et al. (2016) and
ours for a varying amount of labels

#Labels 3 11 19
Baseline Laude et al. (2016) Ours Baseline Laude et al. (2016) Ours Baseline Laude et al. (2016) Ours

Dimetrodon Energy 8326.07 3233.34 4789.68 4607.09 2805 3982.92 4161.21 OOM 3886.04

Memory (Mb) 244.45 573 245.43 1795.51 10296 1795.76 4583.72 4582.42

Time (s) 83.86 470.3 904.6 967.3 2274.7 2881.9 1375.1 3883.3

aep (px) 1.39 1.15 1.31 1.08 1.15 1.08 1.07 1.08

aae (◦) 0.57 0.45 0.49 0.34 0.48 0.34 0.33 0.34

Grove2 Energy 24919.9 9815.9 10873.84 10344.75 8798.9 7679.19 8600.58 OOM 7340.10

Memory (Mb) 330.25 786 331.43 2426.97 13941 2426.33 6220.34 6220.34

Time (s) 294.7 606.1 1195.2 911.2 3501.2 3801.2 1375.1 3883.3.4

aep (px) 1.74 1.41 1.88 1.77 1.64 1.74 1.80 1.78

aae (◦) 0.48 0.26 0.46 0.37 0.34 0.35 0.38 0.37

*Grove3 Energy 56730.6 14789 31917.5 25943.1 14039 12891.6 16402.7 *OOM 10451.8

Memory (Mb) 334.9 783 334.9 2427.3 13926 2427.3 6220.6 6213.1

Time (s) 998.1 579.9 1195.6 923.3 3926.8 3809.3 1245.9 3919.3

aep (px) 3.08 1.97 2.58 2.19 2.11 2.09 2.09 2.07

aae (◦) 0.79 0.28 0.65 0.37 0.33 0.31 0.31 0.30

*Hydrangea Energy 36943.87 11598 17622.77 9857.40 5634 6829.89 7793.58 *OOM 6416.15

Memory (Mb) 244.27 586 245.29 1795.06 10320 1795.59 4582.12 4582.42

Time (s) 850.2 394.3 904.0 381.0 2824.7 2890.6 443.6 2713.9

aep (px) 3.01 2.56 2.62 1.89 1.67 1.87 1.78 1.81

aae (◦) 0.85 0.65 0.63 0.26 0.27 0.25 0.23 0.24

*RubberWhale Energy 13142.73 4526 6069.95 6375.56 3948 5198.42 5502.00 *OOM 5020.85

Memory (Mb) 246.38 576 246.52 1796.18 10303 1795.76 4583.00 4582.27

Time (s) 170.8 442.9 905.8 806.9 2810.6 2881.8S 1091.6 2704.9

aep (px) 0.94 0.76 0.81 0.71 0.72 0.70 0.68 0.69

aae (◦) 0.60 0.45 0.48 0.39 0.42 0.38 0.37 0.37
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Table 3 continued

#Labels 3 11 19
Baseline Laude et al. (2016) Ours Baseline Laude et al. (2016) Ours Baseline Laude et al. (2016) Ours

*Urban2 Energy 31765.19 10153 18200.39 11083.50 9562 8775.62 7694.50 *OOM 6523.03

Memory (Mb) 332.54 760 333.05 2426.33 13863 2426.33 6220.34 6220.34

Time 9s) 1303.9 543.9 1196.6 876.7 3410.7 3806.6 938.9 3926.3

aep (px) 5.79 6.01 5.38 4.62 5.91 4.51 4.24 4.26

aae (◦) 0.85 0.36 0.72 0.32 0.39 0.28 0.23 0.22

*Urban3 Energy 25991.05 7901 14622.53 10966.07 6696 7809.14 10303.19 *OOM 6587.87

Memory (Mb) 332.63 763 328.53 2426.97 13848 2426.79 6220.34 6220.34

Time (s) 1302.7 677.8 1194.8 786.3 3904.7 3805.6 1019.3 3925.1

aep (px) 4.83 3.91 4.63 4.10 4.30 4.10 4.06 4.11

aae (◦) 0.68 0.32 0.60 0.34 0.37 0.34 0.31 0.32

*Venus Energy 24589.15 8203 10429.92 10475.71 4151 8155.96 9775.23 *OOM 7897.65

Memory (Mb) 173.16 404 170.64 1263.71 7247 1262.51 3231.28 3230.04

Time (s) 369.7 256.8 669.3 396.5 1957.8 2135.2 573.1 2026.8

aep (px) 2.63 2.28 2.30 2.08 2.21 2.09 2.08 2.12

aae (◦) 0.74 0.45 0.50 0.32 0.42 0.32 0.31 0.33

Wedenote the out ofmemory error asOOM.Given an equal number of labels/memory, our sampling strategyperforms favorably to an implementation
of the constraints at the labels comparing to the baseline. Additionally, our method obtains a better scalibilty than the one from Laude et al. (2016)
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Fig. 11 Part I: We visualize the
optical flow on the Middlebury
dataset (Baker et al. 2011) using
baseline, the method from
Laude et al. (2016) and ours for
a varying amount of labels for
qualitative inspection. OOM
stands for out of memory
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Fig. 12 Part II: We visualize the
optical flow on the Middlebury
dataset (Baker et al. 2011) using
baseline, the method from
Laude et al. (2016) and ours for
a varying amount of labels for
qualitative inspection. OOM
stands for out of memory
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