Skip to main content
Log in

Oxygen Assisted Morphological Changes of Pt Nanosized Crystals

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Thermal faceting of clean and oxygen-covered Pt nanocrystals was investigated at the nanoscale by means of field ion microscopy (FIM) and field emission microscopy (FEM) in the 500–700 K temperature range. FIM and FEM are used to study the morphology of the crystal prepared in the form of a sharp tip. The tip extremity is observed with nanoscale lateral resolution and corresponds to a suitable model of a single nanoparticle of a real catalyst. By contrast to similar studies on iridium, palladium and rhodium, small oxygen exposures (~ 10 L) and annealing treatments at 700 K did not lead to strong surface modifications. The field ion micrograph was similar to the pattern obtained for the nanocrystals annealed under vacuum conditions, revealing only low index {001} and {111} facets. For higher oxygen doses, i.e. ≥ 100 L, and in field-free conditions, the flat {100}, {111} and {113} facets were developed after annealing the tip at 700 K, which was attributed to the formation of oxide layers. For comparison, the surface modification was studied under oxygen-rich conditions but in the presence of an electric field at 700 K. The results showed that only former reconstruction was observed regardless of oxygen doses. These results are also promising in the frame of engineering catalysts since different gas exposure may lead to the extension or shrinking of specific facets, which may impact the efficiency of the catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. King DA, Woodruff DP (1982) The chemical physics of solid surfaces and heterogeneous catalysis, vol 4. Elsevier, Amsterdam

    Google Scholar 

  2. Freund HJ (2002) Surf Sci 500:271–299

    Article  CAS  Google Scholar 

  3. Arblaster JW (2005) Platin Met Rev 49:141–149

    Article  CAS  Google Scholar 

  4. Seriani N, Jin Z, Pompe W, Colombi Ciacchi L (2007) Phys Rev B 76:155421

    Article  CAS  Google Scholar 

  5. Bernhardt TM, Heiz U, Landman U (2007) Nanocatalysis. Springer, Berlin

    Google Scholar 

  6. Croy JR, Mostafa S, Liu J, Sohn YH, Heinrich H, Roldan Cuenya B (2007) Catal Lett 191:209–216

    Article  CAS  Google Scholar 

  7. Mostafa S, Croy JR, Heinrich H, Roldan Cuenya B (2009) Appl Catal A 366:353–362

    Article  CAS  Google Scholar 

  8. Rinnemo M (1997) Surf Sci 376:297–309

    Article  CAS  Google Scholar 

  9. McCrea KR, Parker JS, Somorjai GA (2002) J Phys Chem B 106:10854–10863

    Article  CAS  Google Scholar 

  10. Engel T, Ertl G (1979) Adv Catal 28:1–78

    CAS  Google Scholar 

  11. Laidler KJ, Meiser JH (1982) Physical chemistry, Benjamin/Cummings Pub. Co., Menlo Park

    Google Scholar 

  12. Sandert M, Imbihl R, Schuster R, Barth JV, Ertl G (1992) Surf Sci 271:159–169

    Article  Google Scholar 

  13. Parkinson CR, Walker M, McConville CF (2003) Surf Sci 545:19–33

    Article  CAS  Google Scholar 

  14. Miller DJ, Öberg H, Kaya S, Sanchez Casalongue H, Friebel D, Anniyev T, Ogasawara H, Bluhm H, Pettersson LGM, Nilsson A (2011) Phys Rev Lett 107:195502

    Article  CAS  PubMed  Google Scholar 

  15. Devarajan SP, Hinojosa JA Jr, Weaver JF (2008) Surf Sci 602:3116–3124

    Article  CAS  Google Scholar 

  16. Ertl G, Neumann M, Streit KM (1977) Surf Sci 64:393–410

    Article  CAS  Google Scholar 

  17. Walker AV, Klötzer B, King DA (1998) J Chem Phys 109:6879–6888

    Article  CAS  Google Scholar 

  18. Freyer N, Kiskinova M, Pirug G, Bonze HP (1986) Surf Sci 166:206–220

    Article  CAS  Google Scholar 

  19. Helveg S, Li WX, Bartelt NC, Horch S, Lægsgaard E, Hammer B, Besenbacher F (2007) Phys Rev Lett 98:115501

    Article  CAS  PubMed  Google Scholar 

  20. Li WX, Österlund L, Vestergaard EK, Vang RT, Matthiesen J, Pedersen TM, Lægsgaard E, Hammer B, Besenbacher F (2004) Phys Rev Lett 93:146104

    Article  CAS  PubMed  Google Scholar 

  21. Somorjai GA, Aliaga C (2010) Langmuir 26:16190–16203

    Article  CAS  PubMed  Google Scholar 

  22. Shao M, Peles A, Shoemaker K (2011) Nano Lett 11:3714–03719

    Article  CAS  PubMed  Google Scholar 

  23. Tian N, Zhou ZY, Sun SG (2008) J Phys Chem C 112:19801–19817

    Article  CAS  Google Scholar 

  24. Somorjai GA, Park JY (2008) Chem Soc Rev 37:2155–2162

    Article  CAS  PubMed  Google Scholar 

  25. Jin M, Zhang H, Xie Z, Xia Y (2012) Energy Environ Sci 5:6352–6357

    Article  CAS  Google Scholar 

  26. Zhang H, Jin M, Xia Y (2012) Angew Chem Int Ed 51:7656–7673

    Article  CAS  Google Scholar 

  27. Madey TE, Chen W, Wang H, Kaghazchi P, Jacob T (2008) Chem Soc Rev 37:2310–2327

    Article  CAS  PubMed  Google Scholar 

  28. Yoshida H, Matsuura K, Kuwauchi Y, Kohno H, Shimada S, Haruta M, Takeda S (2011) Appl Phys Express 4:065001

    Article  CAS  Google Scholar 

  29. Medvedev KV, Suchorski Y, Voss C, Visart de Bocarmé T, Bär T, Kruse N (1998) Langmuir 14:6151–6157

    Article  CAS  Google Scholar 

  30. Dicke J, Rotermund HH, Lauterbach J (2000) Surf Sci 454–456:352–357

    Article  Google Scholar 

  31. Sadeghi P, Dunphy K, Punckt C, Rotermund HH (2012) J Phys Chem C 116:4686–4691

    Article  CAS  Google Scholar 

  32. Voss C, Kruse N (1995) Appl Surf Sci 87/88:134–139

    Article  CAS  Google Scholar 

  33. Barroo C, Gilis N, Lambeets SV, Devred F, Visart de Bocarmé T (2014) Appl Surf Sci 304:2–10

    Article  CAS  Google Scholar 

  34. Gorodetskii VV, Elokhina VI, Bakker JW, Nieuwenhuys BE (2005) Catal Today 105:183–205

    Article  CAS  Google Scholar 

  35. Genty E, Jacobs L, Visart de Bocarmé T, Barroo C (2017) Catalysts 7(5):134

    Article  CAS  Google Scholar 

  36. Bär T, Visart de Bocarmé T, Kruse N (2000) Surf Sci 454–456:240–245

    Article  Google Scholar 

  37. Bryl R, Olewicz T, Visart de Bocarmé T, Kruse N (2010) J Phys Chem C 114:2220–2226

    Article  CAS  Google Scholar 

  38. Bryl R, Olewicz T, Visart de Bocarmé T, Kruse N (2011) J Phys Chem C 115:2761–2768

    Article  CAS  Google Scholar 

  39. McEwen JS, Gaspard P, De Decker Y, Barroo C, Visart de Bocarmé T, Kruse N (2010) Langmuir 26:16381–16391

    Article  CAS  PubMed  Google Scholar 

  40. Barroo C, De Decker Y, Visart de Bocarmé T, Kruse N (2014) J Phys Chem C 118:6839–6846

    Article  CAS  Google Scholar 

  41. Müller EW, Tsong TT (1969) Field ion microscopy: principles and applications. Elsevier, New York

    Book  Google Scholar 

  42. Bagot PAJ, Cerezo A, Smith GDW (2007) Surf Sci 601:2245–2255

    Article  CAS  Google Scholar 

  43. Visart de Bocarmé T, Kruse N (2001) Top Catal 14:35–42

    Article  Google Scholar 

  44. Chen Q, Richardson NV (2003) Prog Surf Sci 73:59–77

    Article  CAS  Google Scholar 

  45. Seriani N, Mittendorfer F (2008) J Phys Condens Matter 20:184023

    Article  CAS  Google Scholar 

  46. Voss C, Kruse N (1998) Surf Sci 409:252–257

    Article  CAS  Google Scholar 

  47. Kruse N, Gaussmann A (1993) Appl Surf Sci 67:160–165

    Article  CAS  Google Scholar 

  48. Yamanaka T, Xue QK, Kimura K, Matsushima T, Hasegawa Y, Sakura T (2000) Jpn J Appl Phys 39:3562–3565

    Article  CAS  Google Scholar 

  49. Jenkins SJ (2001) Surf Sci 494:59–65

    Article  Google Scholar 

  50. Zhu T, Sun SG, van Santen RA, Hensen EJM (2013) J Phys Chem C 117:11251–11257

    Article  CAS  Google Scholar 

  51. Foiles SM (1987) Surf Sci 191:L779–L786

    Article  CAS  Google Scholar 

  52. Lin RJ, Fu TY (2012) Surf Interface Anal 44:658–661

    Article  CAS  Google Scholar 

  53. Yamanaka T, Matsushima T, Tanaka SI, Kamada M (1996) Surf Sci 349:119–128

    Article  CAS  Google Scholar 

  54. Voss C, Gaussmann A, Kruse N (1993) Appl Surf Sci 67:142–146

    Article  CAS  Google Scholar 

  55. Wang T, Schmidt LD (1981) J Catal 71:411–422

    Article  CAS  Google Scholar 

  56. Li T, Marquis EA, Bagot PAJ, Tsang SCE, Smith GDW (2011) Catal Today 175:552–557

    Article  CAS  Google Scholar 

  57. Suchorski Y (1998) Ultramicroscopy 73:139–145

    Article  CAS  Google Scholar 

  58. Muller O, Roy R (1968) J Less-Common Met 16:129–146

    Article  CAS  Google Scholar 

  59. Punnoose A, Seehra MS, Wende I (2001) Fuel Process Technol 74:33–47

    Article  CAS  Google Scholar 

  60. Wang CB, Lin HK, Hsu SN, Huang TH, Chiu HC (2002) J Mol Catal A 188:201–208

    Article  CAS  Google Scholar 

  61. Seriani N, Pompe W, Ciacchi LC (2006) J Phys Chem B 110:14860–14869

    Article  CAS  PubMed  Google Scholar 

  62. Weaver JF (2013) Chem Rev 113:4164–4215

    Article  CAS  PubMed  Google Scholar 

  63. Ono LK, Yuan B, Heinrich H, Roldan Cuenya B (2010) J Phys Chem C 114:22119–22133

    Article  CAS  Google Scholar 

  64. Samsonov GV (1982) The oxide handbook, 2nd edn. Plenum Publishing Corporation, New York

    Book  Google Scholar 

  65. Weaver JF, Kan HH, Shumbera RB (2008) J Phys: Condens Matter 20:184015

    Google Scholar 

  66. Ellinger C, Stierle A, Robinson IK, Nefedov A, Dosch HJ (2008) Phys Condens Matter 20:184013

    Article  CAS  Google Scholar 

  67. Moors M, Visart de Bocarmé T, Kruse N (2007) Catal Today 124:61–70

    Article  CAS  Google Scholar 

  68. Voss C, Kruse N (1998) Surf Sci 416:L1114–L1117

    Article  CAS  Google Scholar 

  69. Visart de Bocarmé T, Chau TD, Kruse N (2007) Surf Interface Anal 39:166–171

    Article  CAS  Google Scholar 

  70. Derry GN, Ross PNA (1985) J Chem Phys 82:2772–2778

    Article  CAS  Google Scholar 

  71. Lambeets SV, Barroo C, Owczarek S, Genty E, Gilis N, Kruse N, Visart de Bocarmé T (2017) J Phys Chem C 121:16238–16249

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.O., C.B., R.B. and T.V.d.B. thank Wallonia-Brussels International for the Bilateral Cooperation Agreement, and the Bilateral Cooperation between the Fonds de la Recherche Scientifique (F.R.S.-FNRS) and the Polish Academy of Sciences (PAN). S.V.L. and C.B. thank the F.R.S.-FNRS for financial support (PhD grant from FRIA and Postdoctoral fellowship from FNRS, respectively). This work was supported by a research grant from University of Wroclaw (No. 1425/M/FD/15).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sylwia Owczarek, Cédric Barroo or Thierry Visart de Bocarmé.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Owczarek, S., Lambeets, S.V., Barroo, C. et al. Oxygen Assisted Morphological Changes of Pt Nanosized Crystals. Top Catal 61, 1313–1322 (2018). https://doi.org/10.1007/s11244-018-0984-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-0984-4

Keywords

Navigation