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Abstract

Representation learning for video is increasingly gaining attention in the field of computer vision. For instance, video pre-
diction models enable activity and scene forecasting or vision-based planning and control. In this article, we investigate the
combination of differentiable physics and spatial transformers in a deep action conditional video representation network.
By this combination our model learns a physically interpretable latent representation and can identify physical parameters.
We propose supervised and self-supervised learning methods for our architecture. In experiments, we consider simulated
scenarios with pushing, sliding and colliding objects, for which we also analyze the observability of the physical properties.
We demonstrate that our network can learn to encode images and identify physical properties like mass and friction from
videos and action sequences. We evaluate the accuracy of our training methods, and demonstrate the ability of our method to

predict future video frames from input images and actions.

Keywords Physical scene understanding - Video representation learning - Differentiable physics

1 Introduction

Scene forecasting Mottaghi et al. (2016b, a) or vision-based
control and planning Finn et al. (2016); Finn and Levine
(2017); Hafner et al. (2019) require representations of image
observations which facilitate prediction. In recent years, rep-
resentation learning methods have emerged for this purpose
that enable predictions directly on images or video Mottaghi
et al. (2016a); Babaeizadeh et al. (2018); Zhu et al. (2019).
Many video prediction models encode images into a low
dimensional latent scene representation which is predicted
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forward in time — sometimes conditioned on actions — and
that is decoded back into images. Neural representations for
video prediction such as Srivastava et al. (2015); Finn et al.
(2016); Babaeizadeh et al. (2018) perform these steps implic-
itly and typically learn a latent representation which cannot
be directly interpreted for physical quantities such as mass,
friction, position and velocity. This can limit explainability
and generalization for new tasks and scenarios. Analyti-
cal models like Kloss et al. (2017); Degrave et al. (2016);
Belbute-Peres et al. (2018) in contrast structure the latent
space as an interpretable physical parameterization and use
analytical physical models to forward the latent state.

In this paper we investigate the use of differentiable
physics for video representation learning. We examine super-
vised and self-supervised learning approaches which identify
physical parameters of objects from video. Our approach
learns to encode images into physical states and uses a
differentiable physics layer Belbute-Peres et al. (2018) to for-
ward the physical scene state based on latent physical scene
parameters which are also learned from training video. Self-
supervised learning is achieved by decoding the predicted
physical states back into images using spatial transform-
ers Jaderberg et al. (2015) (see Fig. 1) and assuming known
object models.
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Fig.1 We propose a self-supervised video representation learning approach that combines differentiable physics and spatial transformer layers to
learn a physical state latent representation from videos and object interactions in object pushing and collision scenarios

We evaluate our supervised and self-supervised learning
approaches in simulated object pushing, sliding and colli-
sion scenarios. We evaluate our approaches on simulated
scenarios, assess their accuracy in estimating object pose and
physical parameters, and compare to a purely neural network
based model. We also analyze the observability of physical
parameters in these scenarios. We demonstrate that physical
scene encodings can be learned from video and interactions
through our training approaches. Our approaches allow for
identifying the observable physical parameters of the objects
from the videos.

To summarize, we make the following contributions:

— We present approaches that learn to encode scenes into
physical latent representations of objects in supervised
and self-supervised ways. Our network architecture inte-
grates a differentiable physics engine to predict next
states. Self-supervised learning is achieved through spa-
tial transformers which decode the states back into
images. Our learning approaches simultaneously iden-
tify the observable physical parameters while learning
the network parameters of the encoder.

— Our physics-based approach outperforms a pure neural
network based baseline model in terms of prediction
accuracy and generalizes better to forces which are
unseen during training.

— We analyse the observability of physical parameters in
object pushing, sliding and collision scenarios.

This article extends our previous conference publica-
tion Kandukuri et al. (2020) with further details and back-
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ground of our approach and additional baseline results,
comparisons and analysis.

1.1 Related Work
1.1.1 Neural Video Prediction

Several video prediction models learn to recurrently embed
video frames into a latent representation using neural network
layers such as convolutions, non-linearities, and recurrent
units. The recurrent structure is used to predict the latent
state forward in time. Srivastava et al. (2015) recurrently
encode images into a latent representation using long short
term memory (LSTM Hochreiter and Schmidhuber (1997))
cells. The latent representation is decoded back into images
using a convolutional decoder. Video prediction is achieved
by propagating the latent representation of the LSTM for-
ward using predicted frames as inputs. Finn et al. (2016) also
encode images into a latent representation using successive
LSTM convolutions Shi et al. (2015). The decoder predicts
motion kernels (5 x 5 pixels) and composition masks for the
motion layers which are used to propagate the input images.

A typical problem of such architectures is that they can-
not capture multi-modal distributions on predicted frames
well, for example, in the case of uncertain interactions of
objects, which leads to blurry predictions. Babaeizadeh et al.
(2018) introduce a stochastic latent variable which is inferred
from the full sequence at training time and sampled from a
fixed prior at test time. Visual interaction networks explicitly
model object interactions using graph neural networks in a
recurrent video prediction architecture Watters et al. (2017).
However, these approaches do not learn a physically inter-
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pretable latent representation and cannot be used to infer
physical parameters. To address these shortcomings, Ye et al.
(2018) train a variational autoencoder based architecture in
a conditional way by presenting training data with variation
in each single specific physical property while holding all
but a few latent variables fixed. This way, the autoencoder is
encouraged to represent this property in the corresponding
part of the latent vector. The approach is demonstrated on
videos of synthetic 3D scenes with colliding shape primi-
tives. Zhu et al. (2019) combine disentangled representation
learning based on total correlation Chen et al. (2018) with
partial supervision of physical properties. These purely deep
learning based techniques still suffer from sample efficiency
and require significant amounts of training data.

1.1.2 Physics-based Prediction Models

Several works have investigated differentiable formulations
of physics engines which could be embedded as layers in
deep neural networks. In Degrave et al. (2016) an impulse-
based velocity stepping physics engine is implemented in a
deep learning framework. Collisions are restricted to sphere
shapes and sphere-plane interactions to allow for automatic
differentiation. The method is used to tune a deep-learning
based robot controller but neither demonstrated for parameter
identification nor video prediction.

Belbute-Peres et al. (2018) propose an end-to-end differ-
entiable physics engine that models friction and collisions
between arbitrary shapes. Gradients are computed analyti-
cally at the solution of the resulting linear complementarity
problem (LCP) Amos and Kolter (2017). They demonstrate
the method for including a differentiable physics layer in
a video prediction network for modelling a 2D bouncing
balls scenario with 3 color-coded circular objects. Input
to the network are the color segmented images and opti-
cal flow estimated from pairs of frames. The network is
trained in a supervised way using ground-truth positions of
the objects. We propose to use spatial transformers in the
decoder such that the network can learn a video representa-
tion in a self-supervised way. We investigate 3D scenarios
that include pushing, sliding, and collisions of objects and
analyze observability of physical parameters using vision
and known forces applied to the objects. A different way
of formulating rigid body dynamics has been investigated
in Greydanus et al. (2019) using energy conservation laws.
The method is demonstrated for parameter identification,
angle estimation and video prediction for a 2D pendulum
environment using an autoencoder network. Similar to our
approach, Jaques et al. (2020) also uses spatial transform-
ers for the decoder. However, differently the physics engine
only models gravitational forces between objects and does
not investigate full 3D rigid body physics with collision and
friction modelling and parameter identification.

Recently, Runia et al. (2020) demonstrated an approach
for estimating physical parameters of deforming cloth in
real-world scenes. The approach minimizes distance in a con-
trastively learned embedding space which encodes videos of
the observed scene and rendered scenes generated with a
physical model based on the estimated parameters. In our
approach, we train a video embedding network with the
physical model as network layer and identify the physical
parameters of observed rigid objects during training.

2 Background
2.1 Unconstrained and Constrained Dynamics

The governing equation of unconstrained rigid body dynam-
ics in 3D can be written as

f= ME + Coriolis forces (D)

where f : [0,00[ — ROV is the time-dependent torque-
force vector stacking individual torques and forces for the N
objects. The matrix M € ROV >N i the mass-inertia matrix

and & : [0, 00 — ROV is the time-derivative of the twist

T T

T . )
vector so that §; = (w,',v;)  stacks rotational and linear

velocities w, v : [0, oo[— R3 Cline (2002) of the i-th object.
The twist vector itself represents the time derivative of the
poses x € SE(3)" of the N objects which are elements of
the Special Euclidean Group SE(3).

In our experiments we do not consider rotations between
two or more frames of reference, therefore we do not have any
Coriolis forces. Most of the real world rigid body motions are
constrained. To simulate those behaviors we need to constrain
the motion with joint, contact and frictional constraints Cline
(2002).

The force-acceleration based dynamics which we use in
equation (1) does not work well for collisions since there
is a sudden change in the direction of velocity in infinitesi-
mal time Cline (2002). Therefore we use impulse-velocity
based dynamics, where even the friction is well-behaved
Cline (2002), i.e., equations have a solution at all config-
urations. We discretize the acceleration using the forward
Euler method as & = (&;4n — &) /h, where §, ), and &, are
the velocities in successive time steps at times ¢ + 4 and ¢,
and £ is the time-step size. Equation (1) now becomes

M§t+h =M§t+f'h~ (2)
2.1.1 Constrained Dynamics
Joint constraints are equality constraints g.(x) = 0 in the

poses of two objects. They restrict degrees of freedom of the
rigid bodies. By deriving the pose constraints for time, this
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can be written as J.&,,, = 0 where J, is the Jacobian of
the constraint function which gives the directions in which
the motion is restricted. The joint constraints exert constraint
forces which are solved using Euler-Lagrange equations by
solving for the joint force multiplier A..

The contact constraints g.(x) > 0 are inequality con-
straints which prevent bodies from interpenetration. This
ensures that the minimum distance between two bodies is
always greater than or equal to zero. The constraint equations
can be written using Newton’s impact model Cline (2002) as
Je&, v = —kJ:&,. The term kJ.&, can be replaced with ¢
which gives J.&,,, > —c, where k is the coefficient of resti-
tution, J. is the Jacobian of the contact constraint function at
the current state of the system and A is the contact force mul-
tiplier. Since it is an inequality constraint we introduce slack
variables a, which also gives us complementarity constraints
Mattingley and Boyd (2012).

The friction is modeled using a maximum dissipation
energy principle since friction damps the energy of the sys-
tem. In this case we get two inequality constraints in the
object twist vectors since frictional force depends on normal
force Anitescu and Potra (1997); Stewart (2000). They can
be writtenas J &, ., +Ey > Oand ud, > ET)»f where u is
the friction coefficient, J f is the Jacobian of the friction con-
straint function g r(x) at the current state of the system, E is
a binary matrix which ensures linear independence between
equations at multiple contacts, and Ay and y are frictional
force multipliers. Since we have two inequality constraints
we have two slack variables ¢, ¢ and two complementarity
constraints.

In summary, all the constraints that describe the dynamic
behavior of the objects we consider in our scene can be writ-
ten as the following linear complementarity problem (LCP),

0 R e S AW I
0 Je O 0 0 O Ae
al—1|J. O 0 0 0 Ac
o Jr 0 0 0 E Ay
¢ 0 0 u -ET O y
_MSt - hfext
0
= C S
0
0
a Ac a r Ac
subjectto {o | >0, [Af]| =0, |0 Ar]=0.03)
¢ Y ¢ Y

The above LCP is solved using a primal-dual algorithm
as described in Mattingley and Boyd (2012). It is embedded
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in our deep neural network architecture in a similar way as
in Amos and Kolter (2017) and Belbute-Peres et al. (2018),
which facilitates backpropagation of gradients at its solution.

2.2 3D Contact Handling

We implement contact handling for 3D shapes such as planes
and cubes using the open source implementation of the Open
Dynamics Engine Smith (2008). The contact handling step
consists of two sub-steps: collision detection and contact
resolution. The collision detection step verifies if two or
more bodies are under collision, i.e., the shortest distance
between two objects is below a threshold value. If a collision
is detected then for each pair of bodies, the contact resolution
step is applied, which gives out the contact points on each
body, the contact normal and the penetration distance.

The contact Jacobian (J) and the frictional Jacobian (J )
are constructed from the outputs of contact resolution step.
The entries for contact Jacobian are calculated from the direc-
tions of contact normal and the contact points on the bodies.

From Fig. 2, we can write the equation for the contact
constraint as g.(x) = n’ - (x, —X;) —e€, where n is the contact
normal, € the distance threshold for collisions and x, and x;,
are the contact points on the bodies A and B respectively.

The contact Jacobians are derived from

g(x) =n" - (%, — %) )
=n’ - (V4 + @4 X Xg) — (Vb + ©g X Xp)) o)

= ((xa xn)T nT) (wa ) (6)

N e’ Va
Ju e —’
&,
+ (—=(xp x m)T —nT) (wb Vb) (7)
Iy N e’
&
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Table 1 Convolutional layers in our encoder architecture

Table 2 Fully connected layers in our encoder architecture

Layer Type Dim in Dim out Kernel Stride Layer Type Input size Output size
1 Conv 4 64 5 2 FC 3%3%128 50

2 Conv 64 128 5 2 FC 50 50

3 Conv 128 256 5 2 FC 50 latent size
4 Conv 256 256 5 2

5 Conv 256 128 3 1

_(Ja O (84 _
B <0 Jb) (%) = It ©

S — ——
Je &

The frictional Jacobian is calculated in a similar way using
the directions from the contact resolution step but the main
difference is that the contact normal has only one direction
and the direction of friction is perpendicular to the normal,
which is the whole contact plane C. For this reason to get a
finite number of directions we have to discretize the plane.
Theoretically, the higher the number of the directions, the
better the accuracy in calculation, but increasing the number
also comes with larger computational cost. For simplicity in
calculation and also considering the range of object motion,
in this paper we consider four perpendicular directions.

3 Method

We develop a deep neural network architecture which
T ET

T
extracts physical states s; = (xi € ) from images, where

xi = (q/. pl.T)T is the pose of object i with orientation
q; € S? as unit quaternion and position p; € R3. We prop-
agate the state using the differentiable physics engine which
is integrated as layer on the encoding in the deep neural net-
work. For self-supervised learning, a differentiable decoder
subnetwork generates images back from the integrated state
representation of the objects.

We aim to learn the system’s dynamics by regressing the
state trajectories and learning the physical parameters of the
objects. These parameters can be the masses of the bodies and
the coefficient of friction between two bodies. We initialize
the objects at certain locations in the scene with some velocity
and start the simulation by applying forces. In the following,
we will detail our network architecture and training losses.

3.1 Network Architecture
3.1.1 Encoder

For supervised learning experiments, we use convolutional
layers followed by fully connected layers with exponential
linear units (ELU) Clevert et al. (2016) to encode poses from
images. The encoder receives the image /; and is encoded as
pose X;. We need at least two images to infer velocities from
images. For self-supervised learning experiments, we use an
encoder with the same base architecture as in the supervised
case to encode the input image I; to pose X;. Details on the
layers and parametrization are given in Tables 1 and 2.

We use three images so that we can average out the veloc-
ities in case of collisions when the two frames are collected
just before and after collision. We use the difference in poses
to estimate velocity instead of directly training the network
to output velocities. This gives us the average velocity, not
the final velocity. For example in 1D, when a block of mass
m is acting under an effective force f.fr between times 7y and
11, the velocity at time #1 is given by

p(t1) — p(to)
Hh — 1o

1 fefr
+2 m

v(t) = (1 — 1) (€))

average velocity

If we would let the network learn the velocities, it would
require to implicitly learn the physics which we want to
avoid by the use of the differentiable physics engine. The
encoded states are provided as input to the differentiable
physics engine.

3.1.2 Trajectory Integration

We integrate a trajectory of poses from the initial pose
estimated by the encoder and the velocity estimates by the dif-
ferentiable physics engine. In each time step, we calculate the
new pose of each object x¢ = (q¢ ', ptT)T where q € S*is a
unit quaternion representing rotation and p € R is the posi-
tion from the resulting velocities of the LCP &, = (th, vtT)T
by

Pr=Pi—1+V-h (10)
qr = qr—1 X quat(eo's“”h)

@ Springer
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Fig. 3 Loss calculation for supervised video representation learning. An encoder predicts physical states which are forwarded in time using
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Fig. 4 3D visualization of the simulated scenes. Top: block pushed on a flat plane. Middle: block colliding with another block. Bottom: block

falling and sliding down on an inclined plane

where quat(-) is an operator which converts a rotation matrix
into a quaternion.

3.1.3 Decoder

To train the pipeline in a self-supervised way, we need a
decoder which interprets the output of the physics engine
layer and renders the objects at the estimated poses. For that
purpose, we use a spatial transformer network (STN Jader-
berg et al. (2015)) layer. Since we use only the STN layer for
rendering, we do not have any learnable parameters for the
decoder.

We use the absolute poses predicted by the physics engine
layer to render the images. We assume known shape and
appearance of the object and extract a content image for each

@ Springer

object from the first image of the sequence using ground-
truth segmentation masks. The predicted poses are converted
to image positions and in-plane rotations of the rectangular
shape of the object in the top-down view assuming known
camera intrinsics and extrinsics. A spatial transformer net-
work layer renders the object’s content image at the predicted
image position and rotation. Finally, the prediction is recon-
structed by overlaying the transformed object images onto
the known background.
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3.2 Training Losses
3.2.1 Supervised Learning

For supervised learning, we initialize the physics engine with
inferred poses x{"y, ; for each object i from the encoder where
N is the (video) sequence length. Estimated poses X;.x ; by
the physics engine as well as the inferred poses by the encoder
are compared with ground truth poses xffN’ ; toinfer physical

parameters,

gt enc gt A
Lsupervised = Z e(XlzN,i’ Xinﬁ/,) + Ole(Xl:N’i, X1:N,i)s

i

2
‘2 + ||P2,t - Pl,t”;

N
1 _
e(X1,Xx2) := I E Hln(qz’thl,,)
t=1

(1)

where o is a weighting constant, ¢ is the time step and i
indexes objects. In the warm up phase of the training (see
4.2.2), we use @ = 0.0 to pre-train the encoder. This avoids
ill-posedness and stabilizes training because the physics
engine needs a good initialization for position and veloc-
ity from the encoder. We then continue training the encoder
along with the physics engine using ¢ = 0.1. We use the
quaternion geodesic norm to measure differences in rota-
tions. The loss calculation is visualized in Fig. 3.

3.2.2 Self-supervised Learning

For self-supervised learning, we initialize the physics engine
with inferred poses x{"y; from the encoder. Both estimated
poses by the physics engine and the inferred poses are
reconstructed into images I 1y and I using our decoder,
respectively. The images are compared to input frames / igtN
to identify the physical parameters and train the network.
Figure 1 illustrates the loss formulation.

2 o A 2
8t rec
+—H1. — 1!
b N 1:N 1:N )

12)

8t 3
Lelf-supervised = ‘II:N - IlreI\L/

vl
N

3.2.3 System Identification

For reference, we also directly optimize for the physical
parameters based on the ground-truth trajectories pf :tN with-
out the image encoder. For this we use the first state as an
input to the differentiable physics engine. In this case, the
loss function is Lgysia = Y ; e(X5', X;).

— m
—
f
T N, I N2
foxt
m, — m2

Fig. 5 1D/2D sketches of scenarios. Top left: block pushed on a flat
plane. Bottom left: block colliding with another block. Right: block
sliding down on an inclined plane

4 Experiments

We evaluate our approach in 3D simulated scenarios includ-
ing pushing, sliding and collision of objects (see Fig. 4).

4.1 Simulated Scenarios and Observability Analysis

In this section, we discuss and analyze the different scenar-
ios for the observability of physical parameters. To this end,
we simplify the scenarios into 1D or 2D scenarios where
dynamics equations are simpler to write.

4.1.1 Block Pushed on a Flat Plane

In this scenario, a block of mass m, lying on a flat plane is
pushed with a force f,,; at the center of mass as shown in
Fig. 5 (top left). In this 1D example, since we only have a
frictional constraint we can use Eq. (2) in combination with
the frictional force f = pN to describe the system, where
is the coefficient of friction, g = 9.81m /s? is the acceleration
due to gravity and N = mg is the normal force since the body
has no vertical motion. The velocity v in the next time step
hence is

Vith = VU + h—ugh (13)
m

We observe that only either one of mass or friction can be
inferred at a time. Thus, in our experiments we fix one of the
parameters and learn the other.

@ Springer
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Table 3 System identification results (blue lines) for the 3 scenarios. Ground truth is shown as red lines
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4.1.2 Block Colliding With Another Block

To learn both mass and coefficient of friction simultaneously,
we introduce a second block with known mass (m,) made of
the same material as the first one. This ensures that the coef-
ficient of friction (1) between the plane and the two blocks is
same. Since we are pushing the blocks, after collision, both
blocks move together. In the 1D example in Fig. 5 (bottom
left), when applied an external force ( fex¢), the equation to
calculate the linear velocities vy,2,,+4 of both objects in the
next time step becomes

Jext I

Vi4h =V, + —h—pugh, va;p =v2 +-—h—pugh,
mi my

(14)

where pugm1 and pgmy are frictional forces acting on each
block and f” is the equivalent force on the second body when
moving together. Now, in our experiments we can learn both
mass and coefficient of friction together given the rest of the
parameters in the equation.

4.1.3 Block Freefall and Sliding Down on an Inclined Plane

In this scenario the block slides down the inclined plane
after experiencing a freefall as shown in Fig. 5 (right). In
the 1D example, since the freefall is unconstrained (ignoring
air resistance), the velocity update is given by v, 4, = v, +gh.
For block sliding down on an inclined plane, the equation to
calculate velocity in the next time is

where 6 is the plane inclination. We can see that we can
only infer the coefficient of friction x and due to the free fall
we do not need to apply additional forces.

@ Springer

4.2 Results

We simulated the scenarios in 3D using the bullet physics
engine using PyBullet.! Note that the bullet physics engine
is different to the LCP physics engine in our network and
can yield qualitatively and numerically different results. The
bodies are initialized at random locations to cover the whole
workspace. Random forces between 5 and 20N are applied
at each time step. These forces are applied in +x, —x, +y
and —y directions which are chosen at random but kept con-
stant for a single trajectory while the magnitude of the forces
randomly varies in each time step. In total, 1000 different
trajectories are created with 300 time steps each for each
scenario. We render top-down views at 128 x 128 resolu-
tion. Training and test data are split with ratio 9 : 1.

For evaluation we show the evolution of the physical
parameters during the training. We also give the average rel-
ative position error by the encoder which is the average of
the difference between ground truth positions and estimated
poses divided by object size.

4.2.1 System Identification Results

As a baseline result, system identification (see Sect. 3.2.3)
can be achieved within 200 epochs with an average position
error for all the scenarios between 0.7 and 1.2%. Table 3 plots
the estimates of the physical parameters. They reach nominal
values with high accuracy.

! https://pybullet.org
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Table4 Supervised learning results for the 3 scenarios (smoothed over epochs with a Gaussian filter with ¢ = 5). The physical parameters are well identified (blue lines) close to the ground truth

values (red lines)
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4.2.2 Supervised Learning Results

We train our network using the supervised loss in Sect.3.2.1.
We warm up the encoder by pre-training with ground truth
poses so that when optimizing for physics parameters the
training of the encoder is stable. We then continue training
the encoder on the full supervised loss. From Table 4, we
observe that all the learned physical parameters (in blue)
slightly oscillate around the ground truth values (in red). The
average inferred position error for all the scenarios is between
2 and 8% and the average inferred rotation error for the col-
lision scenario is 8°. Our experiments show that this level
of accuracy in the estimated initial states suffices for robust
parameter learning.

4.2.3 Self-Supervised Learning Results

Now, we train the network in a self-supervised way (see
Sect. 3.2.2). In this experiment, we generate sequences where
the objects start at random locations with zero initial veloc-
ity, since the initial velocity estimate is ambiguous for our
self-supervised learning approach. We obtain average veloc-
ities from the estimated poses (Eq. (9)). Since the pose
estimation error is high in self-supervised experiments, the
accuracy in velocity especially at the beginning of training is
not sufficient for self-supervised learning. We pre-train the
encoder in an encoder-decoder way so that when optimizing
for physics parameters the training is stable. We continue
training the encoder on the full self-supervised loss. To pro-
vide the network with gradients for localizing the objects,
we use Gaussian smoothing on the input and reconstructed
images starting from kernel size 128 and standard deviation
128, and reducing it to kernel size 5 and standard devia-
tion 2 by the end of training. From Table 5, we observe
that our approach can still recover the physical parameters at
good accuracy. Expectably, they are less accurate than in the
supervised learning experiment. The average inferred posi-
tion error for all the scenarios is between 9 and 15% and the
average inferred rotation error for the collision scenario is
10°. Through the use of spatial transformers our approach is
limited to rendering top-down views and can not handle 3D
translation and rotation in our third scenario.

4.3 Qualitative Video Prediction Results

The learned model in Sect. 4.2.3 can be used for video predic-
tion. The images in the top row in Fig. 6a and b are the ground
truth, the images in the middle row are the reconstructions
from the predicted trajectories by our network and the images
in the bottom row are the difference images. We roll out a
180 frame (3 seconds) trajectory. We can observe that the
positions of the objects are well predicted by our approach,
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Table 5 Self-supervised learning results for the pushing and collision ing case, the physical parameters are identified (blue lines) close to the
scenarios (smoothed over epochs with a Gaussian filter with o = 5). ground truth values (red lines)
While the encoder error is slightly higher than in the supervised learn-

Inference Block pushed on a flat plane Block colliding with another block
8 Mass Optimization Mass and Friction Optimization
a P A - a M
© ©8
Mass € 6 € A
kel kel 6
[J] [J]
© ®
£* E4
@ @
w2 w2
0 2500 5000 7500 10000 0 5000 10000 15000

EpOChS position inference error: 9% EpOC S position inference error: 15%

Friction Optimization Mass and Friction Optimization

0.6
0.4
0.2 v/\l\,:/\/\hﬂ*/\v‘/\/\/

0 2000 4000 6000

Epochs position inference error: 9%

e S

Fig. 6 Qualitative video prediction results for block pushing (left) and collision scenarios (right) with our method. Top: simulated images (from
left to right frames 0, 30, 60, 120, 180) Middle: predicted images by our approach. Bottom: difference images.
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Fig.7 Qualitative video prediction results of our method (left) and the MLP baseline (right) for the pushing scenario. Top: simulated images (from
left to right frames 0, 20, 40, 60, 80, 120). Middle: predicted images. Bottom: difference images
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Fig.8 Qualitative video prediction results of our method (left) and the MLP baseline (right) for the collision scenario. Top: simulated images (from
left to right frames 0, 20, 40, 60, 80, 120). Middle: predicted images. Bottom: difference images
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Fig.9 Comparison of pose error (relative to object size in percent, mean: lines, std. var.: shaded area) for varying prediction horizons for the MLP
baseline (red) and our approach (blue) in the block pushing (left) and collision scenarios (right).(a) Pushing scenario (b) Collision scenario
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Fig. 10 Qualitative video prediction results of our method (left) and the MLP baseline (right) for the pushing scenario for new force distribution.
Top: simulated images (from left to right frames 0, 12, 24, 36, 48, 60). Middle: predicted images. Bottom: difference images

while the approach yields small inaccuracies in predicting
rotations which occur after the collision of the objects.

4.4 Baseline MLP Prediction

We compare our approach against a baseline method in which
the physics engine is replaced by a multi-layer perceptron
(MLP) network with three hidden layers (10 features each
for pushing and 20 features each for collision scenarios),
while retaining the rest of the architecture. The MLP network
takes the concatenated vector of current pose (x;), current

velocity (&,) and the applied force vector (f,) and outputs
the change in pose and velocity (Ax,, A&,). Since the output
of the network does not guarantee that the objects lie inside
the frame after a forward roll out, we stabilize the training
by an additional penalty term to the outputs of the MLP to
keep the objects in the frame in the following loss function

rec

1 ' 2
Lself—supervised—MLP = N H Ilg;N - Il:N 5

o A 2
8t rec
+— HI — I
N 1:N 1:N 2
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Fig. 11 Qualitative video prediction results of our method (left) and the MLP baseline (right) for the collision scenario for new force distribution.
Top: simulated images (from left to right frames 0, 12, 24, 36, 48, 60). Middle: predicted images. Bottom: difference images
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(a) Pushing scenario

Fig. 12 Generalization to different force distribution. Comparison of
relative pose error (relative to object size in percent, mean: lines, std.
var.: shaded area) for varying prediction horizons for the MLP baseline
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where 18 is the ground truth frame, 17¢¢ is the reconstructed
frame from encoder inferred pose, 7 is the reconstructed
frame from MLP predicted pose, y is the weight at which
the MLP is penalized, x;“ and y/“* are the poses predicted
by MLP and x4, and v,y are the maximum limits in the
frame.

The roll out size in the training set is 30 frames and in the
evaluation set is 120 frames. For training we employ a similar
procedure like for self-supervised experiments. We warm-up
the encoder by training it standalone for 7000 epochs and then
start training the MLP together with the encoder for 50000
more epochs or until convergence.

We initialize our method and the MLP baseline with the
output of their encoder and predict 120 frames. Figures 7
and 8 show the qualitative video prediction results for pre-
diction with our method and the MLP baseline for pushing
and collision scenarios, respectively. We see that the error
growth in our method is smaller when compared to the MLP
baseline. The results are shown quantitatively in Fig. 9a and
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(red) and our approach (blue) in the block pushing (left) and collision
scenarios (right). (a)Pushing scenario (b) Collision scenario

b. For the prediction error plots, we sample 20 trajectories
and calculate mean and standard deviation per frame. In the
collision scenario, Fig. 8, we see that the MLP network is not
able to capture the more complex dynamics involved in col-
lisions. Note that the MLP baseline does not infer physical
parameters such as mass or friction.

This also becomes evident when we apply the models
to unseen forces. We perform roll outs for 60 frames on a
dataset with different force distribution than that was used
during training. For these generalization experiments we use
a uniform force distribution between 30N and 40N which is
distinct from the forces used for training. Figures 10 and 11
show the qualitative video prediction results for prediction
with our method and baseline method for pushing and col-
lision scenarios, respectively. From the prediction error over
20 sample trajectories in Fig. 12 we can see that the error
of the MLP baseline shoots up even for a 60 frame roll out,
while our physics-based approach generalizes clearly better.

4.5 Discussion and Limitations

Our approach achieves physical parameter identification and
CNN parameter learning by supervised and self-supervised
learning in the evaluated scenarios. It outperforms an MLP
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baseline model in terms of accuracy and generalization. We
have studied observability and feasibility of learning physical
parameters and video embedding by our approach. At its
current stage, our architecture makes several assumptions
on the scenes which could be addressed in future research.
Our approach for using 2D spatial transformers for image
generation restricts the self-supervised learning approach to
known object shape and appearance and top down views. For
real scenes our methods needs information about the applied
forces which can be obtained from a known dynamics model
of the interacting device (e.g. of a robot) or force sensors.
Additionally, our model currently assumes that the forces are
directly applied at the center of the object. It would require
extensions, for instance, to also estimate the point of contact
and direction of the applied forces using the CNN encoder.
For self-supervised learning, methods for bridging the sim-
to-real domain gap have to be investigated.

5 Conclusion

In this article we study supervised and self-supervised
deep learning approaches which learn image encodings
and identify physical parameters. Our deep neural network
architecture integrates differentiable physics with a spatial
transformer network layer to learn a physical latent represen-
tation of video and applied forces. For supervised learning, an
encoder regresses the initial object state from images. Self-
supervised learning is achieved through the implementation
of a spatial transformer which decodes the predicted posi-
tions by the encoder and the physics engine back into images.
This way, the model can also be used for video prediction with
known actions by letting the physics engine predict positions
and velocities conditioned on the actions. We evaluate our
approach in scenarios which include object pushing, sliding
and collisions and compare our results with an MLP base-
line. We analyze the observability of physical parameters and
assess the quality of the reconstruction of these parameters
using our learning approaches. In future work we plan to
investigate further scenarios including learning the restitu-
tion parameter and extend our self-supervised approach to
real scenes and full 3D motion of objects.
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