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Abstract
This paper is a comprehensive survey of datasets for surgical tool detection and related surgical data science and machine
learning techniques and algorithms. The survey offers a high level perspective of current research in this area, analyses the
taxonomy of approaches adopted by researchers using surgical tool datasets, and addresses key areas of research, such as the
datasets used, evaluation metrics applied and deep learning techniques utilised. Our presentation and taxonomy provides a
framework that facilitates greater understanding of current work, and highlights the challenges and opportunities for further
innovative and useful research.
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1 Introduction

There are fourteen surgical specialities recognised by the
American College of Surgeons, ranging from orthopaedic
surgery through to vascular surgery (ACS, 2021). Each spe-
ciality has its own procedures and its own sets of surgical
tools, including instruments, implants and screws designed
for specific parts of the body, and for specific procedures.
Rapid advances in minimally invasive surgery have led to
new classifications of robotic or laparoscopic surgery and
open surgery (Bhatt et al., 2018), and also to new types of
instruments being introduced at a constant rate (Fig. 1).

Consequently, there are many thousands of different types
of surgical tool in circulation within a hospital. Stockert
and Langerman (2014) reported that just one institution pro-
cessed over 100,000 surgical trays and 2.6 million surgical
tools annually. There were on average 38 surgical instru-
ments per tray, with around 6 trays used for each surgery
(Mhlaba et al., 2015). Handling this volume manually in real
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time and under difficult, mission-critical conditions is a chal-
lenging task requiring highly trained surgical technicians.
Automating surgical tool detection and recognition through
computer vision and machine learning has numerous prac-
tical applications therefore, and these applications can lead
to improved efficiencies and/or reduced costs. Applications
include robotic and computer-assisted surgery (Sarikaya et
al., 2017; Zhao et al., 2019a), instrument position recogni-
tion in minimal invasive surgery (Zhao et al., 2017), pose
recognition in surgical training (Leppanen et al., 2018; Jo
et al., 2019), and instrument tracking in hospital inventory
management (Ahmadi et al., 2018).

Ward et al. (2021b) discussed the application of com-
puter vision and deep learning to surgery, specifically for the
identification of surgical phases and instruments in multiple
surgery procedures. van Amsterdam et al. (2021) reviewed
methods for automatic recognition of fine-grained gestures
in robotic surgery, and highlighted the promising results
obtained by deep learning basedmodels. Garrow et al. (2021)
provided an overview of deep learning models utilized for
automated surgical phase recognition using data inputs such
as videos or surgical instrument use, and found that laparo-
scopic cholecystectomy was the most common operation
evaluated. Yang et al. (2020) presented a review of the lit-
erature regarding image-based laparoscopic tool detection
and tracking using convolutional neural networks (CNNs),
including a discussion of available datasets and CNN-based
detection and tracking methods. They also presented a quan-
titative estimation of several performance measures. Our
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Fig. 1 Open surgery instruments

survey maintains a focus on surgical tools, reviews image
based surgical tool detection, and provides an overview of
instrument related surgical data science and machine learn-
ing techniques and algorithms. It is comprehensive in nature,
covering the range of relevant research conducted in our
specified time period—which was from 2015 till 2022. In
particular, we maintain a focus on surgical tool datasets and
on gaps in the research or on open research questions.

In this survey, we address three research questions:

1. What surgical tool datasets are used in machine learning
research?

2. Whatmachine learningmethods are used in the research?
3. What are the gaps in surgical tool datasets and associated

machine learning research?

Our objective, therefore, is to build a comprehensive
knowledge hierarchy of applied research in surgical tool
detection, classification and segmentation to guide future
work. A concrete outcome is an integrated taxonomy of the
methods used across the tasks undertaken in the research.
We evaluate the pros and cons of each method or set of
methods used in each paper, and address what is missing
in the research to date. Gaps not just in the research but also
in the publicly available datasets are discussed. We provide
a comprehensive survey of the various datasets associated
with surgical tool detection (Tables 1, 5, and 6). We address
the specific challenges faced in this task and evaluate how
they have been addressed. Finally, we make recommenda-
tions based on the results of the survey to encourage further
work in this area.

2 SurveyMethodology

As a logical starting point and following the approach used in
similar survey work (Egger et al., 2020; Litjens et al., 2017),
we rely on both PubMed and Google Scholar to conduct
an initial search for literature. We chose PubMed because
of its medical focus and Google Scholar because it indexes a
rangeof peer reviewed international journals and conferences
across disciplines. We expected that this strategy would pro-
vide a broader range of articles than reliance on academic
databases. We used keywords to search the databases—
an example search could include the keyword {“Surgical”
OR “Surgery”} together with the keywords {“tool” OR
“instrument”} AND {“detection” OR “classification”} AND
{“deep learning OR machine learning”}. Comprehensive
combinations of key words were used to ensure diligence
in our search. Our reliance on Google Scholar proved to be
a good strategy to develop an acceptable starting set of liter-
ature which avoided bias or preference towards any specific
publisher. We also conducted other complimentary searches,
such as reviewing reference lists, searching through con-
ference proceedings, and obtaining leads from prominent
researchers and authors in this area (Wohlin, 2014). Once we
completed the literature search, we comprehensively sum-
marised the literature set in a spreadsheet,with sample entries
shown in Tables 2 and 3.We then read the papers to ascertain
if they all actually included surgical tool detection in some
formor the other. For example, someof the studies on surgical
workflow also included a surgical tool detection component
since it has been reported that combining instrument signals
with visual features leads to better segmentation, and faster
and more accurate detection (Dergachyova et al., 2016). We
discarded papers that did not discuss surgical tools or which
used external markers for tool detection or tracking. The
resultant collection of 161 papers are surveyed in this review
(Fig. 2).

3 Dataset Review

Medical image analysis challenges have resulted in many
new and innovative approaches to surgical instrument recog-
nition. These challenges are designed to provide a platform
for the development of cutting edge machine learning solu-
tions in medical imaging, and research in these challenges
has addressed instrument segmentation, detection and local-
isation, tracking and pose estimation, velocity and instru-
ment state. Al Hajj et al. (2019) highlight the fact that
more than twenty annual challenges were hosted, and the
CATARACTS, EndoVis and M2CAI challenges specifically
addressed the issue of instrument detection. In the medi-
cal image challenges, generally a specific task is defined, a
dataset is provided, evaluation procedures are defined, algo-
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Table 1 Surgical tool datasets—examples of data and instruments

Challenge name Data available Instrument nos

ROBUST-MIS 2019 (Ross et al., 2019) 30 surgical procedures from three surgery types Large biopsy forceps

EndoVis 2018 (Allan et al., 2020) 14 sequences of abdominal porcine procedures Seven surgical instruments

CATARACTS (Al Hajj et al., 2019) 50 videos of phacoemulsification cataract surgeries 21 surgical tools

Cholec80 (Twinanda et al., 2017) 80 videos of cholecystectomy surgeries Seven tools or instruments

EndoVis 2017 (Allan et al., 2019) 10 sequences of abdominal porcine procedures Seven surgical

Lapgyn4 (Leibetseder et al., 2018) Gynaecological laparoscopy dataset Zero to three instruments

ATLAS Dione (Sarikaya et al., 2017) 86 full videos and 910 clips of six surgical tasks Two Tools

RMIT Dataset (Sznitman et al., 2012) 8 in-vivo sequences Single-instrument dataset

Table 2 Comprehensive literature summary—example entry (A)

Sr. Authors Year Title Journal/conference Overview Dataset

7 Al Hajj et al. 2018 Monitoring tool
usage in surgery
videos using
boosted
convolutional and
recurrent neural
networks

Med Image Anal 47 Automatic
monitoring of tool
usage during a
surgery: cataract
and
cholecystectomy

Cataracts, Cholec80
Datasets

Table 3 Comprehensive literature summary—example entry (B)

Sr. Technique used CNN used Instruments Data type Results

7 CNN and RNN
enriched by
progressively
adding weak
classifiers trained
to improve
classification
accuracy. CNN
outputs fed to
RNNs - jointly
boosts an ensemble
of CNNs and of
RNNs

Seven CNNs used as
weak classifiers

21 Cataract and 7
Cholec80

Videos via
microscope
(cataract) or
endoscope
(cholecystectomy)

ROC = 0.9961 in
offline mode; ROC
= 0.9957 in online
mode

rithms are developed and applied, and solutions are tested on
a held-out test set. A critical component is the dataset pro-
vided, and every attempt is made by the challenge organisers
to ensure that this data is representative of the type of data
generally encountered in clinical practice. We describe the
important Challenge Datasets in the next section.

3.1 Challenge Datasets

ROBUST-MIS 2019, a part of the EndoVis Challenge series,
was based on surgical procedures from three types of surgery.
The videos were from 30 minimally invasive surgical proce-
dures: 10 rectal resection procedures, 10 proctocolectomy
procedures and 10 sigmoid resection procedures. A labelling

Fig. 2 Paper selection flow
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mask and instrument labels were manually created for the
10,040 extracted endoscopic video frames (Ross et al., 2019).
This dataset was based on the Heidelberg colorectal data
set (Maier-Hein et al., 2021). The Endoscopic Vision 2018
Robotic Scene Segmentation Dataset provided images that
were based on actual surgical procedures and included con-
siderable variability in backgrounds, instrument movements,
angles, and scales. The entire challenge dataset was made up
of 19 sequences of porcine endoscope images and the objec-
tivewas to perform semantic segmentation of surgical images
into a set of medical device classes and a set of anatomi-
cal classes (Allan et al., 2020). The EndoVis 2017 Robotic
Instrument Dataset was made up of 10 sequences of abdom-
inal porcine procedures, which presented seven different
robotic surgical instruments (Table 4). The relatively small
size of the dataset was an issue, since it was only made up of
3000 frames in total, out of which 1800 frames were selected
as training data. The dataset supported three different seg-
mentation tasks: binary segmentation, parts of instruments
(e.g., shaft, wrist, claspers and ultrasound probes) and type
segmentation (e.g., needle driver, forceps, scissors, sealer
and others). The EndoVis 2015 instrument segmentation
and tracking dataset provided data for rigid and articulated
robotic instruments in laparoscopic surgery. For rigid instru-
ments, 2D in-vivo images from four laparoscopic colorectal
surgeries were provided for segmentation and in-vivo video
sequences of four laparoscopic colorectal surgeries were
provided for tracking. For articulated instruments, four 45-
second 2D images sequences of at least one large Needle
Driver instrument in an ex-vivo setup were provided. Rele-
vant annotations and additional test data were also provided.

TheChallenge onAutomatic ToolAnnotation for Cataract
Surgery (CATARACTS) Dataset consisted of 50 videos of
phacoemulsification cataract surgeries. Cataract surgery is
the most common of the surgical procedures, and ophthal-
mologists use a wider range of tools than surgeons doing
robotic or laparoscopic surgeries; consequently this dataset
provided a large set of tools. There are more than nine hours
of videos with an average duration of almost eleven minutes
per surgery. A total of twenty one surgical tools are present in
the videos (Table 4); a tool was only considered to be in use
when in contact with the eyeball. In any particular frame, up
to three tools can be visible at a time. However, this occurs
in only 4% of the frames; 45% of the frames show no tools
at all, 38% show one tool and 17% show two tools (Al Hajj
et al., 2019) (Fig. 3).

The Cholec80 dataset contains 80 videos of cholecystec-
tomy surgeries, and seven tools or instruments are present
in the dataset (Table 4). Some tools—such as the grasper
and hook—feature in many frames while other tools—such
as the scissors and irrigators—are less used and appear with
much lower frequency in the videos / frames (Twinanda et al.,
2017). The m2cai16-tool dataset is a subset of the Cholec80

Table 4 Tools in cataract dataset

Dataset Instrument

CATARACTS Biomarker, Charleux cannula,
hydrodissection cannula, Rycroft
cannula, viscoelastic cannula, cotton,
capsulorhexis cystotome, Bonn forceps,
capsulorhexis forceps, Troutman
forceps, needle holder, irrigation/
aspiration HP, phacoemulsifier HP,
Cvitrectomy HP, implant injector,
primary incision knife, secondary
incision knife, micromanipulator, suture
needle, Mendez ring, Vannas scissors,
grasper, bipolar, hook, scissors, clipper,
irrigator, specimen bag

Cholec80 Dataset Grasper, hook, bipolar, scissors, clipper,
specimen bag and irrigator

EndoVis 2017 Large Needle Driver, Prograsp Forceps,
Monopolar Curved Scissors, Cadiere
Forceps, Bipolar Forceps, Vessel Sealer
and a drop-in ultrasound probe,
typically in the jaws of the Prograsp

Fig. 3 Cataracts Dataset

Fig. 4 Cholec80 Dataset

Dataset and it consists of fifteen cholecystectomyvideoswith
binary annotations of the seven tools present (Fig. 4).

Details of the surgical tool datasets used in the chal-
lenges is presented in Table 5. In addition to the metadata
provided about each dataset, additional metadata charac-
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Table 5 Taxonomy of surgical tool datasets

Metadata charac-
teristic

ROBUST-MIS
(EndoVis) 2019

EndoVis 2018
and 2017

MICCAI-2016 CATARACTS Cholec80

Size or instances 30 videos 2018—14 video
sequences;
2017—10 video
sequences

15 videos 50 videos 80 videos

Database focus Rectal resection,
proctocolectomy,
sigmoid resection
surgeries

Abdominal
porcine proce-
dures

Cholecystectomy
surgeries

Cataract surg-
eries

Cholecystectomy
surgeries

Default task Segmentation
and detection

Segmentation Detection Presence detec-
tion

Detection

Range—number
of objects/classes

2 7 7 21 7

Image acquisition
platform/device

– da Vinci Xi
Robotic systems

da Vinci Xi
Robotic systems

Toshiba 180I
camera and Med-
iCap USB200
recorder

–

Image acquisition
location

– – UniversityHospi-
tal of Strasbourg

Brest University
Hospital

UniversityHospi-
tal of Strasbourg

Image illumina-
tion

– – Fibre-optic in-
cavity

Microscope Illu-
mination

Fibre-optic in-
cavity

Distance to object Close—in-cavity Close—in-cavity Close—in-cavity V. close—
surgical
microscope

Close—in-cavity

Metrics recom-
mended

DICE IOU / AUC AP AUC AP

Annotations Masks Masks Binary Binary Bounding boxes

Dataset organisa-
tion

10,040 frames 2018—15 train-
ing and 4 test
videos; 2017—
1800 training and
1200 test data

23,287 train-
ing and 12,541
testing samples

500,000 training
and 500,000 test
frames

86,304 training
and 98,194 test
frames

Image resolution 1280× 1024 pix-
els

– – 1920× 1080 pix-
els

–

teristics that are common for all the datasets listed in this
table are: Image Type—Videos; Image Modality—RGB;
Data Types—Images; Attribute Types—Categorical; Dataset
Structure—Flat; Collection Methods—Controlled; Annota-
tion Levels—Expert; Data Variety—Specific and Dataset
Licence—Register/Public. It is significant that many of the
cells in the table are empty, and this highlights the lack of
metadata, details and information about the collection and
curation of these datasets.

3.2 Other Surgical Tool Datasets

In addition to the challenge datasets described above, many
other surgical tool datasets have been developed and present
these datasets in Table 6. Again, the blank cells in these tables
serves to highlight the shortfall in metadata and details about
these datasets. The ATLAS Dione dataset provided video

data of ten subjects performing six different surgical tasks.
The dataset was described as being challenging as it had
camera movement and zoom, free movement of surgeons,
a wide range of expertise levels, background objects with
high deformation, and annotations that included tools with
occlusions, change in pose and articulation or with partially
visibility (Sarikaya et al., 2017). The Retinal Microsurgery
(RMIT) dataset consisted of 18 in-vivo sequences of reti-
nal procedures; for each sequence, four joints (Tip1, Tip2,
Shaft and End Joint) of the retinal instrument were anno-
tated. The RMIT was a single-instrument dataset—specified
only as a Retinal Instrument. The dataset was further clas-
sified into four instrument-dependent subsets. There were
three annotated tool joints and two semantic classes (tool
and background).

Lapgyn4Dataset is a four-part gynaecological laparoscopy
dataset comprising collections of images depicting general
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Fig. 5 Lapgyn Dataset

surgical actions, anatomical structures, conducted actions on
specific anatomy as well as examples of differing amounts
of visible instruments. It is actually four datasets (Surgi-
cal Actions, Anatomical Structures, Actions on Anatomy,
Instrument Count) of over 500 surgical interventions. The
Instrument Count dataset consists of images from gynaecol-
ogy and cholecystectomy (including samples fromCholec80
dataset) with zero to three instruments (Leibetseder et al.,
2018) (Fig. 5).

There were other datasets that we evaluated but did not
include since they did not provide sufficient focus or cover-
age of surgical tools. These included DAISI: Database for AI
Surgical Instruction (Rojas et al., 2020), the MISAW dataset
used for the MIcro-Surgical Anastomose Workflow recogni-
tion on training sessions challenge (Huaulme et al., 2021),
the Bypass40 dataset of laparoscopic gastric bypass proce-
dures (Ramesh et al., 2021b), and the EAD2020 dataset (Ali
et al., 2021) (Fig. 6).

4 Algorithm Review

Liu et al. (2020a) highlighted the inconsistency in the termi-
nology used in the research, and stated that terms are often
differently defined and applied. Some of the terms which
were used include detection, presence, localization, recogni-
tion, classification, identification, labelling and annotation.
The taxonomy of terms used in the literature reviewed is
presented in Fig. 7, it is clear that definitions and terminol-
ogy varies considerably and there is no uniformity in the
application or understanding of these terms. When computer
vision tasks are considered, multiple problems have been
addressed in the literature. Guo et al. (2016) discussed image
classification, object detection, image retrieval, semantic seg-
mentation, and human pose estimation as the key computer
vision tasks. Chai et al. (2021) similarly listed themain appli-
cations as object detection or recognition, visual tracking,
semantic segmentation, and image restoration, with image
classification providing the basic backbone of each applica-
tion.Voulodimos et al. (2018) evaluatedobject detection, face
recognition, action and activity recognition, and human pose
estimation in their survey of key tasks in computer vision.
Al Hajj et al. (2019) state that these tasks can be categorized
according the precision of the desired outputs, with the finest
or more precise level of surgical tool-based tasks at the tool
segmentation level. The next level of precision in tasks is

tool localisation, and this often leads to either tool tracking
or pose estimation. The coarsest task is tool presence detec-
tion or determining which tools are present in each frame of a
surgical video. While we considered all these approaches, in
actual practice a pipeline using all these types of algorithms
would follow a logical flow of tool presence detection, tool
localisation, tool tracking, tool segmentation and tool pose
estimation. We therefore used this logical flow approach to
structure our analysis of the research.

5 Tool Presence Detection Research

In work using the CATARACTS dataset, Roychowdhury
et al. (2017) fine-tuned Inception-v4, ResNet-50 and two
NASNet-A instances. In their solution, they relied onMarkov
Random Field (MRF) for modelling long sequences of
approximately 20,000 frames. Sahu et al. (2017a) trained
ResNet-50 initialised with ImageNet weights on this dataset.
Prellberg and Kramer (2018) used the CATARACTS dataset
to explore different ways to use ResNet-50, and reported
that fine-tuning ResNet achieved consistently better results
than using ResNet as a fixed feature extractor in combina-
tion with a custom classifier. Al Hajj et al. (2019) reported
on the results of surgical instrument presence detection with
the CATARACTS Dataset. This included work using VGG-
16 (Simonyan&Zisserman, 2014), Inception-v3 (Szegedy et
al., 2016b), SqueezeNet (Iandola et al., 2016), DenseNet-161
(Huang et al., 2017), ResNet-34, ResNet-50, DenseNet-
169, Inception-v4, ResNet-152, ResNet-101, DenseNet-169,
NASNet-A (Zoph et al., 2018) and Inception-ResNet-v2
(Szegedy et al., 2016a). Twinanda et al. (2017) developed
and used the Cholec80 dataset to test EndoNet, an archi-
tecture based on AlexNet, for tool detection. Sahu et al.
(2017b) fine-tuned AlexNet on the m2cai16-tool dataset;
using an approach similar to EndoNet. The Cholec80 dataset
was used by Alshirbaji et al. (2018) to fine tune AlexNet
for surgical tool classification. Mondal et al. (2019) used
Cholec80 to train a multi-task learning framework based
on ResNet50 trained on the ImageNet Dataset. The features
extracted from the fully connected layer of ResNet50 were
used to train a multitask Bi-LSTM. The final classification
result was generated through combining the score results
produced by both the LSTM hidden layers. Alshirbaji et
al. (2021a) tested VGG-16, ResNet-50, DenseNet-121 and
EfficientNet-B0 for surgical tool presence classification. This
was tested on the Cholec80 and Cholec20 datasets. Alshir-
baji et al. (2020a) generated synthetic data and used it to
augment the Cholec80 dataset. AlexNet was fine-tuned using
cross-dataset validation to improve tool presence detection.
Vardazaryan et al. (2018) used ResNet18 pre-trained on Ima-
geNet data and further trained the network on a Cholec80
sub-set of five videos annotated with image-level instru-
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Fig. 6 CaDIS Dataset

ment bounding boxes for binary tool presence classification.
Nwoye et al. (2019) adopted a similar approach but modi-
fied it with long short-termmemories for better performance.
Bodenstedt et al. (2018) used surgical tool presence in endo-
scopic video as a cue for surgery duration predictions, used
ResNet152 for tool presence detection and evaluated their
architectures on the Cholec80 dataset. Jin et al. (2020) pre-
sented a multi-task recurrent convolutional network with
correlation loss (MTRCNet-CL) to exploit the relatedness
of surgical tool presence and surgical phase to simultane-
ously boost the performance of the tasks of tool detection and
phase recognition. The model was tested on the Cholec80
dataset. Al Hajj et al. (2019) used both the CATARACTS
and the Cholec80 datasets for monitoring tool usage during
a surgery. Their system jointly boosted an ensemble of CNNs
and an ensemble of RNNs. Seven CNN architectures were
used as weak classifiers—VGG-16, VGG-19, ResNet-101,
ResNet-152, Inception-v4, Inception-ResNet-v2, NASNet-
A. For RNN boosting, LSTM and GRU was used. Alshirbaji
et al. (2020b) developed three balanced datasets by applying
image transformations and substituting image backgrounds
on instrument images extracted from the Cholec80 dataset.
Wang et al. (2019) developed a deep neural network model,
based on DenseNet121 pre-trained from ImageNet, utilizing
both spatial and temporal information from surgical videos
for surgical tool presence detection. They evaluated their
model on two datasets: m2cai-tool and Cholec80.

Using the m2cai16-tool dataset, Raju et al. (2016) fine-
tuned GoogleNet and VGG16 and used ten trained mod-
els (with 5-fold cross validation for both VGGNet and
GoogleNet) in an ensembling process to obtain their final
results. Zia et al. (2016) fine-tuned AlexNet, VGG-16 and
Inception-v3 and presented a comparison of these differ-
ent deep network architectures for surgical tool detection.
Namazi et al. (2019) developed LapTool-Net, which was
a contextual detector for surgical tools based on recurrent
convolutional neural networks. The method exploited corre-
lations among usage of tools in the m2cai16-tool dataset, as
well as the context of the tools’ usage for different tasks. Choi

et al. (2017) proposed a real-time detection model for surgi-
cal instruments during laparoscopic surgery by using a CNN
based on YOLO pre-trained on ImageNet. This was trained
on the m2cai16-tool dataset. Hu et al. (2017) developed an
attention-guided network (AGNet) and successfully tested
it on the m2cai16-tool dataset. The method first extracted
regions in images with high probability of containing sur-
gical tools by a deep neural network (the global prediction
network) and then analysed these regions via another deep
neural network (the local predictionnetwork)whichprovided
a prediction for each tool. Lin et al. (2019) addressed sur-
gical tool presence detection with the m2cai16-tool dataset
as a multi-label classification problem. The authors relied
on a pre-trained DenseNet201 with a classification layer
whose output corresponds to the confidences of the pres-
ence of the seven tools in the image. Mishra et al. (2017)
proposed a framework to detect tool presence in laparoscopy
videos which consisted of a CNN based on ResNet50 for
extracting visual features, and a Long Short-Term Memory
network to encode temporal information. This was tested on
the m2cai16-tool dataset.

Leibetseder et al. (2018) used GoogLeNet (Szegedy et
al., 2015) to classify images in the LapGyn4 dataset. Kletz et
al. (2019a) used the Lapgyn4 Dataset for the task of binary
classification to recognise video frames as either instru-
ment or non-instrument image, and trained GoogLeNet for
instrument classification. Murillo et al. (2018) developed a
tree-structured convolutional neural network for the classifi-
cation of 10 open surgery instruments. Eight separate CNNs
were trained on ten surgical instruments, and four CNNs on
five instruments. Murillo et al. (2017) used 5 open surgery
tools for testing the performance of CNNs and Haar Clas-
sifiers (Viola & Jones, 2001) for surgical instrumentation
classification. A tree based tool classifier was designed using
four CNNs for presence detection of the five surgical instru-
ments.

Kurmann et al. (2017) presented a U-Net based surgical
instrument detector which estimated instrument joint posi-
tions and instrument presence using a cross-entropy loss
function. This was evaluated on a retinal and EndoVis 2015
datasets. Qiu et al. (2019) used the m2cai16-tool dataset
and built a new dataset called the STT dataset with sequen-
tial frame annotations using bounding boxes. The authors
then developed RT-MDNet, a real-time multi-domain con-
volutional neural network with three convolutional layers,
a Region of Interest Alignment (RoIAlign) layer and three
fully connected layers, and tested it on the STT Dataset.
Hou et al. (2022) introduced an attention-based deep neural
network—SKA-ResNet—composed of a feature extractor
with a selective kernel attention module and a multi-scale
regularizer to exploit the relationships between featuremaps.
Their SKA-ResNet was tested on a new surgical instrument
dataset called SID19 for the classification of surgical tools.
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Fig. 7 Taxonomy of approaches

6 Tool Localisation Research

Banerjee et al. (2019) used the CATARACTS dataset for
a multi-label multi-class classification task, and developed
a framework for localization and detection of tools. A tool
counter was implemented using ResNet-18. Using activation
maps, three smaller regions of interest were used to train a
new CNN which predicted the tool type among the given 22
classes. Three baseline models were trained for the task—
AlexNet, VGGNet and ResNet-18/50/152.

Xue et al. (2022) proposed a pseudo supervised surgical
tool detection (PSTD) framework,which used pseudobound-
ing box generation, box regressor, weighted mean boxes
fusion and a classifier with bi-directional channel adaption
for surgical tool detection. This weakly supervised surgical
tool detection (WSTD) approach was successfully tested on
the Cholec80 dataset using image-level tool category labels.
Alshirbaji et al. (2021b) evaluated the generalisation abil-
ity of a VGG-16 model on images from different datasets for
surgical tool detection. The datasets used were Cholec80 and
a Gyna05 dataset which consisted of 5 videos of gynaeco-
logic procedures, and target tools were the four surgical tools
which were present in both datasets.

Nwoye et al. (2021a) developed the CholecTriplet2021:
the endoscopic vision challenge for the recognition of sur-
gical action triplets in laparoscopic videos. The focus was

on fine-grained surgical activity recognition, modelled as a
triplet—instrument, verb, target. This was defined in terms of
surgical activities as triplets of the actual instrument that was
used, the actions performed, and the target anatomy for each
surgery, and was provided as part of the EndoVis2021 grand-
challenge. Nwoye et al. (2021b) developed a model which
recognized triplets from these surgical videos by leveraging
attention at two different levels—a Class Activation Guided
AttentionMechanism (CAGAM) and aMulti-Head ofMixed
Attention(MHMA). This method used cross and self atten-
tions to capture relationships between the triplets. Nwoye
et al. (2020) used class activation modules which used the
instrument activationmaps to guide the verb and target recog-
nition. They used a dataset based on Cholec80 annoted with
135K action triplets—termed the CholecT40 dataset—and
developed a multitask learning (MTL) network with three
branches for the instrument, verb and target recognition.

Liu et al. (2020b) used anchor-free convolutional neural
network, based on a compact stacked hourglass network, for
surgical tool detection. This was tested on the ATLAS Dione
and Endovis Challenge datasets, and compared to results
using Faster RCNN, Yolov3 (Darknet-53) and CenterNet
(Hourglass-104). In surgical tool detection work associ-
ated with the ATLAS Dione dataset, Sarikaya et al. (2017)
developed a framework with a Region Proposal Network
(RPN) and a multimodal two stream convolutional network
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for object detection and localization, based on image and
temporal motion cues. Fast R-CNN (Girshick, 2015) was
used for the object detection task, and the region proposal
boxes of RPN with the convolutional features were used as
input for the detection network streams on both modalities.
Using the EndoVis Challenge dataset and the ATLAS Dione
dataset, Zhao et al. (2019a) adopted a frame-by-frame detec-
tion method using a cascading convolutional neural network
(CNN) which consisted of two different CNNs for real-time
multi-tool detection. The method was tested—along with
Faster R-CNN (Ren et al., 2017), Yolov3 (Redmon et al.,
2016), and RetinaNet (Lin et al., 2017)—on the two datasets.
Liu et al. (2020c) proposed an anchor-free convolutional neu-
ral network (CNN) architecture using a compact stacked
hourglass (Newell et al., 2016) network for surgical tool
detection, and tested it on the ATLAS Dione and EndoVis
2015 datasets. The authors also tested five backbones—
ResNet-18, ResNet101, Deep Layer Aggregation or DLA-34
(Yu et al., 2018), Hourglass-104 (Law & Deng, 2020), and
lightweight Hourglass—and achieved good accuracy and
speed for real-time surgical tool detection.

Ciaparrone et al. (2020) tested 12 different combina-
tions of CNN backbones and training hyper-parameters for
surgical tool detection on a dataset derived from 13 high-
quality endoscopic/laparoscopic videos. Mask R-CNN was
used with ResNet-50, ResNet-101 and ResNet-152 as back-
bone networks. Their best results were obtained using a
ResNet101 and training the network for 25 epochs. Shimizu
et al. (2021) employed three modules for localization, selec-
tion, and classification for detection and classification task of
surgical tools from egocentric images for open surgery analy-
sis. Two tools—scissors and needle holders—were detected
using Faster R-CNN and were classified using a convolu-
tional neural network and long short-term memory (LSTM)
module.

Ramesh et al. (2021a) developed a Yolov5-based sys-
tem to detect micro-surgical tools from neurosurgical videos.
Tool characterization was also reported based on tool on-off
time, tool usage time and tool trajectory. Garcia-Peraza-
Herrera et al. (2017) introduced two novel lightweight
architectures, ToolNetMS and ToolNetH, defined in terms
of multi-scale and holistically-nested CNN architectures, for
the real-time segmentation of robotic surgical tools. These
architectures were evaluated on the EndoVis 2015 dataset.
Pakhomov et al. (2019) converted a residual image classi-
fication Convolutional Neural Network (ResNet-101) into
a Fully Convolutional Network (FCN), performed simple
bilinear interpolation of the feature maps for semantic image
segmentation, and tested it for binary-segmentation perfor-
mance on the EndoVis 2015 dataset.

Bouget et al. (2015) used the NeuroSurgicalTools dataset
and developed a two step approach for surgical tool detection,
where the first stage of the approach performed pixel-wise

semantic labelling while the second stage matched global
shapes. Leppanen et al. (2018) pioneered work for surgical
instrument detection under high microscope magnification
using CNNs in micro-neurosurgical videos. Two CNNswere
trained—one for instrument detection and instrument tip
location detection by classifying small parts of the frame
at a time, and the second to detect whether the instrument
is present in the frame using the full frame image. Law et
al. (2017) trained a stacked hourglass network to detect the
key-points of the robotic instruments in vesico-urethral anas-
tomosis surgery videos using crowd-sourced annotations.
They also trained a support vectormachine (SVM) to classify
the skill of a surgeon using the tracking results.

Nakawala et al. (2019) used their Nephrec9 dataset to
test a “Deep-Onto” network for surgical workflow and con-
text recognition, including instruments. The network was an
ensemble of deep learning models (Inception-V3 pre-trained
on ImageNet) with knowledge management tools, ontology
and production rules, including usage of instruments. This
combined use of deep learning, knowledge representation
and reasoning techniques was found to be effective for auto-
matic surgicalworkflowanalysis on robot-assisted urological
surgery.

Hossain et al. (2018) relied on CNNs for real-time sur-
gical tools recognition in Total Knee Arthroplasty (TKA),
and exploited region based convolutional neural networks
to perform real time tool detection. The method was based
on Faster R-CNN with VGG-16 as base network, and RGB
image convolutional features were used to train a Region
Proposal Network (RPN) that generated object proposals,
the output was the coordinates of bounding boxes around
the deployed surgical tools. Yamazaki et al. (2020) created a
dataset from 52 laparoscopic gastrectomy videos, and used
this to test Yolov3 for surgical instrument detection. Bar et al.
(2020) used an approach based on inflating ResNet-50 into
a 3D ConvNet model (I3D) for surgical phase classification.
This was termed the short-term model, and the long-term
model was a Long Short-Term Memory (LSTM) network.
The approach used surgical tool presence as cues for each
phase, and was tested on their laparoscopic cholecystectomy
dataset.

Yang et al. (2019) relied on a Pyramid-UNet to local-
ize a cardiac intervention instrument (RF-ablation catheter
or guidewire) in a 3D ultrasound image for cardiac electro-
physiology (EP) and transcatheter aortic valve implantation
(TAVI) procedures. Thiswas tested on their dataset of cardiac
ultrasound images from porcine hearts. Colleoni et al. (2019)
proposed a 3D FCNN architecture for surgical-instrument
joint and joint-connection detection, using spatio-temporal
features for robotic tool detection and articulation estima-
tion. This was trained and tested on the EndoVis 2015 and the
UCL dVRK datasets. Jin et al. (2018) extended the m2cai16-
tool dataset by providing labels for 2532 of the frames
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with the coordinates of spatial bounding boxes around the
tools, and made a new m2cai16-tool-locations dataset avail-
able. Their approach for instrument localization was based
on Faster R-CNN. In work that utilised the m2cai16-tool-
locations and m2cai16-tool-datasets, Jo et al. (2019) applied
two algorithms—YOLO9000 (Redmon & Farhadi, 2017)
and missing tool detection—to perform detection of surgical
instruments in real time.

7 Tool Tracking Research

Tang et al. (2022) leveraged multimodal imaging and deep-
learning to dynamically detect surgical instrument positions
in ophthalmic surgical maneuvers. In their system, they
combined spectrally encoded reflectometry (SER) and cross-
sectional OCT imaging for automated instrument-tracking,
and tested it on 4730 manually-labelled SER images of a
25-gauge internal limiting membrane (25G ILM) forceps.

Al Hajj et al. (2019) defined tool tracking work in terms
of monitoring tool location over time. Gruijthuijsen et al.
(2021) trained aU-Net CNN to segment instruments, training
it on their gynaecology dataset. They converted the seg-
mentation prediction into a graph and used this for tool tip
prediction in their autonomous instrument tracking frame-
work. Meeuwsen et al. (2019) developed a dataset of 40
laparoscopic hysterectomy (LH) surgeries and built a Ran-
dom Forest surgical phase recognition model. Lee et al.
(2019a) collected three phantom frame-sequence datasets
using tracked surgical tools over an anatomical phantom.
These datasets were used to test U-Net, TernausNet-11with a
pre-trained VGG-11 network, LinkNet-34 and LinkNet-152
for the semantic labelling, binary segmentation and real-time
tracking of surgical tools without any human intervention.

Using a subset of the m2cai-2016 dataset, Zhang and Gao
(2020) developed a surgical instrument tracking framework
based on object extraction via deep learning, where a seg-
mentation model extracted the end-effector and shaft of the
surgical instrument in real time. The model was based on
LinkNet with ResNet-18, pre-trained on ImageNet.

Chen et al. (2017b) proposed a visual tracking method
for surgical tool tracking based on a CNN with line segment
detector (LSD) for the detection part and a spatio-temporal
context (STC) learning algorithm for the tracking part. They
successfully tested this system on three laparoscopic surgical
datasets—a simulation dataset, a real in-vivo dataset and a
standard dataset. Zhao et al. (2017) considered a surgical
instrument as consisting of two parts: an end-effector and a
shaft. Edge-points and line features were used for the shaft
detection and a CNN based on AlexNet (Krizhevsky et al.,
2012) was used to track and detect the end-effector.

Hiasa et al. (2016) proposed and evaluated a method for
segmentation of surgical instruments from RGB-D Endo-

scopic Images using CNNs. The method used RGB and
depth images from stereo endoscope images, and the out-
put was a likelihood image, where white pixels indicated a
high probability of instruments and black pixels indicated
high probability of background. Segmentation was seen as a
critical task for 3D surgical tool tracking and reconstruction.

Zhao et al. (2019c) used two CNNs and six datasets to
develop a coarse to fine method for surgical tool tracking.
The first CNN, based on AlexNet, classified 10 surgical tool
classes, and the second or fine CNN was a regression net-
work for tracking of the tool tip area. This was tested on
six different datasets—the first five were in-house surgical
videos and the sixthwas theEndo-Vis 2015 challengedataset.
Their method was compared with four other methods—Fast
R-CNN with filter tracking in convolutional features using
VGGNet, data-driven visual tracking, tracking with an active
testingfilter, and trackingwith onlinemultiple instance learn-
ing.

Zhao et al. (2019b) developed an automatic real-time
method for two-dimensional tool detection and tracking
based on a spatial transformer network (STN) and spatio-
temporal context (STC), and tested this on eight video
datasets from in-house surgical videos. The authors tested
their method and four other solutions—correlation filter
tracking with convolutional features using VGGNet, data-
driven visual tracking, tracking with an active testing filter
and tracking with online multiple instance learning—on
these datasets. Lu et al. (2020) tested a two deep neural
networks framework for surgical tool tracking on the Surgi-
cal Perception (SuPer) and Hamlyn Centre Video Datasets.
Using these datasets and a two CNN pipeline, a Pyramid
Stereo Matching Network (Chang & Chen, 2018) was used
to find and match features for stereo reconstruction, and
DeepLabCut (Mathis et al., 2018) was used to detect point
features for surgical tool tracking.

8 Tool Segmentation Research

For tool segmentation work, Luengo et al. (2021) added
pixel-wise semantic annotations for anatomy and also surgi-
cal tools for 4670 images from25videos of theCATARACTS
training set. This CATARACTS Semantic Segmentation
dataset was used for the EndoVis 2020 challenge. Chen et
al. (2021) developed a method that was based on exploit-
ing cross-consistency in microscopic image segmentation,
and used the consistency between the main decoder and
auxiliary decoder to leverage unlabeled images. This was
used to improve the Deeplabv3 plus network and was tested
on the CATARACTS-Semantic-Segmentation 2020 data set.
Zisimopoulos et al. (2017) used a FCN-VGG network that
was trained to perform supervised semantic segmentation
in 14 classes that represented the different tools present in
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their simulated cataract dataset. This dataset was used to
train CNN models and then transfer learning techniques
were used for training on the CATARACTS Dataset. Fox
et al. (2020) used the CaDIS and the Cataract-101 dataset
with Mask R-CNN to localize and segment surgical tools in
ophthalmic cataract surgery. They compared four backbone
networks (Inceptionv2, Inception-ResNetv2, ResNet50, and
ResNet101—all with pre-trained COCO (Lin et al., 2014)
weights—and different data augmentation strategies for
multi-class instance segmentation of surgical tools. Gram-
matikopoulou et al. (2019) developed the CaDIS dataset
for semantic segmentation in cataract surgery, based on the
CATARACTS dataset. Pissas et al. (2021) highlighted that
the main issue in using the CaDIS dataset was the extreme
class imbalance in the granular semantic segmentation labels,
and they addressed this challengewith twodata oversampling
strategies. They demonstrated that the choice of the loss func-
tion and data sampling strategy were paramount in training
their ResNet based encoder-decoder networks.

Ross et al. (2019) discussed segmentation solutions based
on the ROBUST-MIS challenge, including the use of Mask
R-CNN (He et al., 2017), a Dense Pyramid Attention Net-
work (Li et al., 2018), a Refined Attention Segmentation
Network (RASNet), a residual 2D U-Net (Ronneberger et
al., 2015), DeepLabV3+ (Chen et al., 2017a), Ternaus-
Net (Iglovikov & Shvets, 2018), and Mask R-CNN with
FlowNet2 (Ilg et al., 2017). Best results were reported by the
U-Net based solutions. Jha et al. (2021b) tested adual decoder
attention network (DDANet) and nine different methods on
the ROBUST-MIS dataset. They reported that the DDANet
architecture provided the highest metric and best real-time
performance over the other methods. Ceron et al. (2021)
introduced a YOLACT architecture for real-time instance
segmentation of surgical instruments, and tested its accu-
racy on the ROBUST-MIS dataset. They used criss-cross
attention modules (CCAMs) with a ResNet-101 backbone to
develop three models—CCAM-Backbone, CCAM-FPN and
CCAM-Full—plus a baseline YOLACT++ model. Isensee
and Maier-Hein (2020) relied on a 2D U-Net architecture
that used residual blocks in the encoder and generated seg-
mentation maps at several resolutions in the convolutional
based decoder architecture. This method achieved a mean
Dice score of 87.41 (94.35) on the ROBUST-MIS dataset.
Sahu et al. (2021) used a teacher-student learning approach
that learned from annotated simulation data and unlabeled
real data. They redesigned their Endo-Sim2Real framework
based on a teacher-student approach, and used a TerNaus11
as the backbone segmentation model. They tested this on a
simulated dataset as well as on the Robust-MIS, EndoVis
2015 and Cholec80 datasets.

Allan et al. (2020) reported segmentation results using
the EndoVis18 dataset. The solutions included the use of the
ResNeXt-101 architecture with Squeeze-Excitation blocks;

U-Net architecturewith aVGG19 encoder; a global convolu-
tional network (GCN) with ResNet 152 backbone; DeepLab
V3+ using multi-scale feature extraction with Xception and
atrous convolutions; WideResnet38 encoder and activated
batch norm (ABN)withDeepLabV3 as decoder; twoResNet
encoder blocks and a stacked convolutional decoder net-
work with a sum-skip connection; 3 U-Net models with final
prediction as an ensemble; a 77 layer fully convolutional
dense network architecture; DeepLab V3+ and ResNet-50
pre-trained on ImageNet; a U-Net with a ResNet-101 back-
bone; and a Pix2Pixmodel for the segmentationwith aU-Net
as the generator.Most of the architectureswere pre-trained on
ImageNet. Gonzalez et al. (2020) extended the EndoVis 2018
dataset for fine-grained instrument segmentation by manu-
ally annotating each instrument in the dataset, and used this
dataset to successfully test their ISINet model which was
based on Mask R-CNN.

Shvets et al. (2018) experimented with the U-Net, Ter-
nausNet and LinkNet encoder-decoder architectures on the
EndoVis 2017 dataset. TernausNet was shown to outper-
form the other architectures in all three tasks of binary,
part-based and type-based segmentation. Hasan and Linte
(2019) used U-Net but modified it to U-NetPlus model by
introducing both VGG11 and VGG16 as an encoder with
batch-normalized pre-trained weights and nearest-neighbour
interpolation as the replacement of the transposed convolu-
tion in the decoder layer. This was tested on the EndoVis
2017 dataset. Mohammed et al. (2019) proposed a multi
encoder and single decoder convolutional neural network,
which they termed StreoScenNet. The architecture consisted
of two ResNet50 encoder blocks, pre-trained on ImageNet,
and a stacked convolutional decoder network connected with
a sum-skip connection. The input to the encoder was a set
of left and right frames, and the output of the decoder was a
mask for the instrument, part and binary segmentation tasks.
This was tested on the EndoVis 2017 dataset. Zhang et al.
(2021b) proposed a GAN-based method for unpaired image-
to-image translation (I2I), and used it for surgical tool image
segmentation and repair. They tested this on three endoscopic
surgery datasets and on the EndoVis17 dataset. Kong et al.
(2021) optimisedMaskR-CNNmodelwith anchor optimiza-
tion and improved Region Proposal Network for surgical
instrument segmentation. They evaluated their architecture
on the EndoVis17 and an in-house hysterectomy dataset.

Kurmann et al. (2021) proposed a encoder–decoder net-
work for segmentation and classification of surgical instru-
ments in endoscopic images. Their “segment first, classify
last” approach used a shared encoder, two decoders for
instance segmentation, and a classifier for instance clas-
sification, and it provided good results on the EndoVis
2017 dataset. Ni et al. (2019) introduced a Refined Atten-
tion SegmentationNetwork (RASNet)—based onResNet-50
pre-trained on ImageNet—to simultaneously segment and
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classify surgical instruments. An Attention Fusion Module
(AFM) was used to fuse multi-level features by utilizing the
global context of high-level features as guidance informa-
tion, and this was tested on EndoVis 2017. Islam et al. (2019)
developed a light-weight cascaded convolutional neural net-
work to segment surgical instruments from the EndoVis
2017 data. The authors developed a Multi-resolution Fea-
ture Fusion (MFF) block to fuse feature maps from their
auxiliary and main branches, and combined auxiliary loss
and adversarial loss to regularize the segmentation model.
A spatial pyramid pooling unit was used to aggregate rich
contextual information in their intermediate stage. Islam et
al. (2021) proposed a Spatio-Temporal Multi-Task Learning
(ST-MTL) model with a shared encoder and spatio-temporal
decoders for real-time surgical instrument segmentation and
tested it on EndoVis 2017. Comparative tests were also con-
ducted on other models using identical pre-processing and
augmentation techniques. Lee et al. (2019b) presented a
“Two-phase Deep learning Segmentation for Laparoscopic
Images” (TDSLI) model and tested it on the EndoVis 2017
dataset and an additional dataset of four retrospectively col-
lected laparoscopic image sequences in different animal
surgeries. The LinkNet-34 network was used in a con-
volutional encoder-decoder architecture, with a pre-trained
ResNet-34 network used for the encoder.

Jha et al. (2021a) released the “Kvasir-Instrument” dataset
with annotated bounding box and segmentation masks of GI
diagnostic and surgical tools, and tested it using the U-Net
and DoubleUNet architectures for semantic segmentation.
Andersen et al. (2021) reported the success of Mobile-U-Net
for the segmentation of surgical tools and suture needles,
and tested it on a laboratory dataset and JIGSAWS (Gao
et al., 2014) dataset. Choi et al. (2021) used the YOLOv4
and YOLACT-based models for real-time object detection
and semantic segmentation of six surgical tools in a mas-
toidectomy surgery dataset. Zadeh et al. (2020) used a
gynaecological dataset to train Mask R-CNN, which was
then tested on laparoscopic images from 2 additional surg-
eries not included in the training set. Qin et al. (2020) used the
EndoVis 2017 dataset and the Sinus-Surgery-C Dataset for
evaluation of DeepLabv3+ with ResNet-50 and MobileNet,
TernausNet with VGG-16, and LWANet with MobileNet
with a Multi-Angle Feature Aggregation (MAFA) method.
Qin et al. (2019) used a similar setup to the Sinus-Surgery-C
Dataset, and a ToolNet-C segmentation model—designed by
cascading a feature extractor and a pixel-wise segmentor—
was trained to learn features from the unlabelled images
and segmentation from the small number of labelled images.
Rocha et al. (2019) deployed a two-step algorithm for surgi-
cal tool segmentation using kinematic information and tested
it on several phantom and in vivo robotic endoscopy datasets.
Kalavakonda et al. (2019) evaluated three different deep
architectures for binary segmentation—using U-Net, UNet-

VGG16 and UNet-MobileNetV2 (Sandler et al., 2018)—on
the NeuroID dataset and the EndoVis 2017 dataset.

Jin et al. (2019) leveraged instrument motion information
for accurate surgical tool segmentation. The model worked
by integrating prior knowledge from motion flow into a
temporal attention pyramid network (MF-TAPNet) for sur-
gical instrument segmentation in minimally invasive surgery
video. Kletz et al. (2019b) used a ResNet50 architecture as
a backbone network with a feature pyramid network (FPN)
for instance segmentation task using images of gynaecologi-
cal surgeries. They also fine-tuned aMask R-CNN (He et al.,
2017)model for seven instrument classes (including “BG” or
Background) using a pre-trainedmodel on theCOCOdataset.
VGG, PSP (Zhao et al., 2016), UPerNet (Xiao et al., 2018)
and DeepLab (Chen et al., 2016) were trained and evaluated
for anatomical understanding, instrument identification and
tracking, and understanding of interactions between surgical
instruments and anatomical landmarks.

Sahu et al. (2020) used two datasets—Cholec80 and
EndoVis 2015—to test their Endo-Sim2Real method for
instrument segmentation. TerNaus11 was used as the DNN
model for the instrument segmentation task. Kanakatte et al.
(2020) proposed a pixel-wise instance segmentation algo-
rithm for the segmentation and localisation of surgical tool
using a spatio-temporal deep network, and tested it on
Cholec80. Theirmodel usedResNet pre-trained on ImageNet
database and Inflated Inception 3D (I3D) pre-trained on the
ImageNet and Kinetics datasets (Kay et al., 2017) to cap-
ture spatio-temporal features. They also implemented and
tested U-Net and Mask R-CNN on their annotated Cholec80
dataset.

9 Tool Pose Estimation Research

Laina et al. (2017) modelled the tool segmentation and pose
estimation problem as a heatmap regression where every
pixel represented a confidence proportional to its proximity
to the correct landmark location. For encoding, ResNet-50
pre-trained on ImageNet was used and three different CNN
variants were defined for the decoding task. The model was
tested on the RMIT and EndoVis 2015 datasets. Du et al.
(2018) added detailed annotations to existing labels for the
RMIT and EndoVis 2015 datasets, and tested a framework
with a fully convolutional detection-regression network for
articulated multi-instrument 2-D pose estimation. Kayhan et
al. (2019) proposed a lightweight deep attention based net-
work architecture and evaluated three SSL algorithms for
a deep attention based semi-supervised 2D-pose estimation
method for urgical instruments: mean teacher, virtual adver-
sarial training and pseudo-labelling. Analysis was conducted
n the RMIT and EndoVis 2015 datasets. A modified U-Net
architecture (DAU-Net) thatmade use of attention echanisms
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was used to find each tool joint location via a heatmap output
channel.

Kugler et al. (2020a) introduced three datasets: two syn-
thetic Digitally Rendered Radiograph (DRR) Datasets (the
first with a screw and the second with two surgical instru-
ments), and a real X-ray Dataset (with manually labelled
screws). They used this for a three step approach for surgical
pose estimation including the application of a convolu-
tional neural network based on a VGG architecture for
information extraction, and then pose reconstruction from
pseudo-landmarks. Kugler et al. (2020b) used two of these
datasets to test an automatic framework (AutoSNAP) for the
discovery of neural network architectures for instrument pose
estimation, leading to the development of an improved archi-
tecture (SNAPNet).

Hasan et al. (2021) developed a CNN they called ART-
Net, for Augmented Reality Tool Network, and combined
it with an algebraic geometry approach for generic tool
detection, segmentation, and 3D pose estimation. While the
CNN ART-Net was used for surgical tool detection and
segmentation, geometric primitives were also extracted to
compute the 3D pose with algebraic geometry. Gessert et
al. (2018) addressed surgical tool pose estimation from opti-
cal coherence tomography (OCT) volume data with a deep
learning-based tracking framework called Inception3D. The
3D CNN architecture was used to learn accurate regression
between volumetric images and object poses, and was then
used to estimate object pose from new volumetric images.

10 Open Research Questions

We address our research questions by presenting a com-
prehensive review of surgical tool datasets. A knowledge
hierarchy of machine learning research was then developed
using these datasets. However, while robustness or the reli-
able performance ofmethods on challenging images has been
addressed in the work, there are important questions and
research gaps that need to be addressed. These issues are
discussed in this section.

10.1 Data Modalities

As we have found in our survey, RGB images or video are
the predominant data modalities in the datasets. This is a
well understood modality, and it is easy to deploy cameras
to capture entire room images, high level views of the pro-
cedures, specific images of body parts, or even for internal
imaging through endoscopes (Maier-Hein et al., 2020). How-
ever, there are many more medical modalities that can be
explored for creation of rich and representative datasets. A
limited amount of work using other images modalities is
reported, and this includes radiograph and X-Ray (Kugler et

al., 2020a), optical coherence tomography (OCT) (Gessert
et al., 2018), RGB-D depth (Hiasa et al., 2016), and 3D
ultrasound images (Yang et al., 2019). Multi-modal datasets
could potentially be valuable—for example, in their review
of surgical activity recognition research, van Amsterdam et
al. (2021) reported that multi-modal data integration demon-
strated promising results on small surgical datasets. While
image modalities tend to be specific to surgical areas, there
are some modalities that could foster innovative work in the
surgery domain—for example, the use of IR images to sup-
plement standard RGB images could address issues with
illumination and reflection, and could lead to more accu-
rate models being developed. Similarly, depth images could
assist in addressing surgical tool counting problems and for
segmenting tools from complex and crowded backgrounds.

10.2 Dataset Volume, Variety and Quality

In a white paper on the first annual Conference on Machine
Intelligence in Medical Imaging (C-MIMI), Kohli et al.
(2017) discussed the impact on machine learning perfor-
mance due to the unavailability of large and high-quality
training data. The lack of data for medical image evaluation
with machine learning is a key concern, to the extent that the
term “data starved” was used to describe the state of current
research in this area. Similarly, van Amsterdam et al. (2021)
stated that the availability of large and diverse open-source
datasets of annotated data was essential for the development
and validation of robust solutions in the surgery domain. A
further challenge in medical surgery domains is the great
variety of surgeries and the rapid rate of change (i.e. new
techniques and tools) which increases the chance that a med-
ical dataset will become obsolete, a problem that is generally
not present in traditional object detection domains.

In a workshop on Surgical Data Science (SDS), Maier-
Hein et al. (2020) discussed the lack of success stories in
surgery, and contrasted it to success with machine learning
research in other medical areas, such as radiology, derma-
tology, gastroenterology and mental health. This lack of
success was directly attributed to the lack of quality anno-
tated data, representative of the surgery domain. Participants
in the workshop cited the EndoVis, Cholec80 and JIGSAWS
datasets as being useful for research but the small size and
limited representation provided by the datasets—even in
these major initiatives—was reported to be a core issue.
It was stated that creating and providing access to larger,
more-representative and fully annotated datasets would lead
to improved outcomes and success stories in the application
of machine learning to surgery.

Bouget et al. (2017) reviewed the surgical tools used in
different setups and for different procedures and found that
two categories of surgical tools emerged: articulated instru-
ments and rigid instruments. This survey also found two such
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categories into which most works fell—we categorise them
as either laparoscopic instruments or open surgery tools.
Table 7 indicates that the overwhelming majority of work
in this area has focused on laparoscopic surgery, and open
surgery has received considerably less attention. Even the
work that has been accomplished in open surgery focuses
on very few instruments; the majority of work detects less
than 10 instruments and even the Cataracts dataset provides
only 21 instruments (Table 1). There are tens of thousands
of instruments in circulation in a hospital at any one time
and we would also expect tools to change over time or new
tools to be introduced due to new technology or innovations
in surgical techniques. Clearly, therefore, larger datasets are
required and it would be useful for the research community
if more open surgical tool datasets are made available.

Ideally, a surgical tool dataset should have large data vol-
ume, expert annotations, reliable ground-truth, and reusabil-
ity. An issue is the size of available datasets, the benchmark
dataset—ImageNet—has 14 million categorized images in a
hierarchical arrangement. By contrast, most medical image
datasets are limited to hundreds of cases, and datasets with
thousands of annotated images are very limited (Maier-Hein
et al., 2020). A valuable initiative would be to create and
curate a large surgical tool dataset of tens of thousands of
tool images across surgical specialities with different modal-
ities of image capture. Further, all the datasets surveyed in
our paper have a flat structure. Given that fact that surgery
is organised along specialities (Table 7), and each speciality
has separate underlying categories, a hierarchical classifica-
tion of surgical tools in the datasets provided for machine
learning research has been shown to be extremely valuable
(Rodrigues et al., 2022, 2021a, b).

10.3 Dataset Bias and Generalisation

A major problem highlighted by Barbu et al. (2019) is that
most datasets are highly biased. The objects of interest were
generally highly correlated with the image backgrounds and
objects were presented in stereotypical orientations with
limited occlusions and under standardised illumination con-
ditions. These biases were problematic because training on
these datasets did not transfer well to real world data where
therewere variable views, orientations, backgrounds and illu-
mination (Barbu et al., 2019), and there is limited research
that tests or addresses this problem. In our survey, we found
that benchmark datasets capture very specific image types
with similar backgrounds, modalities, controlled collection
methods, identical contexts and annotations. A key concern
expressed in the literature is about algorithms which are
trained on a specific dataset, procedure, intervention or in
specific institution being able to generalise to other datasets
and procedures (Ross et al., 2019).

To ensure viewpoint invariant object detection, different
angles, scales, background clutter, illumination, orientation,
pose, occlusion and intra-class variations should be captured
in the images. Generalisation can be estimated by conducting
research across different datasets using the same model. For
example, Sahu et al. (2020) tested the Endo-Sim2Real model
for instrument segmentation across two datasets—Cholec80
and EndoVis 2015, Zhao et al. (2019a) tested their method on
theEndoVisChallenge dataset and theATLASDionedataset,
and Kalavakonda et al. (2019) evaluated three different deep
architectures—U-Net, VGG16 and MobileNetV2—on their
NeuroID dataset and on the EndoVis 2017 dataset. Du et al.
(2018) and Kayhan et al. (2019) developed machine learning
solutions and tested them on the RMIT and EndoVis 2015
datasets. More research initiatives across datasets to evaluate
issues such as how accuracy or performance changes from
one dataset to another, or the dependence of performance on
camera or image quality, is essential.

More research is also required across the fourteen surgical
specialities as listed in Table 7, since the current research is
limited in scope and scale and only addresses a few speciali-
ties, but to accomplish this, better surgical tool datasets need
to be made available.

10.4 Issues with Annotations

Maier-Hein et al. (2014) highlighted the fact that the per-
formance of deep learning classifiers are heavily dependent
on the availability of relevant annotations, and point out that
such annotations are difficult and expensive to obtain because
they need medical expertise and experience. Since medical
resources for this task are limited, available datasets for deep
learning are typically small and unable to cover the required
range of variance for training deep learning systems for med-
ical applications.

Orting et al. (2020) hypothesised that the high costs asso-
ciated with annotations is a factor in the limited availability
of large-scale, well-annotated datasets. They reviewed 57
papers that used crowd-sourcing for the analysis of medi-
cal images and for labelling large quantities of data. They
reported that 42% of the papers they surveyed focused on
classification, 39% on localisation or segmentation, 12% on
both classification and segmentation, and a further 7% on
other tasks—each task required specific annotations to be
performed,with varying degrees of complexity and difficulty.
Hein et al. (2018) state that deep learning based techniques
for medical applications require huge amounts of accurate
reference segmentation annotations, and completing man-
ual annotations is extremely time consuming. The authors
state that crowd-sourcing could result in accurate and cost-
effective annotations for radiology images, and showed that
even non-experts were able to complete high quality image
segmentation in the medical domain.
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Table 7 Specialities addressed
in the research

Speciality Open surgery Laparoscopic References

Cardiothoracic surgery � Lu et al. (2020)

Colon and rectal surgery � Maier-Hein et al. (2021) and
Ross et al. (2019)

General surgery � � Jha et al. (2021a), Gao et al.
(2014),Murillo et al. (2017),
Bar et al. (2020), Hong et
al. (2020), Hou et al. (2022),
Wagner et al. (2021) and
Twinanda et al. (2017)

Gynaecology and obstetrics � Gruijthuijsen et al. (2021),
Hasan et al. (2021), Lei-
betseder et al. (2018),
Meeuwsen et al. (2019) and
Zadeh et al. (2020)

Gynaecologic oncology

Neurological surgery � Bouget et al. (2015),
Kalavakonda et al. (2019),
Leppanen et al. (2018) and
Ramesh et al. (2021a)

Ophthalmic surgery � Grammatikopoulou et al.
(2019), Schoeffmann et
al. (2018), Kurmann et al.
(2017), N. et al. (2022),
Sznitman et al. (2012) and
Al Hajj et al. (2019)

Oral and maxillofacial
surgery

Orthopaedic surgery � Hossain et al. (2018)

Otorhinolaryngology � Kugler et al. (2020a) andQin
et al. (2020)

Paediatric surgery

Plastic and maxillofacial
surgery

Urology � Sarikaya et al. (2017), Law
et al. (2017), and Nakawala
et al. (2019)

Vascular surgery

Nogueira-Rodriguez et al. (2020) reported that the pub-
licly available datasets that could be used for object detection
all annotated the object locations as binary masks. These
masks were directly used for deep learning solutions but
could also be converted to bounding boxes if required for
specific training strategies. Annotation costs also vary across
types of surgery—for example, annotation of surgical tools
in cataract surgery needs to specify if the tool is actually in
use or in contact with the eyeball, and this requires expert
annotators to define (Al Hajj et al., 2019). This is expensive
and tedious, but other surgery types only define the presence
of the object in the frame, therefore needing simpler, cheaper
annotations. In general terms and as Garcia-Peraza-Herrera
et al. (2021) point out, manual annotation of pixel-level
segmentation labels is difficult, expensive, tedious and time-
consuming, this has led to a shortfall in the availability of

quality datasets for deep learning. Since there are no large
datasets available for tasks such as deep learning based sur-
gical instrument-background segmentation, advancement in
this area has been significantly curtailed.

Ward et al. (2021a) discussed the challenges in annotating
spatial, temporal, and clinical elements of surgical videos,
and in achieving consistency and reliability of annotations
across the data. They also highlighted the requirement for
achieving consensus in the development and use of surgical
annotations. Meireles et al. (2021) studied current practices
in surgical video annotation, and proposed recommendations
for the annotation process. This is an on-going effort to create
a general framework of recommendations to facilitate uni-
form annotations and to improve cross-institutional research
efforts. Initial recommendations appear to call for increased
detail in annotation—for example, to include hierarchical
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information of surgical tools, anatomy, and tissue types, as
well as for patient-specific factors and intra-operative influ-
encing factors in the annotations.

Kohli et al. (2017) pointed out that there are no generally
accepted standards for the creation and cataloguing of med-
ical image datasets. As we demonstrate in Table 6, surgical
tool dataset collection, curation and use is typically provided
as a one-off solution, directly linked to a specific research
project. The metadata provided with these datasets, if at all
available, is all too often limited in description, incomplete
and inconsistent. Specific domain and speciality expertise as
well as knowledge of the context and institution is required
to make sense of the data provided. In our Table 5, we pro-
vide metadata for the important publicly available machine
learning datasets that address surgical tool tasks, more infor-
mation would be useful and this is perhaps a starting point
for future work to make datasets more understandable and
useful (Kohli et al., 2017).

10.5 Metrics

There are an extremely wide range of metrics that have been
used in the research (Fig. 8). Reinke et al. (2018) reported 14
different metric used by the MICCAI in 75 grand challenges
held between 2007 and 2016. The range of metrics, variety
of approaches and different reporting criteria made it diffi-
cult to directly compare results. For example, Zhang andGao
(2020) reported sensitivity, specificity, dice similarity coeffi-
cient (DSC) and model inference time (MIT) for their work
on the m2cai2016 dataset, while other researchers reported
theMeanAverage Precision. Zia et al. (2016) testedAlexNet,
VGG and Inception of the m2cai2016 dataset but pointed out
that comparisons were not fair since the first two architecture
were tested by removing one of the 10 videos, while the third
architecture was tested by randomly selecting a percentage
of the input data for testing and validation. A standard set of
metrics, consistent and fixed splits of datasets into, for exam-
ple, training, validation and testing, and standard metrics for
evaluation would be useful for future research but it is diffi-
cult to make a hard recommendation since this is very task
and context specific.

10.6 MLOps and Federated Learning

Given themission critical nature of surgical toolmanagement
in a hospital, the deployment of deep learning systems in
real time—or MLOps—needs to be addressed (Makinen et
al., 2021). We have highlighted the tremendous progress that
has been made in the application of deep learning models to
surgical tool management in this survey, but the deployment,
integration, adoption and testing of such systems in actual
hospital conditions remains a significantly under-explored
area due to the lack of data, the general messiness or poor

Fig. 8 Range of metrics used

usability of data, and the inaccessibility of data (Makinen et
al., 2021). Making sure that consistently high-quality data
is available for MLOps, while ensuring coverage of all data
cases and creating data annotations that are consistent, is
therefore a critical task (Ng, 2021).

Given the fact that the surgical tool datasets used for deep
learning are generally small in size, private in nature and
distributed across many institutions, federated learning may
offer a way to overcome the size and accessibility barrier.
With federated learning, local data can be used for local train-
ing, and this can then be aggregated with other locally trained
models for deep learning (Zhang et al., 2021a). Rieke et al.
(2020) highlighted the fact that health related data is difficult
to obtain, sensitive in nature, strongly controlled by privacy
and other regulations, is expensive to collect, curate and
maintain, and therefore generally not available on the scale
needed for training deep learning models. Whatever medical
data is available tends to be very task- or disease-specific,
and of limited utility given license restrictions. Demonstrat-
ing the practicality of this approach for biomedical research,
Silva et al. (2019) developed a federated learning framework
for the analysis of multi-centric, multi-database sub-cortical
brain data.

Table 8 summarises the open research questions and
opportunities which we identified and detailed in previous
sections of this paper.

11 HOSPI-Tools Dataset

The currently available datasets used for surgical tool recog-
nition offer a limited range of instruments to work with, with
a maximum of 21 instruments, but—as we have identified in
our review—better datasets are required for research. To help
in addressing these challenges, we created a new surgical tool
dataset named HOSPITools—“Hierarchically Organised
Surgical Procedure Instruments and Tools” (Rodrigues et
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Table 8 Open research
questions (ORQs)

No Research gaps and questions

ORQ 1 Generalisation of algorithms across contexts and dataset

ORQ 2 Open source datasets for surgical tool research—high
volume, bias-free, multi-modal with comprehensive
coverage of all surgical specialities

ORQ 3 High quality annotations and metadata for datasets

ORQ 4 Standardised taxonomy, metrics, collection, cataloguing
and curation of datasets

ORQ 5 Hierarchical machine learning

ORQ 6 MLOps and federated learning

Table 9 HOSPI-Tools Dataset
details

Characteristic Specification

Specialities Orthopaedic and general surgery

Data type 40,000 images

Data quality 6000× 4000 pixels

Modality RGB-DSLR Camera

Location Hospital Lab (Sterile Services Unit)

Background Flat colours

Illumination Sunlight, LED, halogen and fluorescent lighting

Distance 60–150 cms

Instruments 360

Images/class 74 images

Organisation Hierarchical

Annotations Various—image labels, bounding boxes and masks

al., 2022, 2021a, b). We created an initial dataset of surgical
instrument images: over forty thousand images of surgical
tools were captured using under different lighting condi-
tions and with different backgrounds. Meireles et al. (2021)
point out that surgical instruments can present significant dif-
ferences due to their function, and intended possible uses,
as well as due to manufacturing variations. They there-
fore recommended hierarchical annotation at two levels—the
general and the specific instrument type—so that research can
address device-related complications or surgical issues stem-
ming from any particular device, the outcome from specific
instrument choices, and the use of instruments in different
surgical procedures. Since instruments could be used for
multiple purposes, the authors recommended that additional
labels be added to instrument annotations. We instead built
the hierarchical structure directly into our dataset and cre-
ated a four level hierarchy which consisted of speciality (2
classes), pack (12 classes), set (35 classes) and tool (360
classes) levels. We believe that this approach can be valu-
able for deep learning research and this dataset was therefore
designed to offer a large variety of tools, arranged hierarchi-
cally to reflect how surgical tools are organised in real-world
conditions. We provide details of the HOSPI-Tools Dataset

Fig. 9 HOSPI-Tools sets

in Table 9, and examples of actual instrument sets and anno-
tations of instruments in Figs. 9 and 10.

Images captured included individual object images aswell
as cluttered, clustered and occluded objects. More images
need to be taken by adjusting the DSLR camera position
and pose—this would increase the realism and utility of the
dataset. Instrument images were captured before and after
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Fig. 10 HOSPI-Tools annotations

use in surgery, it was not possible to take images of the tools
in use during actual surgery. Our survey findings have high-
lighted the need to include more images with occlusions,
illumination changes, and the presence of blood, tissue and
smoke, to accurately capture complex surgery conditions.

This is one step in the direction of addressing the issues
that we have identified in this survey, but much more work
needs to be accomplished. We will add other specialities as
we develop this dataset, to reflect the complexities inherent
in each of the surgical specialities and to address the open
research issues and challenges.

12 Conclusions

Wepresented a comprehensive survey of datasets for surgical
tool detection and related surgical data science and machine
learning techniques and algorithms. We offered a high level
perspective of current research in this area, analysed the tax-
onomy of approaches adopted by researchers using surgical
tool datasets, and addressed key areas of research, such as
the datasets used, evaluation metrics applied and deep learn-
ing techniques utilised. To ensure that we were rigorous and
structured in our approach, we defined an a priori protocol
for discovering and selecting the research that we reviewed.
Adherence to this protocol prevented anymid-stream shifting
of goals and inclusion criteria, and ensured that we presented
a comprehensive and robust knowledge hierarchy.

Our survey shows that the application of machine learning
to surgical tool detection, localisation, tracking, segmenting
and pose estimation is a well explored research subject and
many innovative techniques have been applied. However, we
also identified and discussed the open research issues and
challenges. To help address some of the gaps and shortfalls
that we have identified, we make a contribution by creat-
ing a new Surgical Tool Dataset and we make this dataset
publicly available to encourage more work in this direction.

The dataset is available at: https://doi.org/10.5281/zenodo.
5895068.
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